
VeGen: A Vectorizer Generator for SIMD and Beyond

Yishen Chen
MIT CSAIL

USA

ychen306@mit.edu

Charith Mendis
UIUC

USA

charithm@illinois.edu

Michael Carbin
MIT CSAIL

USA

mcarbin@csail.mit.edu

Saman Amarasinghe
MIT CSAIL

USA

saman@csail.mit.edu

ABSTRACT

Vector instructions are ubiquitous inmodern processors. Traditional

compiler auto-vectorization techniques have focused on targeting

single instructionmultiple data (SIMD) instructions. However, these

auto-vectorization techniques are not sufficiently powerful tomodel

non-SIMD vector instructions, which can accelerate applications

in domains such as image processing, digital signal processing, and

machine learning. To target non-SIMD instruction, compiler devel-

opers have resorted to complicated, ad hoc peephole optimizations,

expending significant development time while still coming up short.

As vector instruction sets continue to rapidly evolve, compilers can-

not keep up with these new hardware capabilities.

In this paper, we introduce Lane Level Parallelism (LLP), which

captures the model of parallelism implemented by both SIMD and

non-SIMD vector instructions. We present VeGen, a vectorizer gen-

erator that automatically generates a vectorization pass to uncover

target-architecture-specific LLP in programs while using only in-

struction semantics as input. VeGen decouples, yet coordinates

automatically generated target-specific vectorization utilities with

its target-independent vectorization algorithm. This design enables

us to systematically target non-SIMD vector instructions that un-

til now require ad hoc coordination between different compiler

stages. We show that VeGen can use non-SIMD vector instructions

effectively, for example, getting speedup 3× (compared to LLVM’s

vectorizer) on x265’s idct4 kernel.
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(d) vpmaddwd

Figure 1: Examples of SIMD and non-SIMD instruction in

the AVX2 instruction set. We use different colors to indicate

how the input values flow to different output lanes.

1 INTRODUCTION

Vector instructions are ubiquitous in modern processors. Previ-

ous work on auto-vectorization has focused on single instruction

multiple data (SIMD) instructions, but there is little research on

systematically targeting non-SIMD vector instructions, which has

applications in domains such as digital signal processing, image

processing, and machine learning (e.g., Intel’s VNNI extension and

the dot-product instructions in ARMv8 [14]). In contrast with the

SIMD instruction shown in Figure 1(a), Figures 1(b)ś1(d) show three

examples of the non-SIMD instructions from the AVX2 instruction

set. Figure 1(b) shows a single instruction, multiple operations, mul-

tiple data (SIMOMD) instruction [2] that performs additions and

subtractions on alternating lanes (vaddsubpd); Figure 1(c) shows

a horizontal addition with lane interleaving (vhaddpd); and Fig-

ure 1(d) shows an instruction computing dot-products (vpmaddwd).

To date, there is no unified model of parallelism that captures the

capabilities of these instructions.

Automatic Vectorization. There are two mainstream techniques

for extracting SIMD parallelism: loop vectorization [1, 20, 21] and

superword level parallelism (SLP) based vectorization [15, 17, 24].

Both techniques make two fundamental assumptions about vector

instructions: a SIMD instruction performs isomorphic operations

across all lanes, and the instruction applies the operations element-

wise (i.e., there is no cross-lane operation). Relying on these two as-

sumptions, these algorithms enable compiler developers to support

SIMD instructions across a variety of architectures with relatively

little incremental effort.
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(a) Reference Implementation

void

dot_16x1x16_uint8_int8_int32(

uint8_t data[restrict 4],

int8_t kernel[restrict 16][4] ,

int32_t output[restrict 16]) {

for (int i = 0; i < 16; i++)

for (int k = 0; k < 4; k++)

output[i] +=

data[k] * kernel[i][k];

}

(b) ICC

movzx r11d , [rdi]

movsx eax , [rsi]

imul r11d , eax

...

add r11d , r10d

add r11d , ecx

mov [rdx], r11d

(c) GCC

vmovdqa xmm0 , [rip]

vmovdqu xmm1 , [rsi]

...

vpmovsxbw xmm7 , xmm6

vpbroadcastw xmm5 , xmm5

vpmullw xmm7 , xmm7 , xmm9

vpsrldq xmm2 , xmm6 , 8

...

(d) LLVM

vmovdqu xmm6 , [rsi + 32]

vmovdqu xmm7 , [rsi + 48]

...

vpmulld zmm1 , zmm11 , zmm1

vpaddd zmm1 , zmm1 , [rdx]

vpmovsxbd zmm3 , xmm3

vpmulld zmm3 , zmm10 , zmm3

...

(e) VeGen

vmovdqu64 zmm0 , [rdx]

vpbroadcastd zmm1 , [rdi]

vpdpbusd zmm0 , zmm0 , [rsi]

vmovdqu64 [rdx], zmm0

Number of Instructions 273 106 61 4

Speedup Relative to ICC 1.0× 1.5× 2.2× 11.0×

Vector Extensions Used Not Vectorized SSE4 SSE4 & AVX-512 AVX512-VNNI

Figure 2: One of the dot-product kernels used by TVM’s 2D convolution layer (Figure 2(a)). Compiler generated assembly and

statistics for Intel’s compiler ICC (Figure 2(b)), GCC (Figure 2(c)), LLVM (Figure 2(d)), and VeGen (Figure 2(e))

Existing Support for Non-SIMD Instructions. Because non-

SIMD instructions violate the two fundamental assumptions of

existing vectorization algorithms, compiler developers support non-

SIMD instructions using ad hoc approaches that are cumbersome

and often ineffective. For most non-SIMD instructions, compiler

developers support themwith backend peephole rewrites. However,

because these peephole rewrites do not generate vector instructions

by themselvesÐthey fuse sequences of SIMD instructions and vec-

tor shuffles into more non-SIMD instructionsÐrelying on peephole

rewrites alone is ineffective. A relatively more effective but more

labor-intensive strategy involves coordinating with the compiler’s

vectorizers to generate SIMD vector patterns that are tailored for

those rewrite rules. For instance, the initial support in LLVM [16]

for the addsub instruction family (Figure 1(b)) required three co-

ordinated changes to LLVM: refactoring LLVM’s SLP vectorizer

to support alternating opcodes, changing LLVM’s cost model to

recognize a special case of vector shuffle (blending odd and even

lanes), and modifying LLVM’s backend lowering logic to detect

the special patterns generated by the SLP vectorizer. As processor

vendors continue to add more complex non-SIMD instructions, this

methodology is not sustainable. Compilers are falling behind in

identifying the complex code sequences that can be mapped to

these instructions, and these multibillion-dollar investments by the

processor vendors in enhancing the vector instruction sets go un-

derutilized without expert developers manually writing assembly

or compiler intrinsics.

Our Approach: VeGen. In this paper, we describe an extensible

framework for systematically targeting non-SIMD vector instruc-

tions. We define a new model of vector parallelism more general

than SIMD parallelism, and we present a vectorizer generator that

can effectively extract this new model of parallelism using non-

SIMD instructions.

To broaden the parallelism modeled by existing vectorizers, we

introduce Lane Level Parallelism (LLP), which generalizes super-

word level parallelism (SLP) [15] beyond SIMD in two ways: (1) An

instruction can execute multiple non-isomorphic operations, and

(2) the operation on each output lane can use values from arbitrary

input lanes. These two properties of LLP depend on the semantics

of a given target vector instruction. Consequently, our framework

encapsulates the two LLP properties (i.e., which operation exe-

cutes on a given lane and which values the operation uses) in a

couple of target-dependent vectorization utility functions. By inter-

facing with these utilities, the core vectorization algorithm in our

framework remains target-independent, as traditional vectorization

algorithms do.

