
Revec: Program Rejuvenation through Revectorization
Charith Mendis∗

MIT CSAIL
USA

charithm@mit.edu

Ajay Jain∗
MIT CSAIL

USA
ajayjain@mit.edu

Paras Jain
UC Berkeley

USA
paras_jain@berkeley.edu

Saman Amarasinghe
MIT CSAIL

USA
saman@csail.mit.edu

ABSTRACT

Modern microprocessors are equipped with Single Instruction Mul-
tiple Data (SIMD) or vector instructions which expose data level
parallelism at a fine granularity. Programmers exploit this paral-
lelism by using low-level vector intrinsics in their code. However,
once programs are written using vector intrinsics of a specific in-
struction set, the code becomes non-portable. Modern compilers
are unable to analyze and retarget the code to newer vector instruc-
tion sets. Hence, programmers have to manually rewrite the same
code using vector intrinsics of a newer generation to exploit higher
data widths and capabilities of new instruction sets. This process is
tedious, error-prone and requires maintaining multiple code bases.
We propose Revec, a compiler optimization pass which revectorizes
already vectorized code, by retargeting it to use vector instructions
of newer generations. The transformation is transparent, happen-
ing at the compiler intermediate representation level, and enables
performance portability of hand-vectorized code.

Revec can achieve performance improvements in real-world per-
formance critical kernels. In particular, Revec achieves geometric
mean speedups of 1.160× and 1.430× on fast integer unpacking ker-
nels, and speedups of 1.145× and 1.195× on hand-vectorized x265
media codec kernels when retargeting their SSE-series implemen-
tations to use AVX2 and AVX-512 vector instructions respectively.
We also extensively test Revec’s impact on 216 intrinsic-rich im-
plementations of image processing and stencil kernels relative to
hand-retargeting.

CCS CONCEPTS

•Computer systems organization→ Single instruction,mul-

tiple data; • Software and its engineering→ Compilers; Soft-
ware performance.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CC ’19, February 16–17, 2019, Washington, DC, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6277-1/19/02.
https://doi.org/10.1145/3302516.3307357

KEYWORDS

vectorization, program rejuvenation, Single Instruction Multiple
Data (SIMD), optimizing compilation

ACM Reference Format:

Charith Mendis, Ajay Jain, Paras Jain, and Saman Amarasinghe. 2019. Revec:
Program Rejuvenation through Revectorization. In Proceedings of the 28th
International Conference on Compiler Construction (CC ’19), February 16–17,
2019, Washington, DC, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3302516.3307357

1 INTRODUCTION

Modern microprocessors have introduced SIMD or vector instruc-
tion sets to accelerate various performance critical applications by
performing computations on multiple data items in parallel. More-
over, processor vendors have introduced multiple generations of
vector instruction sets, each either increasing vector width or intro-
ducing newer computational capabilities. For example, Intel intro-
duced MMX with 64-bit operations in 1997, Streaming SIMD Exten-
sions (SSE) and 128 bit registers in 1999, SSE2, SSE3, SSSE3 and SSE4
from 2000–2006, AVX, AVX2 and FMAwith 256 bit registers in 2011,
and AVX-512 and 512 bit registers in 2016. SIMD instruction sets
from other processor vendors include AMD’s 3DNow! [22], IBM’s
VMX/Altivec [8] and ARM’s Neon [2]. In order to use these SIMD
units, programmers must either hand-code directly using platform-
specific intrinsics, or rely on existing compiler auto-vectorization
techniques to discover opportunities in programs written in mid-
or high-level languages.

Modern compilers employ two main auto-vectorization strate-
gies, namely, loop vectorization [1] and Superword Level Paral-
lelism (SLP) based vectorization [12]. Auto-vectorization allows
programmers to write code in high-level languages, while still ben-
efiting from SIMD code generation. However, both loop and SLP
vectorization rely on programmers writing code in ways which
expose existing data level parallelism. In certain cases, the program-
mer needs to know the underlying implementation of compiler
vectorization passes to cater her code writing style. Even then,
auto-vectorization may not vectorize all vectorizable code regions
due to inaccuracies in cost models, inability to perform certain
transformations etc [17].

29

https://doi.org/10.1145/3302516.3307357
https://doi.org/10.1145/3302516.3307357
https://doi.org/10.1145/3302516.3307357

CC ’19, February 16–17, 2019, Washington, DC, USA Charith Mendis, Ajay Jain, Paras Jain, and Saman Amarasinghe

In contrast, writing hand-vectorized code allows the program-
mers to exploit fine-grained parallelism in the programs more pre-
cisely. Hand-vectorization allows programmers to explicitly em-
bed domain optimizations such as performing intermediate op-
erations without type promotions, which cannot be achieved by
compiler auto-vectorization. However, when manual vectorizing,
programmers give up on both code and performance portability.
The code that is the fastest for an older vector instruction set
may perform suboptimally on a processor which supports wider
vector instructions. For example, manually vectorized SSE2 code
will not utilize the full data width of a processor that supports
AVX2 instructions. This issue is aggravated as modern compilers
do not retarget code written in low-level intrinsics to use newer
vector instructions. Hence, programmers frequently maintain sev-
eral architecture-specific, version-specific implementations of each
computationally intensive routine in a codebase to exploit newer
instructions. This is tedious, error-prone, and is a maintenance
burden.

In this work, we propose compiler revectorization, the retarget-
ing of hand-vectorized code to use newer vector instructions of
higher vector width. We developed Revec, a compiler optimization
technique to algorithmically achieve revectorization, and imple-
mented it in the LLVM compiler infrastructure [14] as an IR level
pass. Revec rejuvenates performance of stale implementations of
data-parallel portions of hand vectorized programs, automatically
adding performance portability.

Revec finds opportunities to merge two or more similar vector
instructions to form vector instructions of higher width. Revec
has its foundations in SLP auto-vectorization [12], but rather than
transforming scalar code, focuses only on revectorizing already
vectorized code and hence has its own unique challenges. More
specifically, Revec needs to find equivalences between vector intrin-
sics with complex semantics and decide how to merge and retarget
vector shuffle instructions to newer instruction sets.

Revec automatically finds equivalences between vector intrin-
sics across different instruction generations by enumerating all
combinations. Equivalences are established through randomized
and corner case testing. Revec also introduces vector shuffle merge
patterns to handle revectorizing shuffle instructions. During com-
piler transformation, Revec first does loop unrolling and reduction
variable splitting, with heuristics that are catered towards revector-
ization. These preprocessing transformations expose more oppor-
tunities for revectorization. Finally, it uses the automatically found
equivalences and shuffle merge rules to merge two or more vector
instructions of a lower data width to form vector instructions of a
higher data width.

1.1 Contributions

In this paper, we make the following contributions:
• A compiler optimization technique, Revec, which automati-
cally converts the hand-vectorized code to vector instructions
of higher vector width including computations that involve
reductions.
• Automatically finding instances of two or more vector intrinsics
of similar semantics which can be merged into a vector instruc-
tion of higher width by enumerating and refining candidates.

• Vector shuffle merge rules to enable revectorizing vector shuffle
instructions.
• Implementation of Revec in LLVM compiler infrastructure as
an LLVM IR level optimization pass to transparently perform
revectorization.
• Extensive evaluation of Revec on real-world performance crit-
ical kernels ranging from media compression codecs, integer
compression schemes, image processing kernels and stencil ker-
nels. We show Revec automatically achieves geometric mean
speedups of 1.145× and 1.195× on hand-vectorized x265 media
codec kernels, and speedups of 1.160× and 1.430× on fast integer
unpacking kernels when retargeting their SSE implementations
to use AVX2 and AVX512 vector instructions respectively. Fur-
ther, Revec achieves geometric mean speedups of 1.102× and
1.116× automatically on 216 intrinsic-rich implementations of
image processing and stencil kernels written using SSE-series
(SSE2+) vector instructions.

2 MOTIVATION

We use the MeanFilter3x3 kernel from the Simd Image processing
library [9] to motivate how Revec achieves performance portability
of hand-vectorized code. Consider different MeanFilter3x3 imple-
mentations shown in Figure 1 using C-like code. Pixel values of an
output image are computed by averaging the corresponding pixel
values in a 3 by 3 window of an input image. Figure 1(a) and (b)
show the scalar version and the SSE2 hand-vectorized version of
the mean filter respectively. Note that boundary condition handling
and certain type conversions from the original implementations
are omitted for the sake of clarity. The scalar version implements
a naive algorithm which goes through each output pixel and in-
dividually computes the mean of the corresponding pixels in the
input image. It is computationally inefficient since it recomputes
column sums for each row repeatedly. However, LLVM is able to
auto-vectorize this scalar kernel without much analysis, and hence
its performance scales with increases in the width of vector instruc-
tions.

The SSE2 version is algorithmically different from the scalar
version. It maintains an array to store column sums of 3 adjacent
rows. The inner loop computes the column sums of the bottom-
most row (of the 3 rows) 8 elements at a time using SSE2 vector
instructions. The output image pixel values are computed, again
8 elements at a time by summing up the column sums for the 3
adjacent rows and finally by multiplying it with 1/9. The algorithm
used in this version is computationally efficient and is explicitly
vectorized to exploit data level parallelism.

Algorithms used in 1(a) and (b) are both data parallel. However,
transforming (a) to (b) automatically is non-trivial. Further, we
found that LLVM fails to auto-vectorize the scalarized, buffer ver-
sion of 1(b). This shows that considerable human insight goes into
developing work efficient hand-vectorized data parallel algorithms
while compiler auto-vectorization is not always reliable.

However, once code is written using vector intrinsics, compilers
skip analyzing vector code to enable further vectorization. The
assembly code generated for the SSE2 implementation when tar-
geted to a Skylake processor with AVX-512 extensions still produces
only SSE2 code (Figure 2). Even though the SSE2 version is fast,

30

Revec: Program Rejuvenation through Revectorization CC ’19, February 16–17, 2019, Washington, DC, USA

#define A 8

#define F (1 << 16)/9

__m128i div9 = _mm_set_epi16(F,F,F,F,F,F,F,F);

uint16_t colsum[3 * W];

__m128i * buf1 = &colsum[0 * W];

__m128i * buf2 = &colsum[1 * W];

__m128i * buf3 = &colsum[2 * W];

//code to compute column sums for first two rows in buf1, buf2

for (i = 2; i < H; ++i){

 for (j = 1; j < W - 1; j += A){

 a0 = _mm_loadu_si128(in[i][j-1]);

 a1 = _mm_loadu_si128(in[i][j]);

 a2 = _mm_loadu_si128(in[i][j+1]);

 buf3[j/A] = _mm_add_epi16(a0, _mm_add_epi16(a1,a2)));

 dst[i - 1][j] = _mm_mulhi_epu16(div9,

 _mm_add_epi16(buf1[j/A]

_mm_add_epi16(buf2[j/A],buf3[j/A])));

 }

 //swap buffer colsums for next iteration

 __m128i * temp = buf1;

 buf1 = buf2;

 buf2 = buf3;

 buf3 = temp;

}

buf₃

j j-7

dst
i-₁

j j-7

+

j-1

j

j+1

j-8

j-7

j-6

+

1/91/9 1/9x

in
i

1/91/9 1/9

j-16

j-15

j-14

j-15

j-15

(c) revectorized (AVX2, AVX-512)

j-31

j-30

j-31

j-32

buf₁ j j-7 j-15 j-31

buf₂

j j-7 j-15 j-31

1/91/9 1/91/91/9 1/9

j-31

(b) hand-vectorized code (SSE2)

for (i = 1; i < H - 1; ++i)

 for (j = 1; j < W - 1; ++j)

 {

 dst[i][j] = 1/9 * (in[i-1][j-1] + in[i-1][j] + in[i-1][j+1]

+ in[i][j-1] + in[i][j] + in[i][j+1]

+ in[i+1][j-1] + in[i+1][j] + in[i+1][j+1])

 }

(a) scalar code

Figure 1: (a) scalar code and (b) simplified hand-vectorized SSE2 code for Meanfilter3x3 from Simd image processing library.

(c) Computation Graph for the revectorized versions targeting AVX2 (256 bits) and AVX-512 (512 bits) for the inner loop of

SSE2 version. Note that handling of boundary conditions and type conversions are omitted for clarity of presentation.

it cannot fully utilize the wider vector instructions available in
modern processors with AVX2, AVX-512 support. Essentially, hand-
vectorized code loses performance portability, and programmers
have to rewrite the same code using newer vector instructions to
exploit wider vector instructions.

Revec adds performance portability to hand-vectorized code by
automatically retargeting it to vector instructions of higher vec-
tor width, whenever available. Figure 1(c) shows the computation
graphs of widened instructions by Revec for the inner loop of the
SSE2 version. It uses vector intrinsic equivalences found across
vector instruction sets and vector shuffle rules to widen the vector
width of already vectorized code by merging two or more narrow
vector width instructions akin to SLP vectorization [12]. For exam-
ple, to formAVX2 and AVX-512 instructions for the MeanFilter3x3
example, two and four SSE2 instructions are merged respectively.
Given the SSE2 implementation of MeanFilter3x3 found in the
Simd library, Revec achieves a 1.304× speedup when retargeting
to AVX-512.

Revec is developed as an LLVM IR level transformation pass and
does revectorization transparently without human involvement.
Figure 2 shows the LLVM IR and corresponding x86-64 assembly
instructions when targeting AVX2 and AVX-512 instruction sets
under Revec. In comparison, stock LLVM compiler which does not
revectorize vectorized code generates only SSE2 assembly instruc-
tions.We also compiled the SSE2 implementation under GCC5.4 and
ICC and found that none of the compilers were able to revectorize
the code, with similar limitations to LLVM.

3 REVEC OVERVIEW

Figure 3 shows the high level overview of Revec compiler transfor-
mation pass. It first performs preprocessing transformations – loop
unrolling and reduction variable splitting – which expose oppor-
tunities for revectorization (Section 4). Revec then transforms the
code to use vector instructions of higher width using a technique
akin to bottom-up SLP vectorization [26], but specialized to handle
vector instructions.

Revec first finds adjacent vector stores and vector ϕ-node in-
structions [25] of same data type in a basic block. These act as the
initial revectorization packs, which are bundles of vector instruc-
tions which can be merged into a single vector instruction of higher
vector width. Starting from the initial packs which act as roots,
Revec next builds a revectorization graph following their use-def
chains (Section 5). Revec adds packs to the graph recursively until
it terminates with vector instructions which are not mergeable.
Revec uses equivalences found among vector intrinsics (Section 7)
and vector shuffle rules (Section 6.4) to determine whether two
intrinsics can be merged.

Next, Revec determines the profitability of the revectorization
graph using a cost model. If revectorization is profitable, the graph
is transformed to use vector instructions of higher width. Revec
continues to iteratively revectorize until all roots are exhausted for
a given basic block.

Notation. We implement Revec as a middle end compiler pass in
the LLVM compiler infrastructure to transform LLVM IR instruc-
tions. In subsequent sections, we use the LLVM IR vector notation

31

CC ’19, February 16–17, 2019, Washington, DC, USA Charith Mendis, Ajay Jain, Paras Jain, and Saman Amarasinghe

 %inj1 = load <8 x i16>, <8 x i16>* %in_i_j_minus_1, align 1
 %inj2 = load <8 x i16>, <8 x i16>* %in_i_j, align 1
 %inj3 = load <8 x i16>, <8 x i16>* %in_i_j_plus_1, align 1
 %add1 = add <8 x i16> %inj1, %inj2
 %add2 = add <8 x i16> %add1, %inj3
 %add3 = add <8 x i16> %buf2, %add2
 %add4 = add <8 x i16> %add3, %buf1
 %val = tail call <8 x i16> @llvm.x86.sse2.pmulhu.w(<8 x i16>
 <i16 7281,…,i16 7281>, <8 x i16> %add4)
 store <8 x i16> %val, <8 x i16>* %dst_i_minus_1_j

vmovdqu -242(%rdi,%rdx), %xmm1
vpaddw -244(%rdi,%rdx), %xmm1, %xmm1
vpaddw -240(%rdi,%rdx), %xmm1, %xmm1
vmovdqa. %xmm1, (%rcx)
vpaddw (%r9), %xmm1, %xmm1
vpaddw (%rax), %xmm1, %xmm1
vpmulhuw %xmm1, %xmm0, %xmm1
vmovdqu %xmm1, 258(%rsi,%rdx)

 %inj1 = load <16 x i16>, <16 x i16>* %in_i_j_minus_1, align 1
 %inj2 = load <16 x i16>, <16 x i16>* %in_i_j, align 1
 %inj3 = load <16 x i16>, <16 x i16>* %in_i_j_plus_1, align 1
 %add1 = add <16 x i16> %inj1, %inj2
 %add2 = add <16 x i16> %add1, %inj3
 %add3 = add <16 x i16> %buf2, %add2
 %add4 = add <16 x i16> %add3, %buf1
 %val = tail call <16 x i16> @llvm.x86.avx2.pmulhu.w(<16 x i16>
 <i16 7281,…,i16 7281>, <16 x i16> %add4)
 store <16 x i16> %val, <16 x i16>* %dst_i_minus_1_j

 %inj1 = load <32 x i16>, <32 x i16>* %in_i_j_minus_1, align 1
 %inj2 = load <32 x i16>, <32 x i16>* %in_i_j, align 1
 %inj3 = load <32 x i16>, <32 x i16>* %in_i_j_plus_1, align 1
 %add1 = add <32 x i16> %inj1, %inj2
 %add2 = add <32 x i16> %add1, %inj3
 %add3 = add <32 x i16> %buf2, %add2
 %add4 = add <32 x i16> %add3, %buf1
 %val = tail call <32 x i16> @llvm.x86.avx512.pmulhu.w(<32 x i16>
 <i16 7281,…,i16 7281>, <32 x i16> %add4)
 store <32 x i16> %val, <32 x i16>* %dst_i_minus_1_j

vmovdqu 34(%rdi,%rcx), %ymm3
vpaddw 32(%rdi,%rcx), %ymm3, %ymm3
vpaddw 36(%rdi,%rcx), %ymm3, %ymm1
vmovdqu %ymm1, 512(%rsp)
vmovdqu -32(%rsp), %ymm0
vpaddw %ymm0, %ymm4, %ymm4
vpaddw %ymm4, %ymm1, %ymm4
vpmulhuw %ymm4, %ymm11, %ymm4
vmovdqu %ymm4, -222(%rsi,%rcx)

vmovdqu64 1474(%rdi,%rcx), %zmm23
vpaddw 1472(%rdi,%rcx), %zmm23, %zmm23
vpaddw 1476(%rdi,%rcx), %zmm23, %zmm23
vmovdqu64 %zmm14, -254(%rsi,%rcx)
vpaddw %zmm23, %zmm27, %zmm14
vpaddw %zmm30, %zmm14, %zmm31
vpmulhuw %zmm31, %zmm28, %zmm18
vmovdqu64 %zmm18, 1218(%rsi,%rcx)

Re
ve

ct
or

ize
d

to
 A

VX
2

AVX2

AVX512

Re
ve

ct
or

ize
d

to
 A

VX
51

2

SSE2

LLVM IR generated x86-64

Figure 2: LLVM IR and x86-64 assembly code snippets for the inner loop of original SSE2 implementation of MeanFilter3x3
and revectorized output targetting AVX2 and AVX-512 instruction sets.