We realize this framework with VeGen, a system that automat-

ically generates target-architecture-aware vectorizers to uncover

LLP in straight-line code sequences while using only instruction

semantics as input. From these instruction semantics, VeGen au-

tomatically generates the implementation of the aforementioned

vectorization utilities as a compiler library to describe the specific

kind of LLP supported by the target architecture. With this auto-

matically generated target-description library, VeGen’s vectorizer

can automatically use non-SIMD vector instructions. We added

support for newer classes of non-SIMD vector instructions (e.g.,

those found in AVX512-VNNI, which are not fully supported by

LLVM) by providing only their semantics.

We make the following contributions in this paper:

• We introduce Lane Level Parallelism, which captures the

type of parallelism implemented by both SIMD and non-

SIMD vector instructions.

• We describe a code-generation framework that jointly per-

forms vectorization and vector instruction selection while

maintaining themodularity of traditional target-independent

vectorizers designed for SIMD instructions.

• We present VeGen, a vectorizer generator that automati-

cally uses complex non-SIMD instructions using only their

documented semantics as input.

• We integrated VeGen into LLVM. VeGen can use non-SIMD

vector instructions effectively, e.g., getting speedup 3× (com-

pared to Clang’s vectorizer) on x265’s idct4 kernel.

2 MOTIVATIONAL EXAMPLE

In Figure 2, we compare VeGen with three production compilers

on a kernel used by TVM’s [8] 2D convolutional layers. Figure 2(a)

shows the naive scalar implementation of this kernel. Figures 2(b)ś

2(e) show the assembly output of ICC 19.0.1, GCC 10.2, LLVM

10.0, and the VeGen-generated vectorizer, respectively. All code

generators were configured to target AVX512-VNNI.

903



VeGen: A Vectorizer Generator for SIMD and Beyond ASPLOS ’21, April 19–23, 2021, Virtual, USA

VeGen’s vectorizer generates by far the shortest assembly code

sequence, 15.25× shorter than the next shortest code generator,

LLVM, and the generated code runs 5× faster than LLVM’s. Ve-

Gen’s vectorizer uses a new AVX512-VNNI instruction (vpdpbusd);

GCC uses some of the integer vector instructions introduced in

SSE4 (vpaddd and vpmullw); LLVM uses a mix of SSE and AVX512

instructions (vpaddd and vpmulld operating on the 512-bit zmm

registers); and ICC, Intel’s own compiler, does not vectorize the

code. This is in spite of many man-hours spent on these compilers

to support Intel’s multibillion-dollar investment in these vector ex-

tensions. In contrast to these manual engineering efforts to target

new vector extensions, the target-specific components of VeGen

are automatically generated from semantics.

In this example, VeGen’s vectorizer uses a new dot-product

instruction (vpdpbusd) introduced in the AVX512-VNNI instruction

set. No other evaluated compilers were able to use this instruction.

It is important to note that VeGen’s output (Figure 2(e)) cannot be

generated simply by pattern matching because of the extra data

movement using the instruction vbroadcastw, which reorders the

inputs of vpdpbusd.

VeGen allows compilers to target new vector instructions with

less development effort. Thus, we believe this new capability will en-

able the creation of more robust vectorizers in production compilers.

3 LANE LEVEL PARALLELISM

Lane Level Parallelism (LLP) is our relaxation of superword level

parallelism (SLP) [15], which models short-vector parallelism (in

which an instruction executes multiple scalar operations in parallel)

with the following restrictions:

• The operations execute in lock-step.

• The inputs and outputs of the operations reside in packed

storage (usually implemented as vector registers). We refer

to an element of such packed storage as a lane.

• The operations are isomorphic.

• The operations are applied elementwise (i.e., there is no

cross-lane communication).

LLP relaxes SLP by removing the last two restrictions: (1) The

operations can be non-isomorphic, and (2) an operation executing

on one lane can use values from another input lane.

Non-isomorphism. LLP allows different operations to execute

in parallel, whereas SLP applies only one operation across all vector

lanes. An example of an instruction that uses such a parallel pattern

is the x86 instruction vaddsubpd (Figure 1(b)), which does addition

on the odd lanes and subtraction on the even lanes.

Cross-lane communication. LLP allows an operation executing

on one lane to access values from another input lane (as long as the

lane is selected statically). In contrast, SLP restricts an operation to

use values from its own input lane. This flexibility is useful for com-

putations that require communication between lanes (e.g., parallel

reduction). For example, vhaddpd horizontally combines pairs of

lanes using addition and then interleaves the results (Figure 1(c)).

These properties of LLP depend on the semantics of individual

instructions. Different instructions can use different combinations

of operations or apply different cross-lane communication patterns.

Architecture Manual

Instruction Descriptions (Section 4.1)

Pattern Generator (Section 4.2)

Pattern Matcher (Section 4.3)

Vector Pack Selection (Section 4.4 & 5)

Code Generation (Section 4.5)

Scalar Program

Vector Program

Offline

Compile
Time

Figure 3: VeGen’s workflow. Bolded boxes represent arti-

facts such as manuals and programs.

4 VEGEN’S WORKFLOW

The key idea of VeGen is to encapsulate the details of the two

LLP properties (non-isomorphism and cross-lane communication)

behind two interfaces. VeGen views a given vector instruction

as a list of operations, each of which associated with a pattern

matcher (interface 1). Each vector instruction has a lane-binding

function that tellsVeGen how the input lanes bind to the operations

(interface 2). VeGen generates the implementations of these two

interfaces offline. At compile time, VeGen’s target-independent

vectorization algorithm works by first using the pattern matcher to

find independent IR fragments that can be packed into the available

vector instructions, then using the lane binding rule to identify

the vector operands used by the packed vector instructions, and

then recursively finding other IR fragments that can be packed to

produce those vector operands.

Figure 3 shows the workflow of VeGen. VeGen targets non-

SIMD (and SIMD) vector instructions in two phases. In the offline

phase, VeGen takes instruction semantics (encoded in its vector

instruction description language) as input and generates the target-

dependent utility functions, such as the pattern matchers. At com-

pile time, VeGen’s target-independent heuristic uses the generated

utility functions to combine independent streams of scalar instruc-

tions into vector instructions.

To target a new vector instruction set, VeGen only requires the

compiler writers to describe the semantics of each instruction in

VeGen’s vector instruction description language. If the vendor has

provided instruction semantics in a machine-readable format such

as Intel’s Intrinsics Guide [9], this process can be automated. In Sec-

tion 6, we describe how VeGen automatically translates semantics

from the Intrinsics Guide.
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FOR j := 0 to 3

i := j*32

dst[i+31:i] :=

SignExtend32(a[i+31:i+16]*b[i+31:i+16]) +

SignExtend32(a[i+15:i]*b[i+15:i])

ENDFOR

(a) Intel’s pseudocode documentation of pmaddwd

opmadd = (𝑥1 : 16, 𝑥2 : 16, 𝑥3 : 16, 𝑥4 : 16) ↦→

add(mul(sext32(𝑥1), sext32(𝑥2)),mul(sext32(𝑥3), sext32(𝑥4)))

pmaddwd = (𝑎 : 4 × 16, 𝑏 : 4 × 16) ↦→

[opmadd (𝑎[0], 𝑏 [0], 𝑎[1], 𝑏 [1]), opmadd (𝑎[2], 𝑏 [2], 𝑎[3], 𝑏 [3])]

(b) Semantics of pmaddwd formalized in VeGen’s vector instruction
description language

bool match_MADD_Op(llvm:: Value *V, Match &M) {

llvm:: Value *t0 , *t1 , *t2 , *t3;

if (m_c_Add(m_c_Mul(m_SExt(t0), m_SExt(t1)),

m_c_Mul(m_SExt(t2), m_SExt(t3))).match(V)) {

M.LiveIns = { t0 , t1 , t2 , t3 };

return true;

}

return false;

}

std::vector <llvm:: Value *>

operand_1_pmaddwd(const std::vector <Match > &Matches) {

return { Matches [0]. LiveIns [0], Matches [0]. LiveIns [2],

Matches [1]. LiveIns [0], Matches [1]. LiveIns [2] };

}

(c) Two examples of the vectorization utilities automatically generated
from semantics: a pattern matcher and a function that describes how
the input lanes of the first operand bind to the matched operations.

int16_t A[4], B[4];

int32_t C[2];

void dot_prod () {

C[0] = A[0] * B[0] + A[1] * B[1];

C[1] = A[2] * B[2] + A[3] * B[3];

}

(d) An example scalar program to vectorize.