Loop Unrolling

Revectorization Graph
Construction

Code Transformation

Next Root Pack

Revectorized Code

Profitable?

Y

Find Root Packs

Preprocessing

Revectorization

Reduction Variable Splitting

Intrinsic Equivalences Shuffle Merge Rules

Figure 3: Overview of the Revec compiler transformation

pass.

to explain the functionality of Revec. LLVM vector types are repre-
sented as v = <m x ty>, where vector type v contains m elements
of scalar type ty. A generic LLVM IR vector instruction has the
following form.

out = op <m x ty> opnd1, opnd2, ..., opndn

op is the opcode of the instruction, opnd1 up to opndn are operands
and out is the output value of the instruction. Note that output
type is made explicit in the instruction, whereas operand types are
omitted. Operand types are made explicit in instances when it is
not clear from the context.

We call vector instructions which do not use the complete data
width of the processor as narrow vectors, and these are widened
through revectorization. We denote a revectorization pack con-
sisting of I1, I2, ..., In vector instructions by {I1, I2, ..., In }. Also we
define vectorization factor to be the number of vectors packed to-
gether in a revectorization pack.

Running Example. We use the example shown in Figure 5 to
illustrate Revec’s functionality when targeting a processor with
AVX2 instructions. The code shown in Figure 5(a) widens the data of
the in array from 16 bits to 32 bits using vector shuffle instructions
and then adds a constant to each element. Finally, the added values
are downcasted back to 16 bits and are stored in the out array. All
operations are written using SSE2 vector intrinsics.

4 PREPROCESSING TRANSFORMATIONS

Revec performs two preprocessing transformations to expose op-
portunities for revectorization: Loop Unrolling and Reduction Vari-
able Splitting.

4.1 Loop Unrolling

Revec first unrolls inner loops containing vector instructions to
expose opportunities for merging narrow vector instructions. First,
Revec traverses each basic block within a given inner loop and

32

Revec: Program Rejuvenation through Revectorization CC ’19, February 16–17, 2019, Washington, DC, USA

finds all vectorized stores. These stores are next separated into
mulitple store chains, where each chain contains a set of vectorized
stores which access adjacent memory locations. Revec considers
each store chain, beginning with the chain with the fewest number
of stores, to update the unroll factor for the inner loop.

If the cumulative width of a given store chain (SCW = size of a
store × number of stores) is less than the maximum vector width of
the processor (VW), then there is an opportunity for revectorization.
For such chains, Revec checks if unrolling leads to a longer chain
of consecutive stores by checking if the symbolic address of the tail
of the store chain plus the size of a store is equal to the symbolic
address of the head of the store chain in the next iteration. Symbolic
address information is available through the Scalar Evolution pass
of LLVM. If this condition is true, unrolling leads to a longer store
chain. Then, the Unroll Factor (UF) is updated:

UF = max (
lcm(VW, SCW)

SCW
,UF) (1)

Revec initializes UF = 1 and iterates through all store chains in
basic blocks of an inner loop to update its unroll factor.

Next, Revec checks if there are any vector ϕ-node instructions
that are part of a reduction chain. ϕ-nodes are used in Single Static
Assignment [25] based IRs to select a value based on the predecessor
of the current basic block. If any such ϕ-nodes are found, Revec
updates the unroll factor analogous to equation 1, replacing SCW
with the width of the ϕ-node instruction.

Finally, Revec unrolls the loop using this unroll factor. Figure 5(b)
shows the unrolled LLVM IR for the code shown in Figure 5(a). Since
there is only one 128 bit store within the loop, the unroll factor for
an AVX2 processor is 2.

4.2 Reduction Variable Splitting

Reduction computations involve accumulation of a set of values into
one reduction variable using a reduction operation. For example,
consider the code snippet in Figure 4(a), where values of array in
are added together into the reduction variable R. Reductions are not
explicitly parallelizable and hence are not explicitly revectorizable.
However, provided that the reduction operation is associative, we
could use multiple accumulators in parallel to perform reduction of
different parts of the data and finally accumulate the results into the
original variable. To achieve this data partitioning, we introduce
multiple independent reduction variables which accumulate results
of different parts of the data making it amenable to revectorization.

Concretely, after loop unrolling, Revec first identifies reduction
variables with associative operations such as maximum, addition
etc. whose values are only consumed outside the loop in which
the reduction is computed. Next, for each update of the reduction,
Revec introduces a new reduction variable by splitting the origi-
nal variable. For example, in Figure 4(c) B⃝, Revec introduces two
independent reduction variables, R1 and R2, in place of the two
occurences of R within the loop. Finally, Revec emits cleanup pro-
logue A⃝ and epilogue C⃝ code outside the loop, to first initialize the
reduction variables and then to do the final extraction and accumu-
lation of values of newly introduced reduction variables into the
original reduction variable. Now, the reduction computation inside
the loop is revectorizable. Figure 4 shows the final revectorized
reduction code, where R1 and R2 values are computed in parallel.

5 REVECTORIZATION GRAPH

CONSTRUCTION

Revec first finds the initial revectorization packs which form the
roots of the revectorization graph. Then, Revec recursively builds
a graph of packs by following the use-def chains of the instructions
at the frontier of the graph.

5.1 Finding Root Packs

For each basic block, Revec first finds chains of vector store in-
structions with adjacent memory accesses and chains of ϕ-node
vector instructions of same data type. These two types of instruc-
tions are generally part of use-def chains with high computational
workload and hence are suitable candidates to seed revectorization.
Store instructions act as terminal instructions which write back
values to memory after computation and ϕ-node instructions act as
entry points of a basic block with reductions. Revec forms initial
revectorization packs from these chains.

For a target with maximum vector width VW , and a chain of
vector seeds with operand width SW , the maximum number of
vector instructions that can be packed together is VFmax =

VW
SW .

Revec takes chunks of VFmax instructions from each vector chain
and forms the initial revectorization packs. These packs act as the
roots of their respective revectorization graphs. For example, the
two stores in the LLVM IR shown in Figure 5(b) are packed to form
the root of the revectorization graph in Figure 5(c).

5.2 Building the Graph

Revec grows the graph by following the use-def chains of packs
at the frontier of the graph similar to bottom-up SLP [26]. Revec
iterates through all operands of a pack in order. If their definitions
can be merged into vectors of higher width, Revec adds the packs
for the operands as new nodes of the graph with an edge connecting
the current pack and the operand pack. The graph is built recur-
sively traversing the operands of already formed packs. Expansion
stops when all packs in the frontier have vector instructions which
are not mergeable. Two or more instructions in a revectorization
pack can be merged if the following conditions are met:

• Isomorphic: They perform the same operation on operands
of the same data type and return vector values of the same
data type, if any. Revec handles both vector intrinsics which
are lifted to LLVM vector IR form (e.g., Figure 5(c) Pack C⃝)
and vector intrinsics which remain as opaque LLVM intrinsic
functions (e.g., Figure 5(c) Pack D⃝).
• Independent: Their operands should be independent of the
results they produce.
• AdjacentMemoryAccesses: If instructions accessmemory, their
accesses should be adjacent (e.g., Figure 5(c) Pack A⃝).
• Vector Shuffles: Special shuffle rules (Section 6.4) are applied to
merge vector shuffles and to grow the graph beyond shuffles
(e.g., Figure 5(c) Pack B⃝).

In general, a revectorization graph is a Directed Acyclic Graph
(DAG), where a single pack can be used by multiple other packs.
Figure 5(c) shows the complete revectorization graph for our run-
ning example. Note that the packs are shown in the upper half of

33

CC ’19, February 16–17, 2019, Washington, DC, USA Charith Mendis, Ajay Jain, Paras Jain, and Saman Amarasinghe

R[1:n] = init;

for(i = 0; i < N; i+= n){
 R = in[i:i+n] + R;
}

R[1:n] = init;

for(i = 0; i < N; i+= 2*n){
 R = in[i:i+n] + R;
 R = in[i+n:i+2*n] + R;
}

R[1:n] = init;
R1[1:n] = R2[1:n] = zeros;

for(i = 0; i < N; i+= 2*n){
 R1 = in[i:i+n] + R1;
 R2 = in[i+n:i+2*n] + R2;
}

temp = R1 + R2;
R = temp + R;

R[1:n] = init;
R1[1:n] = R2[1:n] = zeros;

for(i = 0; i < N; i+= 2*n){
 {R1,R2} = in[i:i+2*n] + {R1,R2};
}

temp = R1 + R2;
R = temp + R;

Reduction Operation (+)

(b) Unrolled Code (a) Original Code (c) After reduction variable split (d) After revectorization

A

B

C

Figure 4: (a) Code example with a reduction (b) Code after the loop is unrolled twice (c) Code after reduction variable R is

splitted into R1 and R2 (d) New independent reduction variables R1 and R2 are revectorized.

the nodes, whereas the bottom half shows the revectorized LLVM
IR instruction after code transformation (Section 6).

6 CODE TRANSFORMATION

Given a revectorization graph, Revec first decides whether it is
profitable to transform the code to use wider vectors using a static
cost model. Finally, Revec revectorizes graphs which are deemed
profitable.

6.1 Profitability Analysis

With an additive cost model, Revec sums the benefit of revectoriz-
ing each pack in a graph to the find the cumulative benefit of the
whole strategy. Replacing multiple narrow vector instructions with
a single instruction is typically profitable, evaluated by querying
the LLVM TargetTransformInfo interface. However, gathering
nonrevectorizable packs or non-adjacent loads at the leaves of the
revectorization graph has overhead. Further, if a pack contains
narrow vectors that are used out-of-graph, Revec must emit a
subvector extract instruction. For a particular graph, Revec only
transforms the code if the total benefit of revectorizing packs is
greater than the total gather and extract cost.

6.2 Revectorizing the Graph

Transformation happens recursively while traversing the graph
starting from the roots. Revec invokes the RevectorizeGraph rou-
tine (Algorithm 1) with initial revectorization packs at the roots of
the graph.

If the current pack is not mergeable to a wider vector instruc-
tion, Revec gathers its constituents using a tree of vector shuffle
instructions (Section 6.5). If it is revectorizable, Revec handles revec-
torizing vector shuffle instructions as detailed in Section 6.4. For
other vector instructions, Revec uses a generic widening strategy
(Section 6.3) covering both vector instructions which are lifted
to LLVM vector IR form and instructions which remain opaque
LLVM vector intrinsics. The tree is traversed depth first to generate
revectorized values of children (operands) first and these values
are used to generate the revectorized values for the current pack.
IntrinsicMap is an auto-generated map used for widening opaque
LLVM vector intrinsics, which maps from narrow vector intrinsics
to wider vector intrinsics at various vectorization factors. Genera-
tion of IntrinsicMap is detailed in Section 7.

Algorithm 1: RevectorizeGraph(Pack, IntrinsicMap)
if !IsMergeable(Pack) then

return TreeGather(Pack) ; // Section 6.5

else

if ContainsShuffles(Pack) then // Section 6.4
return RevectorizeShuffle(Pack)

V = ϕ
for ChPack ∈ Children(Pack) do

V.add(RevectorizeGraph(ChPack, IntrinsicMap))
if ContainsIntrinsics(Pack) then // Section 6.3

return RevectorizeIntrinsic(Pack, V, IntrinsicMap)
else

return RevectorizeVectorIR(Pack, V)

6.3 Generic Widening of Vectors

Revec widens both packs of vector intrinsics that have been lifted
to high level IR and packs of vector intrinsics which remain as
opaque calls. For instance, LLVM lifts the intrinsic _mm_add_epi16
to the vector IR instruction add <8 x i16>, as the semantics
of the intrinsic and IR instruction have a known correspondence.
However, many intrinsics have complex semantics that do not
map to simple compiler IR. For example, LLVM propagates the
intrinsic _mm_packus_epi32 to the backend with the LLVM IR
intrinsic @llvm.x86.sse41.packusdw.

Widening Lifted IR. If the i-th instruction in a pack of p isomor-
phic vector IR instructions has the generic form,

outi = op <m x ty> opndi1, opndi2, ..., opndik

the widened instruction becomes,

out = op <(p*m) x ty> V1, V2, ..., Vp

where V1,V2, ...,Vp are revectorized values of the operand packs
(children of the original pack in the revectorization graph). Note
that the opcode is reused. Operands in different lanes need not have
the same type. However, as we build packs recursively from vector
operands, only instructions that yield vectors are widened. Scalar
packing is more appropriate for the scalar SLP autovectorizer.

Widening Intrinsic Calls. For a pack of isomorphic intrinsic calls,
Revec queries IntrinsicMap to find a wider vector intrinsic. Revec
then transforms the pack by first packing the operands as before,
then emitting a single intrinsic call to the widened conversion found.

34

Revec: Program Rejuvenation through Revectorization CC ’19, February 16–17, 2019, Washington, DC, USA

%1 = load <8 x i16>, <8 x i16>* %in

%2 = shufflevector <8 x i16> %1,

 <8 x i16> <i16 0, i16 0, i16 0, i16 0, i16 undef, i16 undef, i16 undef, i16 undef>,

 <8 x i32> <i32 0, i32 8, i32 1, i32 9, i32 2, i32 10, i32 3, i32 11>

%3 = shufflevector <8 x i16> %1,

 <8 x i16> <i16 undef, i16 undef, i16 undef, i16 undef, i16 0, i16 0, i16 0, i16 0>,

 <8 x i32> <i32 4, i32 12, i32 5, i32 13, i32 6, i32 14, i32 7, i32 15>

%4 = bitcast <8 x i16> %2 to <4 x i32>

%5 = add <4 x i32> %4, <i32 127, i32 127, i32 127, i32 127>

%6 = bitcast <8 x i16> %3 to <4 x i32>

%7 = add <4 x i32> %6, <i32 127, i32 127, i32 127, i32 127>

%8 = call <8 x i16> @llvm.x86.sse41.packusdw(<4 x i32> %5, <4 x i32> %7)

store <8 x i16> %8, <8 x i16>* %out

%9 = load <8 x i16>, <8 x i16>* %in_1

%10 = shufflevector <8 x i16> %9,

 <8 x i16> <i16 0, i16 0, i16 0, i16 0, i16 undef, i16 undef, i16 undef, i16 undef>,

 <8 x i32> <i32 0, i32 8, i32 1, i32 9, i32 2, i32 10, i32 3, i32 11>

%11 = shufflevector <8 x i16> %9,

 <8 x i16> <i16 undef, i16 undef, i16 undef, i16 undef, i16 0, i16 0, i16 0, i16 0>,

 <8 x i32> <i32 4, i32 12, i32 5, i32 13, i32 6, i32 14, i32 7, i32 15>

%12 = bitcast <8 x i16> %10 to <4 x i32>

%13 = add <4 x i32> %12, <i32 127, i32 127, i32 127, i32 127>

%14 = bitcast <8 x i16> %11 to <4 x i32>

%15 = add <4 x i32> %14, <i32 127, i32 127, i32 127, i32 127>

%16 = call <8 x i16> @llvm.x86.sse41.packusdw(<4 x i32> %12, <4 x i32> %14)

store <8 x i16> %16, <8 x i16>* %out_1

%1 = load <8 x i16>, <8 x i16>* %in
%9 = load <8 x i16>, <8 x i16>* %in_1

%2 = shufflevector <8 x i16> %1,
 <8 x i16> <i16 0, i16 0, i16 0, i16 0, i16 undef, i16 undef, i16 undef, i16 undef>,

 <8 x i32> <i32 0, i32 8, i32 1, i32 9, i32 2, i32 10, i32 3, i32 11>

%10 = shufflevector <8 x i16> %9,
 <8 x i16> <i16 0, i16 0, i16 0, i16 0, i16 undef, i16 undef, i16 undef, i16 undef>,

 <8 x i32> <i32 0, i32 8, i32 1, i32 9, i32 2, i32 10, i32 3, i32 11>

%3 = shufflevector <8 x i16> %1,
 <8 x i16> <i16 undef, i16 undef, i16 undef, i16 undef, i16 0, i16 0, i16 0, i16 0>,

 <8 x i32> <i32 4, i32 12, i32 5, i32 13, i32 6, i32 14, i32 7, i32 15>

%11 = shufflevector <8 x i16> %9,
 <8 x i16> <i16 undef, i16 undef, i16 undef, i16 undef, i16 0, i16 0, i16 0, i16 0>,

 <8 x i32> <i32 4, i32 12, i32 5, i32 13, i32 6, i32 14, i32 7, i32 15>

%4 = bitcast <8 x i16> %2 to <4 x i32>
%12 = bitcast <8 x i16> %10 to <4 x i32>

%6 = bitcast <8 x i16> %3 to <4 x i32>
%14 = bitcast <8 x i16> %11 to <4 x i32>

%5 = add <4 x i32> %4, <i32 127, i32 127, i32 127, i32 127>
%13 = add <4 x i32> %12, <i32 127, i32 127, i32 127, i32 127>

%7 = add <4 x i32> %6, <i32 127, i32 127, i32 127, i32 127>
%15 = add <4 x i32> %14, <i32 127, i32 127, i32 127, i32 127>

%8 = call <8 x i16> @llvm.x86.sse41.packusdw(<4 x i32> %5, <4 x i32> %7)
%16 = call <8 x i16> @llvm.x86.sse41.packusdw(<4 x i32> %12, <4 x i32> %14)

store <8 x i16> %8, <8 x i16>* %out
store <8 x i16> %16, <8 x i16>* %out_1

__m128i zeros = _mm_set_epi16(0,0,0,0,0,0,0,0);

__m128i cons = _mm_set_epi32(127,127,127,127);

for(int i = 0; i < H * W; i+= 8){

 __m128i inval = _mm_loadu_si128((__m128i*)&in[i]);

 __m128i lo = _mm_unpacklo_epi16(inval,zeros);

 __m128i hi = _mm_unpackhi_epi16(inval,zeros);

 __m128i lo_plus = _mm_add_epi32(lo,cons);

 __m128i hi_plus = _mm_add_epi32(hi,cons);

 __m128i final = _mm_packus_epi32(lo_plus, hi_plus);

 _mm_storeu_si128((__m128i *)&out[i],final);