VSTORE

PMADDWD

VLOAD

VLOAD

mul

add

sext sext

A[0]

B[0]

A[2]

B[2]

A[1] A[3]

B[3]B[1]

sext sext sext sext sext sext

mul mul mul

add

C[0] C[1]

(e) The instruction DAG corresponding to the example scalar
program. The regions enclosed by the dotted curves represent
matched integer multiply-add operations. The rectangles repre-
sent vector packs.

vmovd xmm0 , [A]

vmovd xmm1 , [B]

pmaddwd xmm0 , xmm1 , xmm0

vmovd [C], xmm0

(f) Generated vector code

Figure 4: How VeGen uses the instruction pmaddwd. First, VeGen translates the pseudocode semantics of pmaddwd (Figure 4(a))

into its vector instruction description language (Figure 4(b)). Next, VeGen generates the vectorization utility functions (Fig-

ure 4(c)) used by its vectorizer at compile time. Figure 4(d) shows an example scalar program before vectorization. At compile

time, VeGen’s vectorizer combines the matched operations into vector packs (Figure 4(e)), which are later lowered into vector

assembly code (Figure 4(f)).

Figure 4 shows an end-to-end example of VeGen optimizing an

integer dot-product kernel. In the rest of this section, we will use it

as a running example.

Terminology & Notation. We use two related but distinct terms:

instructions and operations. Instructions can refer to either IR instruc-

tions such as LLVM IR or target instructions such as x86 instructions.

Operations refer to (side-effect free) bit-vector functions that can

be implemented both by IR and target instructions.

For brevity, we overload common set operations for vectors.

While doing so, we implicitly convert a vector to a set before apply-

ing the set operator. For example, let 𝑥 be a vector and 𝑖 a scalar;

when we say 𝑖 ∈ 𝑥 we mean that 𝑥 contains 𝑖 .

4.1 Vector Instruction Description Language

VeGen uses its vector instruction description language (VIDL) to

model the semantics of each target vector instruction as a list of

scalar operations, with lane-binding rules indicating how the input

lanes bind to the operations. Figure 5 shows the syntax of VIDL.

VIDL assumes that target instructions read andwrite to registers but

have no other side-effects.VeGenmodelsmemory instructions such

as vector load separately. VIDL only allows selecting the input lanes

using constant indices: This restriction allows VeGen to statically

determine the vector operands used by each vector instruction.

Figure 4(b) shows the semantics of the SSE instruction pmaddwd

specified in VIDL. The instruction pmaddwd takes two vector reg-

isters as input, sign-extends the values from 16-bit to 32-bit tempo-

raries, multiplies the sign-extended values element-wise, and finally

adds together every adjacent pair of the multiplication results.

4.2 Generating Pattern Matchers

In the offline phase,VeGen collects the set of operations used by the

target vector instructions, and for each operation, VeGen generates

pattern matching rules to recognize IR sequences that implement

the operation. Figure 4(c) shows an example of the pattern matching

code generated by VeGen.

We designed VIDL to mirror the scalar IR that its vectorizer takes

as input. Thus, generating pattern matching code from VIDL is

generally straightforward. In Section 6 we discuss how to generate

pattern matchers that are more robust.
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𝑥 ∈ variables 𝑖 ∈ integers

sz ∈ bit-widths vl ∈ vector-lengths

lane ::= 𝑥 [𝑖 ]

expr ::= 𝑥 | lane | binop (expr1, expr2) |

unop (expr) | select(expr1, expr2, expr3)

opn ::= (𝑥1 : sz1, . . . , 𝑥𝑛 : sz𝑛) ↦→ expr

res ::= opn(lane1, . . . , lane𝑛)

inst ::= (𝑥1 : vl1 × sz1, . . . , 𝑥𝑛 : vl𝑛 × sz𝑛) ↦→ [res1, . . . , res𝑚 ]

Figure 5: Syntax of the Vector Instruction Description Lan-

guage (VIDL). ↦→ denotes function abstraction.

4.3 Pattern Matching

At compile time, VeGen applies the generated pattern matchers on

the input scalar program. We call the result of pattern matching

a match, an IR instruction DAG with (possibly) multiple live-ins

and a single live-out. VeGen represents each match as a tuple

consisting of its live-ins, live-out, and operation. In the running

example (Figure 4(e)), the integer multiply-add operation has two

matches (the sub-graphs enclosed in dotted curves): one rooted at

the instruction 𝑡1, and another rooted at 𝑡2.

Unlike other common applications of pattern matching such

as term rewriting, VeGen does not directly use the result of pat-

tern matching to rewrite the program. Instead, VeGen records the

matched patterns in a match table, which records the mapping

⟨live-out (𝑚), operation(𝑚)⟩ ↦→ 𝑚, for each match 𝑚. The match

table allows VeGen’s target-independent vectorization algorithm

(Section 4.4) to efficiently enumerate the set of candidate vector

instructions that can produce a given vector (Algorithm 1).

4.4 Vectorization

After running the generated pattern matchers (at compile time),

VeGen (1) uses a target-independent heuristic to find profitable

groups of matched IR instructions that can be packed into (possibly

non-SIMD) vector instructionsÐwe call such a group of instruc-

tions a vector packÐand then (2) lowers the vector packs into target

vector instructions.

Vector Pack. A pack is a tuple ⟨𝑣, [𝑚1, . . . ,𝑚𝑘 ]⟩, where 𝑣 is a

vector instruction with 𝑘 output lanes, and𝑚1, . . . ,𝑚𝑘 are a list of

matches whose live-outs are independent. For example, let𝑚1 and

𝑚2 be the two matched integer multiply-add operations rooted at

the instructions 𝑡1 and 𝑡2 in Figure 4(e), we can use the instruction

pmaddwd to combine them into a single vector pack:

𝑝ex = ⟨pmaddwd, [𝑚1,𝑚2]⟩

VeGenmodels vector loads and stores as two special kinds of packs,

whose memory addresses must be contiguous.

We define two notations for vector packs. Let 𝑝 = ⟨𝑣, [𝑚1, . . . ,𝑚𝑘 ]⟩

be a vector pack, then then values(𝑝) is the list of IR values pro-

duced by pack 𝑝 (i.e., values(𝑝)𝑖 = live-out (𝑚𝑖 )) and opcode(𝑝) = 𝑣 .

In the running example,

values(𝑝ex ) = [𝑡1, 𝑡2]

opcode(𝑝ex ) = pmaddwd

A1 A3

B1 B3

A1*B1 A3*B3

A5 A7

B5 B7

A5*B5 A7*B7

Figure 6: Semantics of vpmuldq (sign-extended integer multi-

plication).White cells represent lanes unused by the instruc-

tion.

Vector Operand. Vector packs have vector operands, represented

as lists of IR values. In the running example, 𝑝ex has two vector

operands (We overload the [.] operator here; e.g., 𝐴[0] denotes a

load of the first element of 𝐴):

operand1 (𝑝ex ) = [𝐴[0], 𝐴[1], 𝐴[2], 𝐴[3]]

operand2 (𝑝ex ) = [𝐵 [0], 𝐵 [1], 𝐵 [2], 𝐵 [3]]

More specifically, let 𝑝 = ⟨𝑣, [𝑚1, . . . ,𝑚𝑘 ]⟩ be a vector pack,

then operand𝑖 (𝑝) = [𝑥1, . . . , 𝑥𝑛]; where 𝑥 𝑗 ∈
⋃

𝑘 live-ins(𝑚𝑘 ) is

one of the live-ins of the matches that should bind to the 𝑗 ’th lane

of the 𝑖’th operand of the vector instruction 𝑣 . VeGen generates

the implementation of operand𝑖 (.) automatically from instruction

semantics; operand𝑖 (.) is known statically because the VIDL only

allows selecting input vector lanes using constant indices.

Don’t-Care Lanes. Some instructions don’t use all of their input

lanes. For example, the SSE4 instruction vpmuldq (Figure 6) sign-

extends and multiplies only the odd input lanes. To handle a case,

we introduce a special don’t-care value. Each element of a vector

operand (i.e., operand𝑖 (.)) therefore takes the value of either a scalar

IR value (from the input program) or don’t-care.

Producing aVectorOperand. Apack𝑝 produces a vector operand

𝑥 if they have the same size (i.e., |values(𝑝) | = |𝑥 |) and, for every

lane 𝑖 , 𝑥𝑖 is either values(𝑝)𝑖 or don’t-care. Algorithm 1 shows the

algorithm for finding the set of feasible producer packs for a given

vector operand 𝑥 . VeGen uses a separate routine to enumerate

producer packs that are vector loads, which can be done efficiently

because only contiguous loads can be packed together.

Dependence and Legality. A pack 𝑝1 depends on another pack

𝑝2 if there exists an instruction 𝑖 ∈ values(𝑝1) that depends on

another instruction 𝑗 ∈ values(𝑝2). We define the dependencies

among scalar IR instructions and vector packs similarly. A set of

packs are legal when there are no cycles in the dependence graph.

Vector Pack Selection. Because lowering a given set of vector

packs to target vector instructions is relatively straightforward, vec-

torization reduces to finding a subset of the matches and combining

them into legal vector packs. The choice of packs determines the

performance of the generated code by affecting the level of paral-

lelism and the level of data-movement overhead (e.g., if a vector

operand is not produced directly, VeGen needs to use vector shuf-

fles to gather the elements of the operand). Given a scalar program,

VeGen selects a set of profitable vector packs using two alternative

heuristics that we will discuss in Section 5.
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Algorithm 1: Find the set of (non-load) packs that produce

a given vector operand 𝑥 . Load packs are found separately

by enumeration.

Input :

x: The vector operand that we need to produce

M: The match table, which contains

the mapping ⟨live-out (𝑚), operation(𝑚)⟩ ↦→𝑚

for each match𝑚.

I : A list of instruction descriptions.

Output :A (potentially empty) set of producer packs of 𝑥 .

1 if there are dependent values in 𝑥 then

2 return {}

3 end

4 producers← {}

5 for vinst ∈ 𝐼 do

6 matches← [ ]

7 for 𝑖 ← 1 to number of lanes of vinst do

8 𝑓 ← the 𝑖’th operation of vinst

9 𝑚 ← 𝑀 [⟨𝑥𝑖 , 𝑓 ⟩]

10 if 𝑥𝑖 is don’t-care or𝑚 is not null then

11 append𝑚 to matches

12 end

13 end

14 if |matches | = number of lanes of vinst then

15 producers← producers ∪ pack(vinst,matches)

16 end

17 end

18 return producers

4.5 Code Generation

Given a set of vector packs (and the input program), VeGen’s code

generator emits a vector program as a combination of (1) the scalar

instructions not covered by the packs, (2) the compute vector in-

structions corresponding to the packs, and (3) the data-movement

vector instructions that follow from the dependence among the

packs and scalars.

Given a pack set 𝑃 , we generate vector code as follows. The code

generation algorithm uses the target-specific functions operand𝑖 (.)

generated from instruction semantics.

Scheduling. The code generator first schedules the scalar instruc-

tions (regardless of whether an instruction is replaced by vector

instructions) according to their dependencies and the following

constraint: For any pack 𝑝 ∈ 𝑃 , all instructions in values(𝑝) are

grouped together in the final schedule. Such a schedule exists when

the set of packs are legal.

Lowering. After scheduling, the code generator lowers the packs

in 𝑃 in topological order. The previous scheduling step ensures that

all of the values in operand𝑖 (𝑝) are ready by the time we lower any

𝑝 ∈ 𝑃 . The code generator also emits any required swizzle instruc-

tions to gather a vector operand if the operand is not produced

directly by another pack and to extract an element of a vector pack

if the pack has a scalar user.

costSLP (𝑣) = min




min
𝑝∈producers (𝑣)

costop (opcode(𝑝))

+
∑
𝑖 costSLP (operand𝑖 (𝑝))

𝐶insert · |𝑣 | + costscalar (𝑣)

Figure 7: The SLP heuristic uses this recurrence to decide

whether to produce a vector operand 𝑣 directly via a vec-

tor pack or by vector insertions. costscalar (𝑣) is the total cost

of producing values in 𝑣 and their dependencies using only

scalar instructions.

5 VECTOR PACK SELECTION

VeGen uses a target-independent heuristic to select a set of prof-

itable vector packs. The goal of the heuristic is to select a set of packs

to maximize the total saving from vectorization while minimizing

the overhead of explicit data-movement that is necessary when

an instruction (whether vector or scalar) operand is not produced

exactly by any other instructionÐsuch as when a scalar instruction

uses a vector element and therefore requires a vector extraction.

Optimization Objective and Cost Model. Let 𝑃 be the set of

selected vector packs, and let us focus on one of the packs 𝑝 ∈ 𝑃 .

If the results of 𝑝 are used by some scalar instructions, we need to

extract those values and pay the following cost:

𝐶extract · |values(𝑝) ∩ scalarUses |

Let 𝑣 be a vector operand of 𝑝 . When a subset of 𝑣 is produced by

some other pack 𝑝 ′ ≠ 𝑝 , we need to use vector shuffles to move

those values into 𝑣 and pay the following cost:

𝐶shuffle · |{𝑝
′ ∈ 𝑃 \ {𝑝} | 𝑣 ∩ values(𝑝 ′) ≠ ∅}|

When some elements of 𝑣 are produced by scalar instructions, we

need to use vector insertions to insert those values into 𝑣 and pay

the following cost:

𝐶insert · |𝑣 \ [
⋃

𝑝′∈𝑃

values(𝑝 ′)] |

𝐶extract , 𝐶 , and 𝐶insert are cost-model parameters.

Recall that VIDL doesn’t model vector shuffles (Section 4.1).

VeGen’s code generator therefore emits a mix of target vector

instructions and virtual (target-independent) vector shuffles and

relies on LLVM’s backend to lower the shuffles.

Pack Selection Heuristics. Pack selection is NP-hard because

the more restricted version of pack selection for SIMD instructions

is NP-hard [19]. In the rest of this section, we discuss two heuristics

for pack selection. We first present a heuristic based on the bottom-

up SLP algorithm [15, 29] (we will refer to this heuristic as the SLP

heuristic). While the SLP heuristic is compile-time efficient, it has

various drawbacks that we will discuss and address with a tractable

search algorithm based on the SLP heuristic.

5.1 Pack Selection Using the SLP heuristic

The SLP heuristic builds a set of vector packs by traversing the

instruction DAG bottom-up (uses before definitions). Initially, the

set of packs are seeded with seed packs such as chains of contiguous

stores. The heuristic then recursively introduces vector packs to
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produce the vector operandsÐVeGen uses Algorithm 1 to find such

producersÐin the current set of packs.

There are often multiple vector packs that can produce a given

operand. For a given operand, VeGen uses the dynamic program-

ming algorithm shown in Figure 7 to choose a producer. This is

the main modification we added to the original SLP algorithmÐin

SLP-based vectorization, there is at most one pack that can produce

any given operand.

Enumerating Seed Packs. In addition to store packs, VeGen

enumerates a limited set of non-store seed packs, in two steps. First,

it computes a pairwise affinity score for each pair of IR instructions

according to the equation in Figure 8. Second, if a non-memory IR

instruction 𝑖 is used by some store instruction, then for all target

vector length VL (i.e., 2, 4, 8, etc.), VeGen enumerates the top 𝑘

packsÐaccording to the affinity scoreÐthat is VL-wide and whose

first lane is 𝑖 . VeGen only enumerates instructions that feed into

stores to limit the total number of seeds.