}

%1a = load <16 x i16>, <16 x i16>* %in

%2a = shufflevector <16 x i16> %1a,

 <16 x i16> <i16 0,i16 0,i16 0,i16 0,i16 undef,i16 undef,i16 undef,i16 undef,

 i16 0,i16 0,i16 0,i16 0,i16 undef,i16 undef,i16 undef,i16 undef>,

 <16 x i32> <i32 0,i32 16,i32 1,i32 17,i32 2,i32 18,i32 3,i32 19,

 i32 8,i32 24,i32 9,i32 25,i32 10,i32 26,i32 11,i32 27>

%3a = shufflevector <16 x i16> %1a,

 <16 x i16> <i16 undef,i16 undef,i16 undef,i16 undef,i16 0,i16 0,i16 0,i16 0,

 i16 undef,i16 undef,i16 undef,i16 undef,i16 0,i16 0,i16 0,i16 0>,

 <16 x i32> <i32 4,i32 20,i32 5,i32 21,i32 6,i32 22,i32 7,i32 23,

 i32 12,i32 28,i32 13,i32 29,i32 14,i32 30,i32 15,i32 31>

%4a = bitcast <16 x i16> %2a to <8 x i32>
%6a = bitcast <16 x i16> %3a to <8 x i32>

%5a = add <8 x i32> %4a, <i32 127,i32 127,i32 127,i32 127,i32

127,i32 127,i32 127,i32 127>

%7a = add <8 x i32> %6a, <i32 127,i32 127,i32 127,i32 127,i32

127,i32 127,i32 127,i32 127>

%8a = call <16 x i16> @llvm.x86.avx2.packusdw(<8 x i32> %5a, <8 x i32> %7a)

store <16 x i16> %8a, <16 x i16>* %out

Ite
ra

tio
n

i
Ite

ra
tio

n
i +

 1

B

C

D

(a) Code Example (b) Unrolled LLVM IR

(c) Revectorization Graph (top - revectorization packs, bottom - transformed code)

A

Figure 5: (a) Code example written using SSE2 vector intrinsics (b) LLVM IR after unrolling on a server with AVX2 instructions

(c) Revectorization graph for the IR where the top half of the node shows the revectorization pack associated with that node

and the bottom half shows the transformed IR after revectorization targeting AVX2.

Figure 5(c) pack D⃝ illustrates opcode substitutions for the LLVM
intrinsic @llvm.x86.sse41.packusdw.

6.4 Transforming Packs of Vector Shuffles

A vector shuffle is a high level instruction that reorders scalars from
lanes of two vector operands based on a constant indexing mask.
A shuffle generalizes vector selects, permutations with arbitrary

35

CC ’19, February 16–17, 2019, Washington, DC, USA Charith Mendis, Ajay Jain, Paras Jain, and Saman Amarasinghe

masks, operand interleaving, and two-operand gathers. In the shuf-
fle s = shuffle a, b, m, let a and b be source vector operands of
the same type, m be a length l constant vector, and the shuffled value
s be a length l vector created by indexing into the concatenation
of a and b at each index inm. During code transformation, Revec
matches shuffle packs to known operand patterns to create efficient
revectorized shuffles.

In general, consider a pack of vector shuffles:

s1 = shuffle a1, b1, m1 ...

sp = shuffle ap, bp, mp

With shuffle merge rules (Figure 7), Revec transforms this pack
into a single wide shuffle S = shuffle A, B, M, where A and B are
some combination of all ai and bi, and M is a statically determined
constant vector. In Figure 6, we show that four shuffle patterns
match all packs encountered when revectorizing to AVX2, and
92.9% of packs when revectorizing to AVX-512. While a gather or a
generic lane widening strategy, Pattern D, could be applied to all
packs, Patterns A, B, and C allow Revec to emit fewer or less costly
shuffles.

Pattern A: Sequential Subvector Extraction. When a1 = a2 = ... =
ap , |ai | = n, |mi | =

n
p , and concatm1 m2 ...mp = {0, 1, ...,n − 1},

the narrow shuffles extract all adjacent n
p length subvectors of

source a (operands bi are unused). Revec emits S = a1 with no
shuffling and erases the pack. Sequential subvector extraction is
used by programmers to interleave subvectors from different source
registers. By erasing the extractions, Revec can interleave the full
source vectors elsewhere in the graph.

Pattern B: Permutations of Identical Operands. If a1 = a2 = ... =
ap , and b1 = b2 = ... = bp , then Revec only widens the mask by
concatenation. The source operands need not be packed as a shuffle
mask can repeat indices.

Pattern C: Mergeable Constant Operands. Shuffles often include a
constant vector as a source operand. For instance, the low and high
halves of a source vector a can be separately interleaved with a
constant vector. In LLVM, the unused halves of the constant vector
are in practice set to be undefined. If constant operands are non-
identical but can be elementwise merged as in Figure 7(C), and
an operand is shared between narrow shuffles, Revec merges the
constant and concatenates the masks.

Pattern D: Generic Lane Widening. Failing the above conditions,
Revec attempts to form pack α = {a1,a2, ...,ap } from left operands
and pack β = {b1,b2, ...,bp } from right operands. The following lo-
cal analyses indicate that a lane widening, vertical packing strategy
is least costly:
• The left or right operand pack contains all constant vectors.
Revec transforms the constant pack into a higher width con-
stant vector.
• The left operands are identical or the right operands are identi-
cal. Revec can emit an efficient splat or broadcast instruction
for this pack.
• All narrow masks are equal. The pack is isomorphic.
Revec generates a reindexed shuffle mask M by adding constant

displacements to elements of each narrow maskmi . Operands are

SSE2+ to AVX2 SSE2+ to AVX-512

100% Pattern A

Pattern D

Pattern C

Pattern B

Pattern A

Pattern B

Pattern C

Gather

Pattern D

75%

50%

25%

0%

Shuffle
packs (%)

Figure 6: Revec’s shuffle patterns match all shuffle packs

encountered in benchmarks when revectorizing to AVX2,

and 92.9% of shuffle packs encountered when revectorizing

to AVX-512.

displaced proportionally to their position in the pack. The constant
displacement for indexes of narrow shuffle i that correspond to the
left operand (i.e indexes < n) is

∑i−1
j=1 |aj | = n ∗ (i − 1). Similarly,

the constant displacement for indexes that correspond to values of
the right operand is

∑
j,i |aj | +

∑i−1
j=1 |bj | = n(p − 1) + n(i − 1).

Gathering General Shuffles. For shuffleswith arbitrary non-constant
operands, 2p−1 packs can be formed. As local packing decisions
lead to revectorization graphs of different profitabilities, Revec
is unable to make a globally optimal decision without a search.
In the general case, narrow shuffles are gathered as described in
Section 6.5. Any gathered shuffle pack will be non-isomorphic, as
isomorphic shuffles have the same mask and match patterns B, C
or D. Revec gathered no shuffle packs when revectorizing SSE2+
benchmarks to AVX2, and 7.1% when revectorizing to AVX-512.

6.5 Gathering Non-mergeable Vectors

Revec gathers packs at the leaf nodes of the graph if they are not
mergeable. This is realized by using a tree of vector shuffles, where
at each level it concatenates two vectors of the same width to form
a vector of twice the data width.

Assume we want to merge a pack {I1, I2, ..., I2n } of type <m x
ty> instructions. The gathered wide vector of type <(2n*m) x
ty> is formed using the tree of vector shuffles shown in Figure 8.
Vectors formed at level j have 2jm elements. The mask used for
each shuffle at level j, Mj = <0, 1, 2,, 2jm>. The height of the
tree is k = log 2n + 1.

7 DISCOVERING INTRINSIC CONVERSIONS

In Section 6.3, we noted that Revec queries an IntrinsicMap
data structure to transform packs of opaque vector intrinsic calls.
Revec automatically generates intrinsic substitution candidates
using explicit enumeration and pre-populates the IntrinsicMap
structure used in Algorithm 1. When IntrinsicMap(intrin, p)
= wide_intrin, an isomorphic pack of p calls to intrin has the
same result as a single call to wide_intrin with vertically packed
operands. In our implementation of Revec, a canonical representa-
tion of each narrow intrinsic is mapped to several translations of
higher width vector instructions at different vectorization factors p.
We limit vectorization factors to powers of two.

36

Revec: Program Rejuvenation through Revectorization CC ’19, February 16–17, 2019, Washington, DC, USA

%s₁ = shufflevector 0 1, ,
a

%s₂ = shufflevector 2 3, ,
a

%S =
a

Pattern A: Sequential subvector extracts Pattern B: Permutations of identical operands

%s₁ = shufflevector , ,
a b m₁

%s₂ = shufflevector , ,
a b m₂

%S = shufflevector , ,

a b concat m₁ m₂

Pattern C: Mergeable constant vector operand

%s₁ = shufflevector 1, ,
a b₁ m₁

%s₂ = shufflevector 1 1, ,
a b₂ m₂

%S = shufflevector 1 1, ,

a b concat m₁ m₂

Pattern D: Lane widening: vertically pack isomorphic operands

%s₁ = shufflevector , ,
a₁ b₁ m₁

%s₂ = shufflevector , ,
a₂ b₂ m₂

%S = shufflevector , ,
pack a₁ a₂ reindex m₁ m₂pack b₁ b₂

Pattern E: Gather

%s₁ = shufflevector , ,
a₁ b₁ m₁

%s₂ = shufflevector
a₂

, ,
b₂ m₂

%S = shufflevector
%s₁

0 1 2 3, ,
%s₂

Figure 7: Shuffle pack transformation patterns. Revec avoids unnecessarily widening operands when applying patterns A, B

and C. Pattern D, a lane widen, is applied when there is similarity between operands vertically in the pack, while narrow

vectors are gathered only when an optimal packing decision cannot be made locally. Shaded operand elements are indexed by

a shaded shuffle mask index.