Limitations. The SLP heuristic assumes that each vector pack is

the sole user of its operands. Consequently, it is optimistic when

there are external scalar users of a vector pack and fails to account

for the vector extraction cost. On the other hand, the SLP heuristic

is also pessimistic when there are multiple uses of non-vectorizable

vector operands and fails to recognize that the multiple uses lower

the cost of vector shuffle/insertion (by amortization).

Consider the following code snippet, where there are two seed

packs: the two pairs of stores to the arrays a and b.

a[0] = x[0] + t1; a[1] = x[1] + t2;

b[0] = y[0] + t1; b[1] = y[0] + t2;

Suppose the temporaries t1 and t2 are not vectorizable. To vector-

ize the rest of the code snippet, the vectorizer would need to emit

extra vector insertion instructions to create the vector [𝑡1, 𝑡2]. On a

machine where vector insertions are expensive, it is plausible that

this code is profitable to vectorize only when the instruction (sub-

)DAG rooted at both seed packs are vectorized to amortize the cost

of creating [𝑡1, 𝑡2]. Unfortunately, because the SLP heuristic pro-

cesses each seed pack separately, it would (correctly) conclude that

none of the seed packs are individually profitable and (incorrectly)

decide that the whole basic block is not worth vectorizing.

5.2 Improving the SLP Heuristic with Search

To address the SLP heuristic’s limitations in handling shared values

in the instruction DAG, we apply a limited form of lookahead search

on top of the SLP heuristic.We first introduce a recurrence (Figure 9)

for optimally solving the pack selection problem. We don’t intend

to optimally solve the recurrence, which contains exponentially

many subproblems. VeGen instead uses beam search to navigate a

limited subset of the search space, using costSLP (.) (Figure 7) as a

state evaluation function.

Optimal Pack Selection. Figure 9 shows the recurrence for

computing the optimal cost of vectorizing a given basic block,

cost (𝑉 , 𝑆, 𝐹 ), in which we solve for the optimal set of packs on

the instruction DAG bottom-up (uses before definitions), tracking

the set of vectors (𝑉 ) and scalar (𝑆) operands we need to produce

and the set of free instructions (𝐹 ) we have yet to decide whether

to vectorize. We decide how to produce the set of unresolved vector

(and scalar) operands jointly in order to correctly determine the

amortized cost of producing vector valuesÐwhether with packs or

using swizzle instructionsÐwith multiple uses.

The full cost of a basic block 𝐵 is cost ({}, live-outs(𝐵), 𝐼 ), where

𝐼 is the set of instructions in 𝐵. In other words, we need to produce

the live outputs of the original basic blocks as scalars (VeGen does

not vectorize across basic blocks). VeGen treats stores as special

cases. Stores are live at the end of a basic block, but, unlike other

live outputs, vectorized stores do not incur extraction costs.

There are two ways to produce a value: as part of some vector

pack or with a scalar instruction. Using a vector pack 𝑝 recursively

adds its operands to 𝑉 and removes its results from 𝑉 and 𝑆 . To

avoid circular dependencies in the final pack set, we only consider a

pack (or a scalar instruction) once all of its users have been decided

(i.e., not in 𝐹 ).

Finally, the packing problem is solved once the sets of vector

and scalar operands become empty. Note that 𝐹 need not be empty

for a subproblem to be solved because some machine operations

(e.g., multiply-accumulate and dot-product) replace multiple IR

instructions and turn the intermediate instructions into dead code.

Beam Search. VeGen selects vector packs using beam search and

guided by the SLP heuristic. Beam search is a form of greedy tree

search, where the search algorithm considers a limited number of

promising search candidates (instead of only the most promising

one). In the case of pack selection, keeping track of this set of

candidates allows the vectorizer to consider some vector packs that

are costly according to the SLP heuristic but actually profitable.

When using beam search, VeGen’s pack selection heuristic (im-

plicitly) builds a search tree whose nodes correspond to the sub-

problems in Figure 9 (where each sub-problem is represented by

the tuple ⟨𝑉 , 𝑆, 𝐹 ⟩), and whose edges correspond to either adding

a vector pack or fixing an instruction as a scalar. Each tree edge

additionally has a transition cost taken to be the non-recursive

terms in Figure 9. For instance, if an edge corresponds to adding a

pack 𝑝 , then the cost is

costop (opcode(𝑝)) + costextract (𝑝, 𝑆) + costshuffle (𝑝,𝑉 )

To cut down the branching factor, VeGen only considers two types

of packs: (1) the producer packs of 𝑉 and (2) the set of seed packs

it enumerates before the main search loop.

At each iteration of the search, VeGen tracks a set of 𝑘 candidate

tree nodes, expands the candidate nodes and aggregates their chil-

dren, sorts the children in increasing order of the estimated cost,

and takes the top 𝑘 nodes to be candidates of the next iteration.

The special case of the beam search with 𝑘 = 1 is equivalent to the

SLP heuristic.

Ideally, we would like to order (and prune) the set of candidate

tree nodes based on the true optimal cost of following a tree node:

𝑔 + cost (𝑉 , 𝑆, 𝐹 ), where 𝑔 is the aggregate cost leading to a given

tree node and cost (𝑉 , 𝑆, 𝐹 ) is the cost of optimally solving the tree

node’s sub-problem. However, computing the optimal cost is in-

tractable, and we instead order the candidate tree nodes using the

following formula:

𝑔 + cost (𝑉 , 𝑆, 𝐹 ) ≈ 𝑔 +
∑

𝑣∈𝑉

costSLP (𝑣) +
∑

𝑠∈𝑆

costscalar (𝑠)
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affinity(𝑣,𝑤) =




−𝛼broadcast if 𝑣 = 𝑤

−𝛼constant if 𝑣 and𝑤 are both constants

−𝛼mismatch if 𝑣 and𝑤 not packable

−𝛼mismatch if 𝑣 and𝑤 are loads separated by an unknown offset

−𝛼jumbled · offset (𝑣,𝑤) if 𝑣 and𝑤 are loads separated by a constant offset

𝛼match if 𝑣 and𝑤 are contiguous loads

𝛼match +
∑
𝑖 affinity(operand𝑖 (𝑣), operand𝑖 (𝑤)) otherwise

Figure 8: Recurrence for estimating the affinity score between two IR values 𝑣 and 𝑤 . 𝛼∗ are positive parameters. Before pack

selection, VeGen uses this function to enumerate a limited set of (non-store) seed vector packs so that the sums of affinities

of adjacent lanes are maximized.

cost (𝑉 , 𝑆, 𝐹 ) = min





cost (𝑉𝑝 , 𝑆𝑝 , 𝐹𝑝 ) + costop (opcode(𝑝)) + costextract (𝑝, 𝑆) + costshuffle (𝑝,𝑉 ) if |𝐹 ∩
⋃

𝑖∈values (𝑝)
(users(𝑖)) | = 0

cost (𝑉𝑖 , 𝑆𝑖 , 𝐹𝑖 ) + costop (opcode(𝑖)) + costinsert (𝑖,𝑉 ) if 𝑖 a scalar ∧ |𝐹 ∩ users(𝑖) | = 0

0 if |𝑉 | = 0 ∧ |𝑆 | = 0

where

𝐹𝑝 = 𝐹 \ values(𝑝) - Free instructions left if use pack 𝑝

𝑉𝑝 = {𝑣 ∈ 𝑉 | 𝑣 ∩ 𝐹𝑝 ≠ ∅} ∪
⋃

𝑖

operand𝑖 (𝑝) - Vectors to produce if use pack 𝑝

𝑆𝑝 = 𝑆 ∩ 𝐹𝑝 - Scalars to produce if use pack 𝑝

𝐹𝑖 = 𝐹 \ {𝑖} - Free instructions left if fix 𝑖 as scalar

𝑉𝑖 = {𝑣 ∈ 𝑉 | 𝑣 ∩ 𝐹𝑖 ≠ ∅} - Vectors to produce if fix 𝑖 as scalar

𝑆𝑖 = 𝑆 \ 𝐹𝑖 ∪
⋃

𝑗

operand 𝑗 (𝑖) - Scalars to produce if fix 𝑖 as scalar

costextract (𝑝, 𝑆) = 𝐶extract · |values(𝑝) ∩ 𝑆 | - Cost of extracting elements of 𝑝 (if 𝑝 is not a store pack)

costshuffle (𝑝,𝑉 ) = 𝐶shuffle · |{𝑣 ∈ 𝑉 | 𝑣 ≠ 𝑝 ∧ |𝑣 ∩ values(𝑝) | > 0}| - Cost of shuffling elements out of 𝑝

costinsert (𝑖,𝑉 ) = 𝐶insert ·
∑

𝑣∈𝑉

⟨# of times 𝑖 occur in 𝑣⟩ - Cost of inserting 𝑖 into vectors in 𝑉

Figure 9: Optimal vector pack selection within a basic block.𝑉 and 𝑆 are the sets of vector and scalar values we need to produce.

𝐹 is the set of (free) IR instructions we have yet to decide whether (or how) to vectorize. 𝐶∗ are the cost model parameters.

6 IMPLEMENTATION

We implemented the offline part of VeGen (the part involved with

semantics and pattern generation) in Python. We implemented the

rest of VeGen, the part that performs compile time vectorization,

as an LLVM pass in C++. The LLVM pass takes scalar LLVM IR as

input and emits a mix of scalar IR and target-specific intrinsics1

that in most cases, gets lowered to their corresponding instructions

(e.g., the LLVM intrinsic @llvm.x86.sse2.pmadd.wd maps to the

instruction pmaddwd).

1There is a straightforward mapping from Intel intrinsics to small sequences of LLVM
intrinsics. We find out the mapping from Intel intrinsics to the equivalent LLVM
intrinsics by wrapping an intel intrinsic in a standalone function whose signature
matches that of the intrinsic. We run Clang on this function, and record the instructions
produced by Clang

6.1 Target Instruction Specification

VeGen generates SMT formulas from the XML file that Intel uses

to render the Intrinsics Guide [9], which contains pseudocode doc-

umentations of the intrinsics. VeGen then lifts the SMT formulas

to VIDL (vector instruction description language). Lifting the SMT

formulas to VIDL is straightforward because we designed VIDL to

closely match the semantics of SMT bit-vector operations (which

are also closely related to LLVM’s integer instructions).

Translating Semantics from the Intrinsic Guide. To docu-

ment instruction semantics, Intel uses an imperative language that

operates on fixed-length bit-vectors. All values in the language are

bit-vectors and have one of four types: signed integer, unsigned

integer, float, and double. There are no implicit integer overflows

in this language; instead, if an operation can overflow its result

(such addition and multiplication), the operation first converts its
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input bit-vectors to a wider widthÐusing zero- or sign-extensions,

depending on the signednessÐbefore execution.

We implemented a symbolic evaluator for the language using

z3 [10] and translated Intel’s pseudocode documentation into for-

mal SMT formulas. We chose z3 mostly for its expression simplifier.

The evaluator maps expression-level constructs such as ALU oper-

ators and bit-vector slicing to their SMT equivalents; for instance,

additions become SMT bit-vector additions. We treat the following

high-level program constructs specially:

• Assignment. We model each assignment to (sub-)bit-vector as

a pure expression that takes the original bit-vector value and

outputs the post-update value. The output of the expression

is a concatenation of the unaffected sub-vector(s) and the

updated sub-vector.

Consider, for example, the statement x[7:0] = 0, which

zeros the lower eight bits of a 32-bit variable x, we emit the

following formula:

Concat(Extract (31,8,x), 0b00000000)

• Function calls. We inline all function calls.

• Loops. We unroll all for-loop (All for-loops have constant

trip-counts in the documentation language).

• If-statements. We apply if-conversion to the sub-vector be-

ing mutatedÐbit-vector assignment is the only construct

with side-effects. In the if-converted expression, we set the

predicate to the condition of the original if-statement, the

true-branch to the right-hand side of the assignment, and

the false-branch to the original value of the sub-vector.

For example, for the following statement, which condition-

ally zeros the lower eight bits of a 32-bit variable x,

IF ctrl [1:0]

x[7:0] = 0

FI

we emit the following formula:

Concat(Extract (31,8,x),

If(Extract(0,0,ctrl) == 1,

Extract(7,0,x),

0b00000000))

Our symbolic evaluator returns SMT formulas that are unnec-

essarily complicated in some cases because of the naive imple-

mentation of partial bit-vector updates and predicated updates.

We use z3’s simplifier to reduce the formula complexity. For most

instructions, z3’s simplifier simplifies their symbolic results into

representations that reflect the high-level intent of the original

documentation.

We validated the SMT formulas by random testing. Testing re-

vealed incorrect semantics resulting from ambiguous or simply

incorrect documentation. For instance, the signedness of saturation

arithmetic is particularly ambiguously documented for instructions

from the psubus family (subtract packed unsigned integers with

saturation). It turns out the result of an unsigned subtraction should

be saturated as a signed integer.

Pattern Generation. We use LLVM’s pattern-matching library to

implement VeGen’s pattern matching logic. VeGen canonicalizes

the patterns before emitting the pattern matchers. The canonical-

izer takes a pattern and generates an LLVM function that has the

same signature as the operation. We then run LLVM’s instcombine

pass on this function and generate pattern matching code accord-

ing to the final canonicalized IR sequences. This canonicalization

biases the patterns toward patterns that LLVM prefers. The most

notable rewrite is canonicalizing all comparisons to strict inequali-

ties (such as rewriting 𝑥 ≤ 1 to 𝑥 < 2) and is crucial for recognizing

integer saturations. Additionally, for (sub-)patterns of the form

select(cmp(𝑎, 𝑏), 𝑥,𝑦), we generate additional code to also match

the inverted case of the comparison.

6.2 Cost Model

For𝐶insert and𝐶extract , we use LLVM’s cost model. We set𝐶shuffle =

2. VeGen additionally detects several special-case vector shuffle

and insertion patterns, such as vector broadcast and permutation,

and overrides the default cost model.

To estimate the cost of vector instructions, we use the instruction

throughput statistics from Intrinsics Guide.2 To remain compatible

with the rest of LLVM’s cost model, we set the cost of each intrinsic

to be its inverse throughput scaled by a factor of two.

7 EXPERIMENTAL RESULTS

We evaluated VeGen on a subset of LLVM’s vector instruction

selection tests, some reference DSP kernels chosen from FFmpeg

and x265, and fixed-size dot-product kernels from OpenCV. We

evaluated the two pack selection heuristics discussed in Section 5Ð

the SLP heuristic and beam searchÐseparately. We show that in

most cases, VeGen outperforms LLVM’s vectorizer, and we explain

how VeGen fails to vectorize in the other cases. Additionally, we

present a case-study of VeGen vectorizing the scalar complex-

multiplication kernel.

Experimental Platforms. For experiments requiring only AVX2,

we run the benchmarks on a server with the Intel®Xeon®CPU

E5-2680 v3 CPU and 128 GB of memory. For experiments requiring

AVX512-VNNI, we use a server with the Intel®Xeon®Platinum

8275CL CPU and 4 GB of memory. We use LLVM 10.0.0. In all cases,

we invoke clang with -O3 -ffast-math -march=native.