We adopt a test case fuzzing approach for generating equiva-
lences, with 18,000 randomly generated inputs and combinatori-
ally generated corner-case inputs, inspired by test case generation
in [6]. Test cases are byte strings of a specified length that initialize
operands of a specified vector data type. To augment randomly
generated test cases, we create corner-case byte string sequences
such as 0000..., 0101..., 1010..., and 1111.... This helped Revec to
significantly reduce erroneous equivalences, and is consistent with
the methodology in [6].

For each vector intrinsic available on the target and each vec-
torization factor 1 ≤ p ≤ 8, we generate and compile a testbed
in LLVM IR that invokes the intrinsic p times. Input test cases are
passed as arguments of these intrinsics, and outputs are saved after
execution. Testbeds are evaluated on a server with AVX-512 support
(Section 9.1). If a set of testbeds produce the same output when
given the same input for all test cases, each pair of testbeds in the set
corresponds to a conversion. After filtering redundant conversions,
the remaining conversions are added to InstrinsicMap.

a1,1 = SV I1,I2
a1,2 = SV I3,I4 a1,n-1 = SV I2n-3,I2n-2 a1,n = SV I2n-1,I2n

a2,1 = SV a1,1,a1,2 a2,n/2 = SV a1,n-1,a1,n

ak-1,1 = SV ak-2,1,ak-2,2 ak-1,2 = SV ak-2,3,ak-2,4

ak,1 = SV ak-1,1,ak-1,2

<2m x ty>

<4m x ty>

<2km x ty>

Data type

…
…

…
.

<2k-1m x ty>

Figure 8: Tree of vector shuffles (SV) to gather packs which

are not mergeable.

Automated enumeration discovered 53 SSE-series to AVX1/2
intrinsic conversions, 33 AVX1/2 to AVX-512 conversions, and 19
SSE-series to AVX-512 conversions. For instance, the SSE4.1 intrin-
sic _mm_packus_epi32 found in pack D⃝ of Figure 5 has a 2-to-1
conversion to _mm256_packus_epi32 and a 4-to-1 conversion to
_mm512_packus_epi32. Additionally, enumeration discovered sev-
eral conversions that upgrade operand widths within the same
instruction set.

8 IMPLEMENTATION

We implemented Revec as a LLVM IR-level compiler pass extending
LLVM v7.0.0 (pre-release, commit hash 71650da2). In addition, we
add a loop analysis pass to determine inner loop unroll counts prior
to revectorization. We execute the passes through Clang (commit
hash 3ed5b23) as a frontend to compile C++ benchmarks. Revec
transforms each source function immediately after the built-in SLP
scalar autovectorization pass.

9 EVALUATION

We evaluate the performance impact of Revec on real world per-
formance critical kernels from video compression, integer packing,
image processing, and stencil computation domains which con-
tain heavily hand-vectorized routines. In Section 9.2, we examine
Revec’s impact on integer unpacking routines [30] in the FastPFor
integer compression library. In Section 9.3, we evaluate Revec’s
imapact on important kernels from the x265 video encoding library
[10]. Finally, in Section 9.4, we evaluate Revec’s impact on pop-
ular image processing and stencil kernels from the Simd image
processing library [9].

9.1 Experimental Setup

Benchmark kernels are run on a Google Cloud platform server
with 4 vCPUs and 8GB of RAM. The benchmark server had Intel
Xeon Skylake cores running at 2.00 GHz, and supported Intel’s

37

CC ’19, February 16–17, 2019, Washington, DC, USA Charith Mendis, Ajay Jain, Paras Jain, and Saman Amarasinghe

1.27

1.15
1.24

1.15
1.21

1.12
1.04

1.11

1.57
1.49

1.55

1.42 1.45

1.34
1.30

1.34

1 - 4 bits 5 - 8 bits 9 - 12 bits 13 - 16 bits 17 - 20 bits 21 - 24 bits 25 - 28 bits 29 - 32 bits0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Revec (AVX2) Revec (AVX-512)

S
pe
ed
up

(G
eo
m
ea
n)

Figure 9: Revec speedups on 32 SSE4 horizontal bit unpack-

ing kernels from SIMD-Scan and FastPFor when retarget-

ted to AVX2 and AVX-512.

AVX-512 instructions (with the the F, CD, VL, DQ and BW instruc-
tion sets). We target AVX2 by disabling AVX-512 features with the
compilation flags -O3 -march=native -mno-avx512f -mno-avx512pf

-mno-avx512er -mno-avx512cd. We simply compile with -O3 -march=

native to target AVX-512. Test code measures absolute runtimes,
and speedups are computed with respect to the runtime under
compilation by stock Clang v7.0.0 (commit 3ed5b23) with the same
command line flags, with no preprocessing or revectorization.

9.2 Benchmark: SIMD-Scan Integer Unpacking

SIMD-Scan [29, 30] proposes an efficient horizontal codeword-to-
integer unpacking algorithm accelerated by 128-bit SIMD proces-
sors. Integer array packing and unpacking are widely used in search
engine and relational database software to store data as codewords,
so extensive effort has been spent on optimizing these routines [15].
Decoding packed codewords into integers can be a bottleneck in
lookup procedures, such as database column scans. The FastPFOR
integer compression library [15] implements 32 separate SSE4 un-
packing kernels from SIMD-Scan for different integer bitwidths.
Specialized kernels are used for each integer bitwidth as codewords
packed to different bitwidths span SIMD register lanes differently.

In Figure 9, we report the speedups that Revec achieves on these
kernels when retargeting to the AVX2 and AVX-512 instruction
sets. While the authors of [15] implement a separate function for
each bitwidth, we aggregate speedups into groups of 4 for clarity.

Across the 32 SSE4 kernels, Revec nets a 1.160× geometric mean
speedup over Clang when targeting AVX2. On the same experi-
mental server, with AVX-512 instruction sets enabled, Revec nets a
1.430× geometric mean speedup.

Without Revec, Clang is unable to leverage newly available
instruction sets given hand-vectorized code written to target the
SSE4 instruction set. In fact, on this benchmark, we observe a
slight slowdown from enabling AVX-512 instructions with stock
Clang. However, Revec demonstrates the potential for automatic
performance scaling of real-world code.

1.00 1.00

1.69

1.45
1.39

1.00
0.94

1.88
1.80

1.74

IDCT DCT dequant 8x8 dequant 16x16 dequant 32x32
SSE3 Source SSSE3 Source SSE4.1 Source SSE4.1 Source SSE4.1 Source

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Revec (AVX2) Revec (AVX-512)

S
pe
ed
up

(G
eo
m
ea
n)

Figure 10: Revec speedups on hand-written SSE-series ker-

nels used in the x265 video encoding library.

In fact, in later work, the SIMD-Scan authors propose a further
optimized, AVX2-accelerated database column scan tool, AVX2-
Scan, with horizontal unpacking being the key routine [29]. The
authors report that AVX2-Scan is "around 30% faster than SIMD-
Scan". Revec achieves considerable proportion of this proposed
speedup automatically without manual intervention.

9.3 Benchmark: x265 Video Encoding Library

x265 [10] is the most widely used HEVC/H.264 video encoding
library. The library includes intrinsic-rich C++ routines for com-
puting an inverse discrete cosine transform (IDCT) and discrete
cosine transform (DCT) over small image blocks, and for image
dequantization with scaling, accelerated with SSE-series intrinsics.

In Figure 10, we note Revec’s speedups on these routines. Overall,
Revec achieves geometric mean speedups of 1.145× and 1.195× for
AVX2 and AVX-512 targets, respectively.1

However, we observe a slight slowdown on the x265 DCT imple-
mentation for AVX-512 targets. Revec encounters packs of 4 SSSE3
phadd intrinsics. No 4-to-1 instrinsic equivalences are known for
this instruction, as phadd is absent from AVX-512. While Revec
currently gathers this pack with 3 shuffles (Section 6.5) such that
an SSE-AVX switching penalty is incurred, IntrinsicMap contains
a 2-to-1 equivalence to the AVX2 phadd intrinsic. The pack of 4
SSSE3 phadd intrinsics could be split and partially revectorized to
use 2 AVX2 phadds, gathered with a single shuffle.

Further, the AVX2-retargetted DCT would benefit from hori-
zontal packing of operands of an SSSE3 phadd pack followed by
data reorganization, as opposed to lane widening (vertical packing).
Lane widening packs operands generated by different intrinsics
that must be gathered and terminates the tree; horziontal packing
would prevent this. Revec’s greedy algorithm misses this oppor-
tunity, however a search across packing strategies can be used
uncover such uncommon opportunities.

1Geometric mean taken over 3 numbers: DCT speedup, IDCT speedup, and aggregated
dequantized scaling (dequant) speedup.

38

Revec: Program Rejuvenation through Revectorization CC ’19, February 16–17, 2019, Washington, DC, USA

9.4 Benchmark: Simd Library

Simd [9] is a library of heavily hand-vectorized image process-
ing and generic stencil kernels, with specialized implementations
targetting different vector instruction sets. We group 216 SSE2+
kernels (168 SSE2, 47 SSE3/SSSE3, and 1 SSE4.1 kernels) based on
their functionality in Table 1.

Each SSE-series kernel we extract and benchmark has an analo-
gous AVX2 implementation. Hence, we can compare speedups of
automatic revectorization with speedups that human experts have
achieved. Other image processing libraries such as OpenCV provide
a smaller variety of SIMD kernels. Further, the Intel IPP-ICV vector
computer vision package does not provide source code.

9.4.1 Impact of Revec on Runtime Performance. We report the
speedup Revec has over SSE2+ implementations of Simd library
kernels when retargeted to produce AVX2 or AVX-512 code in
Figure 11. Note that for presentation purposes, we clustered the
kernels into the classes shown in Table 1. In Figure 11, the speedup
for each cluster is the geometric mean speedup of all kernels within
a cluster. We benchmark with test code written by the Simd authors
that executes each kernel with large inputs (i.e. 1920 x 1080 pixels
and other similar sizes).