7.1 Synthetic Benchmarks

For our first set of experiments, we ported some of LLVM’s backend

instruction selection tests for non-SIMD instructions and SIMD in-

structions with complex semantics (e.g., min). These tests were orig-

inally written to exercise the pass that lowers LLVM vector IR into

target vector instructions. Because LLVM’s vector IR only models

isomorphic vector instructions, the tests for non-SIMD instructions

(e.g., haddpd) are written as combinations of LLVM vector instruc-

tions and vector shuffles. We translated the test cases (written in

LLVM IR) to their equivalent scalar version by expanding IR vector

instructions into multiple scalar instructions and by converting

vector function arguments to non-aliased pointer arguments.

2https://software.intel.com/sites/landingpage/IntrinsicsGuide/files/perf2.js
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(a) Tests LLVM able to vectorize

Test Speedup

max_pd 1.0

min_pd 1.0

max_ps 1.0

min_ps 1.0

mul_addsub_pd 1.0

mul_addsub_ps 1.0

abs_pd 0.8

abs_ps 0.4

abs_i8 1.0

abs_i16 1.0

abs_i32 1.0

(b) Tests LLVM unable to vectorize

Test Speedup

hadd_pd 1.4

hadd_ps 1.2

hsub_pd 1.4

hsub_ps 1.2

hadd_i16 2.9

hsub_i16 4.9

hadd_i32 1.3

hsub_i32 1.3

pmaddubs 16.8

pmaddwd 4.2

Figure 10: Speedup (over LLVM, higher is better) on instruc-

tion selection tests ported from LLVM’s x86 backend. These

tests were originally written to exercise the pass that lowers

LLVM’s vector IR into their desired target instructions. We

ported the tests by manually transforming them into their

scalar equivalents.

Figure 10 shows the test results. Both the SLP heuristic and beam

search generate the same code, so we report one set of numbers.

VeGen vectorizes 19 out of 21 of the tests. LLVM fails to vectorize

10 out of 21 of the tests, all of which are non-SIMD instructions and

are vectorized by VeGen. Interestingly, the only non-SIMD tests

that LLVM can vectorize are mul_addsub_pd and mul_addsub_ps,

for which LLVM does have special-case support.

Both of the two tests that VeGen failed to vectorize compute

floating-point absolute values, and for which LLVM uses the fact

that the absolute value of a floating-point can be computed by

masking-off the sign-bit (i.e., the most significant bit) to vectorize;

VeGen does not have this knowledge and does not vectorize in

these two cases.

7.2 Optimizing Image and Signal Processing
Kernels

To demonstrate that VeGen can effectively use non-SIMD instruc-

tions on real-world kernels, we evaluated VeGen’s pack selection

heuristic on six kernels from x265We chose these kernels because

DSP and image processing are the motivating domains for non-

SIMD instructions such as pmaddwd. These benchmarks are chal-

lenging to vectorize because they require intermediate shuffles and

partial reductions. We additionally evaluated the effect of pattern

canonicalization (Section 6). We ported the idct4 and idct8 kernels

from x265’s reference implementation. The rest are from FFmpeg.

We evaluated beam search (Section 5.1) with three beam-widths:

1, 64, and 128. Recall that a beam-width of one is effectively the SLP

heuristic. To evaluate the effect of canonicalizing our generated

patterns, we additionally evaluated a version of VeGenwith pattern

canonicalization disabled (and with a beam-width of 128).

Figure 11 shows the benchmarking results. Both the SLP heuristic

and beam search outperform LLVM in all casesÐexcept for the SLP

heuristic (𝑘 = 1) on the idct4 benchmark; in the best case, beam

search with 𝑘 = 128 gets a speedup of 3× on idct4. Beam search

improves on the SLP heuristic on fft4, idct4, sbc, and chroma.

Using a larger beam-width does not always lead to better re-

sults, as shown by the performance degradation of idct8 on AVX512

with a beam-width of 64. We traced the search process and discov-

ered that the larger beam-width caused the search to include some

costly search states that are ignored when 𝑘 = 1. Their successor

statesÐthe number of which is larger than the beam-widthÐare

misestimated by costSLP (recall our discussion in Section 5.1 regard-

ing costSLP ’s limitations) to be more profitable than other candidate

states and ultimately misdirected the overall search effort.

Canonicalizing the generated patterns using LLVM’s own canon-

icalizer pays off on idct4, idct8, and chroma, all of which use satu-

ration arithmetic. Running LLVM’s canonicalizer on the generated

patterns effectively synchronizes VeGen’s pattern matchers with

the canonicalization pipeline that LLVM runs before invoking Ve-

Gen’s vectorizer.

Vectorizing idct4. We highlight some instructions that VeGen

generated for the idct4 kernel (targeting AVX512-VNNI). Figure 12

shows the generated code, which is 3× faster than LLVM’s code.

VeGen uses the instructions vphadd (integer horizontal reduction),

vpmaddwd (the motivating dot-product instruction), and vpackssdw

(saturate 32-bit to 16-bit integers). Of note are the vpunpackhdq

and vpunpackldq instructions preceding the vector stores. VeGen

uses these shuffle instructionsÐwithout which it is not profitable

to vectorize this kernelÐto form vector operands that are not di-

rectly produced by compute instructions such as vpmaddwd. VeGen

discovers this code sequence with beam search (i.e., 𝑘 ∈ {64, 128})

but not with the SLP heuristic (𝑘 = 1).

7.3 Optimizing OpenCV’s Dot-Product Kernels

For our next set of experiments, we evaluated VeGen on OpenCV’s

reference dot-product kernel implementations. OpenCV’s refer-

ence implementation is a C++ template parameterizedwith different

data types and kernel sizes. These kernels are challenging to auto-

vectorize because they have interleaved memory accesses as well

as reduction.

Figure 13 shows the benchmarking results. VeGen found non-

trivial vectorization schemes for three of the four kernels. The

SLP heuristic and beam search generate identical code, so we only

report a single set of numbers. VeGen vectorizes the first bench-

mark naivelyÐessentially vectorizing across the unrolled iterations

and paying the shuffle cost for the interleaved accessesÐand only

yielded a 10% speedup. We investigated the slowdown VeGen in-

curred on AVX512 (VNNI). It turned out that for the first kernel,

VeGen actually emitted identical vector IR/intrinsics for both AVX2

and AVX-512. The performance difference comes down to how

LLVM’s backend lowered the shuffles emitted by VeGen. For the

AVX2, LLVM emitted the vpshufb instruction, whose latency and

inverse throughput are both one cycle. For the AVX-512, LLVM

instead emitted the vpmovdb instruction, whose inverse throughput

is two cycles (and latency four cycles) and slower than vpshufb.

Of note is the vector code VeGen generated for the int32 × 8

kernel (Figure 14), which matches OpenCV’s expert-optimized code.

We inspected the machine code and confirmed that VeGen used

the same high-level algorithm used by OpenCV’s expert developer.
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Figure 11: Speedup (over LLVM, higher is better) on kernels we selected from x265 (idct4 and idct8) and FFmpeg

...

vpermi2d xmm3 , xmm7 , xmm5

vphaddd xmm0 , xmm0 , xmm3

vpmaddwd xmm1 , xmm2 , xmm1

...

vpackssdw xmm1 , xmm1 , xmm2

vpunpckldq xmm2 , xmm0 , xmm1

vmovdqu [rsi], xmm2

vpunpckhdq xmm0 , xmm0 , xmm1

vmovdqu [rsi+16], xmm0

Figure 12: Snippets of vector code generated by VeGen (us-

ing a beam-width of 128) for the idct4 kernel.

(a) Results on AVX2

Kernel Size Speedup

int8 × 32 1.1

uint8 × 32 2.0

int32 × 8 1.5

int16 × 16 1.6

(b) Results on AVX-512 (VNNI)

Kernel Size Speedup

int8 × 32 0.7

uint8 × 32 2.2

int32 × 8 1.7

int16 × 16 2.5

Figure 13: OpenCV’s dot-product kernels specialized for

AVX2 and AVX-512 (VNNI) and different kernel sizes.

The reference (naive) implementation of the int32 × 8 kernel sign-

extends the input elements from 32-bit to 64-bit, multiplies the

two input arrays elementwise, and then reduces every adjacent

pair of elements by addition. There is no single instruction that

can implement this kernel by itself, and the high-level strategy

of VeGen (and OpenCV) is to perform the odd multiplications

separate from the even ones and finally add the odd and even en-

tries together. To multiply the odd (and even) entries, VeGen uses

the instruction vpmuldq, which is deceivingly complicated and per-

forms sign-extended multiplications only on the odd input elements

(Figure 6). The multiplications of the odd elements therefore map

naturally to vpmuldq.

vmovdqu ymm0 , [rdi]

vmovdqu ymm1 , [rsi]

vpmuldq ymm2 , ymm1 , ymm0

vpshufd ymm0 , ymm0 , 245 ## ymm0 = ymm0[1,1,3,3,5,5,7,7]

vpshufd ymm1 , ymm1 , 245 ## ymm1 = ymm1[1,1,3,3,5,5,7,7]

vpmuldq ymm0 , ymm1 , ymm0

vpaddq ymm0 , ymm0 , ymm2

vmovdqu [rdx], ymm0

Figure 14: Vector code that VeGen generated for the int32 ×

8 dot-product kernel in OpenCV. vpmuldq multiplies (with

sign-extension) the odd elements of its two vector operands.

vmovupd xmm0 , rsi

vpermilpd xmm1 , xmm0 , 1

vmovddup xmm2 , [rdi +8]

vmulpd xmm1 , xmm1 , xmm2

vmovddup xmm2 , [rdi]

vfmaddsub213pd xmm2 , xmm0 , xmm1

vmovupd [rdx], xmm2

(a) Instructions generated by VeGen

(vfmaddsub213pd does multiply-add on
the odd lanes and multiply-sub on the
even lanes)

vmovsd xmm0 , [rdi]

vmovsd xmm1 , [rdi + 8]

vmovsd xmm2 , [rsi]

vmovsd xmm3 , [rsi + 8]

vmulsd xmm4 , xmm2 , xmm1

vfmadd231sd xmm4 , xmm3 , xmm0

vmulsd xmm1 , xmm3 , xmm1

vfmsub231sd xmm1 , xmm2 , xmm0

vmovsd [rdx], xmm1

vmovsd [rdx + 8], xmm4

(b) Instructions generated by
LLVM

Figure 15: Complex multiplication kernel, generated by Ve-

Gen (Figure 15(a)) and LLVM (Figure 15(b)).VeGen’s version

is 1.27× faster.

7.4 Optimizing Complex Multiplication

Complex arithmetic is a motivating application for SIMOMD in-

structions. In fact, (to the best knowledge of our knowledge) the first

SIMOMD instructions were designed for complex arithmetic [2].

Figure 15 shows the complex multiplication kernel compiled by

VeGen (both the SLP heuristic and beam search generated the same

code) and by LLVM. VeGen uses the instruction vfmaddsub213pd

(which performs fused multiply-add on the odd lanes and multiply-

sub on the even lanes). LLVM does not vectorize in this case, even
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though (as noted earlier) LLVM’s SLP vectorizer has been specifi-

cally modified to support such a pattern. We stepped through the

LLVM’s optimization decisions and discovered that the root cause

is an error in its cost-benefit analysis. Since LLVM’s SLP vector-

izer is target-independent, it models such an alternating pattern as

two vector arithmetic instructions followed by a vector blending

instruction that combines the results. The error occurs when the

LLVM’s vectorizer includes the cost of the blending instruction

into its analysis and overestimates the total vectorization overhead.

VeGen does not suffer from such issues because VeGen has direct

knowledge of which target instructions are available.

8 RELATED WORK

Auto-vectorization. Loop vectorization and SLP vectorization

are the two dominant vectorization techniques used by modern

compilers. Both types of vectorization techniques do not model non-

SIMD vector instruction in principle, but their implementations

in mainstream compilers such as LLVM have some special case

non-SIMD support.

Nuzman and Zaks [20] proposed a technique for vectorizing in-

terleaved memory accesses within a loop-based vectorizer. Eichen-

berger et al. proposed a technique for vectorizing misaligned mem-

ory accesses [11], and FlexVec [3] extends loop vectorizers to sup-

port vectorizing irregular programs with manually written rules. In

contrast, VeGen systematically adds support to generate non-SIMD

instructions automatically and is not limited to a particular class of

non-SIMD instructions.

The vectorizer generated by VeGen is more similar to SLP vec-

torization introduced by Larsen and Amarasinghe [15]. However,

VeGen supports a more general type of parallelism (LLP) and can

therefore target non-SIMD instructions. Almost all published SLP

vectorization techniques propose algorithmic improvements to cap-

ture more parallelism within the SLP framework. Some examples

are Holistic SLP vectorization [17], Super-node SLP [26], TSLP [23],

PSLP [24], VW-SLP [25], and ILP solver-aided goSLP [19].

There are domain-specific vectorizers that exploit architecture-

specific vector instructions as well as application-specific patterns.

The SPIRAL project [27] proposes several auto-vectorization schemes

specific to DSP algorithms. More specifically, they propose a target-

independent search-based vectorizing compiler targeting DSP algo-

rithms [12] and show how to use the vector swizzle instructions

supported by the AVX and Larrabee ISAs to implement the matrix

transpositions found in FFTs [18]. Compared to SPIRAL and its ex-

tensions, VeGen is a general-purpose vectorizer and not designed

to target any specific vector instruction sets.

Instruction Selection. VeGen closely related to the research on

building retargetable compilers. VeGen is different from this line

of work in that it focuses on extracting fine-grained parallelism

(as a vectorizer) while simultaneously being aware of the detailed

operations supported by these target instructions (similar to an

instruction selector). Instruction selectionÐregardless of the qual-

ity of the code generatorÐalone is insufficient for automatically

targeting non-SIMD vector instructions because traditional instruc-

tion selectors only lowers IR vector instructionsÐthus requiring

cooperation with the vectorizer.

Ganapathi et al. [13] presented a survey on retargetable code

generation. Cattell [7] investigated automatically generating code

generators from machine descriptions. Ramsey and Fernández [28]

proposed a specification language for describing instruction encod-

ing. Buchwald et al. [6] synthesized instruction selection rules for

32-bit x86 integer instructions from their bit-vector specification.

Superoptimization. VeGen is more broadly related to super-

optimization, which uses search techniques to directly generate

optimized programs based on instruction semantics. In principle,

a superoptimizer can accomplish what VeGen does, but in prac-

tice, existing superoptimizers are orders of magnitude slower than

auto-vectorizers such as VeGen.

Bansal and Aiken [4] constructed a peephole superoptimizer

by exhaustively enumerating short sequences of x86 instructions.

Schkufza et al. [31] proposed a stochastic superoptimizer that trades

completeness for scalability via a Markov Chain Monte Carlo sam-

pler. Barthe et al. [5] proposed a synthesizing vectorizer that works

by first unrolling the scalar code and then using an enumerative syn-

thesizer to find more an efficient vector program that implements

the unrolled loop body. Phothilimthana et al. [22] build on previous

work on enumerative [5], stochastic [31], and solver-based synthe-

sis to scale up superoptimization. Sasnauskas et al. [30] described a

superoptimizer for straight-line scalar LLVM IR.

9 CONCLUSIONS

We have described a framework for building target-aware vectoriz-

ers that can use non-SIMD instructions. We introduce Lane Level

Parallelism, a new model of short vector parallelism that captures

the kind of parallelism implemented by non-SIMD instructions. We

realize this framework with VeGen, a system that takes vector in-

struction semantics as input and generates a target-aware vectorizer

that uncovers LLP found in straight-line code sequences. VeGen

is flexible: to target a new vector instruction set, the developers

only need to describe the semantics of the new vector instructions.

VeGen allows compilers to target new vector instructions with less

development effort and thus enable the creation of more robust

vectorizers in future compilers.
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