Across 216 extracted, templatized variants of SSE2+ Simd li-
brary kernels from 2016, Revec achieves an overall geometric mean
speedup of 1.1023× when retargeting to AVX2, and 1.1163× when
retargeting to AVX-512. In comparison, handwritten AVX2 imple-
mentations from the same commit have a 1.2673× speedup over
their SSE2+ counterparts. After we extracted kernels, the Simd li-
brary authors added handwritten AVX-512 implementations. From
a December 2018 commit of the Simd library, handwritten AVX-512
kernels had a 1.3916× speedup over SSE2+ counterparts.

We exclude 14 kernels that achieve less than a 1.01 speedup
when both hand-rewritten and revectorized to AVX2 and AVX-512
— these are memory-bound functions with limited opportunity for
revectorization. Nonetheless, elided kernels also compile and pass
tests with neutral performance.

Table 1: Classes of image processing and stencil kernels in

the Simd library

Simd library benchmark functions

Conversions reducegray5x5 Statistic

bgratogray shiftbilinear conditional
bgratoyuv stretchgray2x2 statistic
bgrtobgra
bgrtoyuv Filters Correlation

deinterleave absgradientsaturatedsum absdifferencesum
graytobgra gaussianblur3x3 squareddifferencesum
graytobgr laplace
int16togray lbp Misc

interleave meanfilter3x3 addfeaturedifference
yuvtobgra sobel binarization
yuvtobgr fill
yuvtohue Motion detection histogram

background hog
Resizing edgebackground neural
reducegray2x2 interference operation
reducegray3x3 segmentation reorder
reducegray4x4 texture

In addition, on 6 SSSE3/SSE2 color conversion tests in the Simd
library that have no AVX2 or AVX-512 implementations to com-
pare against, Revec yields a 1.0618× and 1.0632× geometric mean
speedup over stock Clang when retargeting to AVX2 and AVX-512
respectively.

9.4.2 Comparison with Hand-Vectorized Kernels. While hand-written
AVX2 and AVX-512 Simd kernels overall perform better than revec-
torized kernels, these required considerablemanual effort and exper-
tise to write. In particular, hand-vectorization achieves >3× speedup
on one kernel variant in the resizebilinear cluster. This large
speedup is due to the usage of _mm256_maddubs_epi16 in the AVX2
implementation, which executes vertical multiplies and horizontal
additions. The SSE2 version emulates this using multiple intrin-
sics involving vector shuffles. Such complex semantic transforma-
tions are not currently possible under Revec. Similarly, Revec can
only generate the horizontal vector operation _mm256_hadd_epi32
given SSE3-onward source; SSE2 sources emulate the function.
Horizontal AVX2 operations are used in other hand-written AVX2
kernels such as reducegray4x4.

The AVX-512 implementation of the hog kernel uses fused multi-
ply and add intrinsics while the SSE2 source, written to target pro-
cessors without the FMA instruction set, separately multiplies and
adds. The AVX-512 hog and lbp kernels also use masked selects or
sets like _mm512_mask_blend_epi32, whereas Revec widens casts,
logical operations, or compares that emulate masked operations.

Many of these performance gaps could be narrowed by apply-
ing peephole-style conversion rules independently of the Revec
transformation pass.

Revec still automatically delivers an overall speedup on Simd.
Notably, the NeuralConvert kernel enjoys a 1.757× speedup via
revectorization to AVX2, but only 1.075× via hand vectorization.
In the AVX2 kernel, Simd programmers reduced the number of
unpacks/shuffles executed by using an AVX2-only zero extension
intrinsic, _mm256_cvtepu8_epi32, at the cost of using narrower
loads (load <8 x i8>). The SSE2 implementation uses wider loads
(load <16 x i8>), withmore data rearrangement. By revectorizing,
Revec doubles the width of the high-latency loads to <32 x i8>,
and uses our shuffle logic to merge unpacks. Revectorized AVX2
utilizes memory bandwidth better, even though it executes more
instructions, yielding a higher speedup.

10 RELATEDWORK

Revectorization is inspired by compiler auto-vectorization. Also,
previous works perform limited revectorization, primarily outside
of compilers.

Compiler Auto-vectorization. Compilers employ two main auto-
vectorization techniques, namely loop vectorization and Superword
Level Parallelism (SLP) based vectorization. Loop vectorization has
been implemented in compilers since the era of vector machines [1]
and subsequently many vectorization schemes have been proposed
which use loop dependency analysis [27]. Other loop vectorization
techniques explore vectorization under alignment constraints [3],
outer loop transformations [21], handling data interleavings in
loops [20] and exploiting mixed SIMD parallelism [13, 31].

39

CC ’19, February 16–17, 2019, Washington, DC, USA Charith Mendis, Ajay Jain, Paras Jain, and Saman Amarasinghe

Hand-written kernel (AVX2) Revec kernel (AVX2)

S
pe
ed
up

(g
eo
m
ea
n)

yuvtobgr(a)
binarization
fill
lbp/hog
interleave
addfeatdiff
deinterleave
histogram
int16togray
graytobgr(a)
edgebg
resizebilinear
operation
reorder
reducegray
segm

entation
background
interference
stretchgray
sqdiffsum
texture
statistic
absgradsatsum
absdiffsum
conditional
bgratogray
m
eanfilter3x3

gaussianblur
sobel
laplace
alphablending
neural
bgr(a)toyuv
yuvtohue

0

0.5

1

1.5

2

yuvtobgr(a)
binarization
fill
lbp/hog
interleave
addfeatdiff
deinterleave
histogram
int16togray
graytobgr(a)
edgebg
resizebilinear
operation
reorder
reducegray
segm

entation
background
interference
stretchgray
sqdiffsum
texture
statistic
absgradsatsum
absdiffsum
conditional
bgratogray
m
eanfilter3x3

gaussianblur
sobel
laplace
alphablending
neural
bgr(a)toyuv
yuvtohue

0

0.5

1

1.5

2

2.5
Hand-written kernel (AVX-512) Revec kernel (AVX-512)

S
pe
ed
up

(g
eo
m
ea
n) 3.95

Figure 11: Revectorized and hand-written AVX2 kernel speedups (top) and AVX-512 speedups (bottom) over hand-written

SSE2+ kernels for various Simd library benchmarks

Larsen [12] introduced SLP, which can capture vectorization
opportunities that exist beyond loops at a much lower granularity.
Revec has its roots in SLP vectorization which packs isomorphic
independent statements starting from scalar loads and stores to
form vectorized counterparts. In particular, Revec’s transformation
algorithm is inspired by a variant of SLP proposed in [26], but
targets only vector instructions .

Domain specific vectorization techniques [4, 19] have been pro-
posed in systems like SPIRAL [24] where generic auto-vectorization
fails. They use platform-specific vector intrinsics in their imple-
mentations and Revec can be used to rejuvenate their performance
on newer instructions sets.

Dynamic Rewriting. Dynamic rewriting of SIMD instructions has
been proposed in [5, 16] to find SIMD mappings between host and
guest architectures in dynamic binary translation. The Dynamic
Binary Translation system proposed in [7] details a technique to
widen SIMD instructions during this mapping. It only targets loops
and relies on recovery of LLVM IR from the binary, which is impre-
cise and can lead to spurious dependencies. Compared to [7], Revec
is implemented as a compiler level transformation pass and inher-
ently has access to loop structures without the need to recover them
from the binary, making Revecmore precise. Further, Revec applies
to loop-free segments of code, making it more general than [7] – the

Simd NeuralConvert benchmark that Revec greatly accelerates
depends on this capability.

Static Rewriting. Manilov [18] proposes a source-to-source trans-
lation system that maps intrinsic code written in one platform to
another. It uses intrinsic descriptions written separately in header
files for two platforms to match dataflow graphs between intrinsics
to do the translation. It can be used for widening vector intrinsics
as well similar to Revec. However, it requires considerable manual
engineering: semantically correct descriptions should be written
for each vector intrinsic in plain C code. This is tedious and error
prone. In comparison, Revec automatically finds these equivalences
using enumeration. Further, Revec is implemented as a compiler
pass and transformation happens transparently without the need
for library modification: Revec can directly benefit end-users of
software. Pokam [23] proposes a systemwhich analyzes C-like code
and finds common idioms which are vectorizable and translates
those to SIMD intrinsics. Revec analyzes code already written using
vector intrinsics.

Libraries like [11, 28] provide abstract ways of programming
SIMD operations across platforms. These systems are suitable for
writing new applications, but do not deal with the portability of high
performance applications already written using platform-specific
vector intrinsics.

40

Revec: Program Rejuvenation through Revectorization CC ’19, February 16–17, 2019, Washington, DC, USA

11 CONCLUSION

Programmers write code using low-level platform-specific vector
intrinsics to exploit data level parallelism as much as possible. How-
ever, hand vectorization results in non-portable code, and hence
programmers resort to manually rewriting code using intrinsics of
newer vector instruction sets to leverage the availability of higher
vector width instructions. In this paper, we introduced Revec, a
compiler technique which automatically retargets hand vectorized
code to use higher vector width instructions whenever available.
We showed Revec can be used to transparently rejuvenate perfor-
mance of stale hand vectorized code, thereby achieving performance
portability.

ACKNOWLEDGMENTS

We would like to thank Vladimir Kiriansky and all reviewers for
insightful comments and suggestions. This work was supported
by the U.S. Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research under Award Numbers DE-
SC0008923 and DE-SC0018121; the National Science Foundation
under Grant No. CCF-1533753; and DARPA under Award Number
HR0011-18-3-0007. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the funding agencies.

REFERENCES

[1] Randy Allen and Ken Kennedy. 1987. Automatic Translation of FORTRAN
Programs to Vector Form. ACM Trans. Program. Lang. Syst. 9, 4 (Oct. 1987),
491–542. https://doi.org/10.1145/29873.29875

[2] ARM. 2013. ARM Programmer Guide. http://infocenter.arm.com/help/index.
jsp?topic=/com.arm.doc.den0018a/index.html

[3] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. 2004. Vectorization
for SIMD Architectures with Alignment Constraints. In Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Implementation
(PLDI ’04). ACM, New York, NY, USA, 82–93. https://doi.org/10.1145/996841.
996853

[4] Franz Franchetti, Stefan Kral, Juergen Lorenz, and ChristophWUeberhuber. 2005.
Efficient utilization of SIMD extensions. Proc. IEEE 93, 2 (2005), 409–425.

[5] S. Fu, D. Hong, J. Wu, P. Liu, and W. Hsu. 2015. SIMD Code Translation in an
Enhanced HQEMU. In 2015 IEEE 21st International Conference on Parallel and
Distributed Systems (ICPADS). 507–514. https://doi.org/10.1109/ICPADS.2015.70

[6] Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based directed whitebox
fuzzing. In Proceedings of the 31st International Conference on Software Engineering.
IEEE Computer Society, 474–484.

[7] Ding-Yong Hong, Yu-Ping Liu, Sheng-Yu Fu, Jan-Jan Wu, and Wei-Chung Hsu.
2018. Improving SIMD Parallelism via Dynamic Binary Translation. ACM Trans.
Embed. Comput. Syst. 17, 3, Article 61 (Feb. 2018), 27 pages. https://doi.org/10.
1145/3173456

[8] IBM. 2006. PowerPC microprocessor family: Vector/SIMD multimedia extension
technology programming environments manual. IBM Systems and Technology
Group (2006).

[9] Yermalayeu Ihar, Antonenka Mikhail, Radchenko Andrey, Dmitry Fedorov, and
Kirill Matsaberydze. 2016. Simd Library for Image Processing. http://ermig1979.
github.io/Simd/index.html

[10] MulticoreWare Inc. 2018. x265 HEVC Encoder / H.265 Video Codec. http:
//x265.org

[11] Matthias Kretz and Volker Lindenstruth. 2012. Vc: A C++ library for explicit
vectorization. Software: Practice and Experience 42, 11, 1409–1430.

[12] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. In Proceedings of the ACM SIGPLAN
2000 Conference on Programming Language Design and Implementation (PLDI ’00).

ACM, New York, NY, USA, 145–156. https://doi.org/10.1145/349299.349320
[13] Samuel Larsen, EmmettWitchel, and Saman P. Amarasinghe. 2002. Increasing and

Detecting Memory Address Congruence. In Proceedings of the 2002 International
Conference on Parallel Architectures and Compilation Techniques (PACT ’02). IEEE
Computer Society, Washington, DC, USA, 18–29. http://dl.acm.org/citation.cfm?
id=645989.674329

[14] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75–.
http://dl.acm.org/citation.cfm?id=977395.977673

[15] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second
through vectorization. Journal of Software Practice and Experience (2015).

[16] Jianhui Li, Qi Zhang, Shu Xu, and Bo Huang. 2006. Optimizing dynamic binary
translation for SIMD instructions. In International Symposium on Code Generation
and Optimization (CGO’06). 12 pp.–280. https://doi.org/10.1109/CGO.2006.27

[17] Saeed Maleki, Yaoqing Gao, Maria J Garzar, Tommy Wong, David A Padua,
et al. 2011. An evaluation of vectorizing compilers. In Parallel Architectures and
Compilation Techniques (PACT), 2011 International Conference on. IEEE, 372–382.

[18] Stanislav Manilov, Björn Franke, Anthony Magrath, and Cedric Andrieu. 2015.
Free Rider: A Tool for Retargeting Platform-Specific Intrinsic Functions. SIGPLAN
Not. 50, 5, Article 5 (June 2015), 10 pages. https://doi.org/10.1145/2808704.2754962

[19] Daniel S. McFarlin, Volodymyr Arbatov, Franz Franchetti, and Markus Püschel.
2011. Automatic SIMD Vectorization of Fast Fourier Transforms for the Larrabee
and AVX Instruction Sets. In Proceedings of the International Conference on Su-
percomputing (ICS ’11). ACM, New York, NY, USA, 265–274. https://doi.org/10.
1145/1995896.1995938

[20] Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization of Interleaved
Data for SIMD. In Proceedings of the 27th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’06). ACM, New York, NY, USA,
132–143. https://doi.org/10.1145/1133981.1133997

[21] Dorit Nuzman and Ayal Zaks. 2008. Outer-loop Vectorization: Revisited for Short
SIMD Architectures. In Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques (PACT ’08). ACM, New York, NY, USA,
2–11. https://doi.org/10.1145/1454115.1454119

[22] Stuart Oberman, Greg Favor, and Fred Weber. 1999. AMD 3DNow! Technology:
Architecture and Implementations. IEEE Micro 19, 2 (March 1999), 37–48. https:
//doi.org/10.1109/40.755466

[23] Gilles Pokam, Stéphane Bihan, Julien Simonnet, and François Bodin. 2004. SWARP:
a retargetable preprocessor for multimedia instructions. Concurrency and Com-
putation: Practice and Experience 16, 2-3 (2004), 303–318.

[24] M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer,
Jianxin Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and
N. Rizzolo. 2005. SPIRAL: Code Generation for DSP Transforms. Proc. IEEE 93, 2
(Feb 2005), 232–275. https://doi.org/10.1109/JPROC.2004.840306

[25] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global Value Numbers
and Redundant Computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’88). ACM, New York,
NY, USA, 12–27. https://doi.org/10.1145/73560.73562

[26] Ira Rosen, Dorit Nuzman, and Ayal Zaks. 2007. Loop-Aware SLP in GCC. In
Proceedings of the GCC Developers’ Summit. 131–142.

[27] N. Sreraman and R. Govindarajan. 2000. A Vectorizing Compiler for Multimedia
Extensions. Int. J. Parallel Program. 28, 4 (Aug. 2000), 363–400. https://doi.org/
10.1023/A:1007559022013

[28] Haichuan Wang, Peng Wu, Ilie Gabriel Tanase, Mauricio J Serrano, and José E
Moreira. 2014. Simple, portable and fast SIMD intrinsic programming: generic
simd library. In Proceedings of the 2014 Workshop on Programming models for
SIMD/Vector processing. ACM, 9–16.

[29] Thomas Willhalm, Ismail Oukid, Ingo Müller, and Franz Faerber. 2013. Vectoriz-
ing Database Column Scans with Complex Predicates.. In Fourth International
Workshop on Accelerating Data Management Systems Using Modern Processor and
Storage Architectures (ADMS) at VLDB.

[30] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander
Zeier, and Jan Schaffner. 2009. SIMD-scan: ultra fast in-memory table scan
using on-chip vector processing units. Proceedings of the VLDB Endowment 2, 1,
385–394.

[31] Hao Zhou and Jingling Xue. 2016. ExploitingMixed SIMDParallelism by Reducing
Data ReorganizationOverhead. In Proceedings of the 2016 International Symposium
on Code Generation and Optimization (CGO ’16). ACM, New York, NY, USA, 59–69.
https://doi.org/10.1145/2854038.2854054

41

https://doi.org/10.1145/29873.29875
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0018a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0018a/index.html
https://doi.org/10.1145/996841.996853
https://doi.org/10.1145/996841.996853
https://doi.org/10.1109/ICPADS.2015.70
https://doi.org/10.1145/3173456
https://doi.org/10.1145/3173456
http://ermig1979.github.io/Simd/index.html
http://ermig1979.github.io/Simd/index.html
http://x265.org
http://x265.org
https://doi.org/10.1145/349299.349320
http://dl.acm.org/citation.cfm?id=645989.674329
http://dl.acm.org/citation.cfm?id=645989.674329
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1109/CGO.2006.27
https://doi.org/10.1145/2808704.2754962
https://doi.org/10.1145/1995896.1995938
https://doi.org/10.1145/1995896.1995938
https://doi.org/10.1145/1133981.1133997
https://doi.org/10.1145/1454115.1454119
https://doi.org/10.1109/40.755466
https://doi.org/10.1109/40.755466
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1145/73560.73562
https://doi.org/10.1023/A:1007559022013
https://doi.org/10.1023/A:1007559022013
https://doi.org/10.1145/2854038.2854054

	Abstract
	1 Introduction
	1.1 Contributions

	2 Motivation
	3 Revec Overview
	4 Preprocessing Transformations
	4.1 Loop Unrolling
	4.2 Reduction Variable Splitting

	5 Revectorization Graph Construction
	5.1 Finding Root Packs
	5.2 Building the Graph

	6 Code Transformation
	6.1 Profitability Analysis
	6.2 Revectorizing the Graph
	6.3 Generic Widening of Vectors
	6.4 Transforming Packs of Vector Shuffles
	6.5 Gathering Non-mergeable Vectors

	7 Discovering Intrinsic Conversions
	8 Implementation
	9 Evaluation
	9.1 Experimental Setup
	9.2 Benchmark: SIMD-Scan Integer Unpacking
	9.3 Benchmark: x265 Video Encoding Library
	9.4 Benchmark: Simd Library

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

