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ABSTRACT

The performance-intensive part of a large-vocabulary continuous
speech-recognition system is the Viterbi computation that deter-
mines the sequence of words that are most likely to generate the
acoustic-state scores extracted from an input utterance. This pa-
per presents an efficient parallel algorithm for Viterbi. The key
idea is to partition the per-frame computation among threads to
minimize inter-thread communication despite traversing a large
irregular acoustic and language model graphs. Together with a
per-thread beam search, load balancing language-model lookups,
and memory optimizations, we achieve a 6.67x speedup over an
highly-optimized production-quality WEST-based speech decoder.
On a 200,000 word vocabulary and a 59 million ngram model, our
decoder runs at 0.27x real time while achieving a word-error rate
of 14.81% on 6214 labeled utterances from Voice Search data.

Index Terms— Parallel Viterbi, WFST Decoder, Large vocabu-
lary.

1. INTRODUCTION

Modern-day Large-Vocabulary Continuous Speech-Recognition
(LVCSR) systems are based on Hidden Markov Models (HMMs).
They break the input utterance into a sequence of frames, each typi-
cally accounting for 10 ms of speech, and extract suitable acoustic-
state scores per frame using Gaussian Mixture Models or, more
recently, using Deep Neural Nets [1]. Subsequently, an acoustic
model (AM) graph and language model (LM) translate the sequence
of acoustic-state scores into the likeliest sequence of words that
could have produced the utterance. While the score computation can
be efficiently implemented in a GPU [2], efficient parallel algorithms
for the rest of the decoding process remains elusive.

This paper describes a parallel Viterbi algorithm for HMM-
based LVCSR systems. Its effectiveness arises from the fact that
the processing of each frame is synchronization-free — using the
structure of the AM graph, the algorithm partitions the computation
among threads such that two threads do not race when updating a
single node or edge. At the same time, the algorithm ensures that
work is evenly load balanced among all the threads. Together with
techniques for dynamically composing the LM graph without inter-
thread communication and careful design of data structures, the
parallel algorithm achieves a 5.14x speedup over a state-of-the-art
production-scale speech decoder on a machine with 12 cores with no
loss in accuracy — the parallel implementation produces exactly the
same result as the sequential baseline (word-error rate 14.73%). The
performance can be further improved by using a per-thread version
of the beam-search algorithm that eliminates barrier-synchronization
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between the frame processing and the pruning of likely candidates.
This provides 6.67x speedup with 0.08% loss in accuracy.

A LVCSR implementation can use this additional performance
to either increase the decoding speed, especially when catching up
with a burst of speech signals delayed by the network, or to improve
the accuracy by employing larger models which would otherwise be
infeasible. To demonstrate the latter capability, this paper evaluates
the algorithm on a large acoustic model with 1.4 million edges and a
language model with 59 million ngrams generated from a vocabulary
of 200,000 words, and uses a beam search parameters that process
roughly 200 thousand edges for each frame. The sequential baseline
runs at 1.8 x real time, while the parallel version runs at 0.27 X real
time and achieves an word-error rate of 14.81% on a 6214 labelled
utterances from a Voice Search data set.

2. PARALLEL VITERBI ALGORITHM

2.1. WFST-based Speech Decoder

This paper parallelizes a dynamic Weighted-Finite-State-Transducer
(WFST) based decoder implementation, but the techniques de-
scribed generalize to other HMM-based LVCSR systems as well.
While a pure WEST decoder would statically compose the AM and
the LM graphs, the current implementation dynamically composes
them in order to avoid the blowup in the graph size. For each frame,
Viterbi maintains tokens at each edge in the AM graph. A token
represents a potential decode of the input up to the current frame
and there can be multiple tokens for each AM edge corresponding
to different LM histories. The token processing in a frame proceeds
in two phases. The AM phase follows emitting arcs from each AM
edge to generate tokens for the next frame without changing the LM
histories. If multiple tokens with the same LM history land on the
same edge, the algorithm keeps the one with the best cost. This is
called as token recombination. From the tokens generated in the AM
phase, the LM phase follows non-emitting arcs, representing word
boundaries, to generate more tokens for the next frame. Once again,
this phase has to recombine tokens with the same LM history that
land on the same AM edge. While doing this, some implementa-
tions might choose to keep the best n tokens to provide alternative
plausible answers for the same input. The tokens generated from
each of these phases is pruned based on a beam-search algorithm to
only keep tokens that are likely to produce a good answer.

2.2. Parallel Algorithm

In theory, the Viterbi algorithm seems easy to parallelize — all the
tokens in a frame phase (AM or LM) can be processed in parallel.
The challenge is doing the token recombination efficiently. Figure 1
demonstrates this issue. Nodes A to F' are states in the AM graph
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Fig. 1. Synchronization-free partitioning of token computation.

(the colors will be explained shortly) with tokens 1, 2, and 3 residing
respectively on AM edges (A, B), (B, E), and (E, F). Assume
these tokens have the same LM history. During the AM phase, these
tokens will generate new tokens shown in unshaded boxes. In this
example, tokens 1’ and 2’ land on the same AM edge (B, E). If
tokens 1 and 2 are processed by different threads, then these threads
have to synchronize, say by using a hardware interlocked operation,
to determine the best token for (B, E) [3]. In our experience, any
such synchronization in the performance-critical parts of a highly-
optimized decoder is sufficient to negate any performance achieved
by parallelism.

One way to avoid this problem is to revert to a “pull” model
where each AM edge performs the recombination by reading tokens
on its predecessor edges. However, in a beam search, only a small
percentage of AM edges will have tokens in the current frame. Do-
ing the recombination at every edge is unacceptably expensive. One
can still attempt to identify active AM edges that will tokens land-
ing on them, but doing so without synchronization or inter-thread
communication is a challenge.

The parallel Viterbi algorithm solves this problem by using a
source-node-based partitioning scheme. This scheme ensures that
two threads will never race during recombination. Consider a parti-
tioning of the AM states into two colors: blue (for A,B, and C') and
green (for D, E, F) as shown in Figure 1. In the source-node-based
partitioning scheme, a token on an AM edge (X, Y") gets the color of
the source node X. In this scheme, all tokens that land on the same
AM edge will have the same color, as shown in the figure. Now,
we allocate the computation such that one thread is responsible for
generating all tokens of a particular color. This ensures that there is
no synchronization in a frame phase.

While the source-node-based partitioning ensures that each
phase is synchronization-free, there can still be inter-thread com-
munication across phases. Consider the edge (A, B) in Figure 1.
Both the source and the destination states have the same color. Thus,
tokens on this edge are thread-local — they are always generated
and used by the same thread. In contrast, the source and the destina-
tion nodes of (B, E') have different colors. This means that token 2
generated by the blue thread is read in the next frame phase both by
the blue thread as well as the green thread.

Such cross-partition edges are detrimental to performance for
three reasons. First, the inter-thread communication across these
edges results in increased traffic between caches/sockets. Second,
these edges increase the net tokens read by all the threads — thread-
local tokens are read once, while cross-partition tokens are read

twice.! This increase in the working set of each thread results in
poor cache performance. Finally, since outgoing edges of a node are
consecutive in the memory, thread-local tokens can be read/written
sequentially on a thread-local data structure allowing us to make
effective use of the hardware prefetcher.

The next section describes a graph partitioning scheme that re-
duces the number of cross-partition edges.

2.3. Triphone-based Graph Partitioning

Now we consider the problem of partitioning the AM graph — in
other words, assigning colors to AM states. Such a graph partition-
ing has two conflicting goals. First, as described above, we would
like to reduce the number of cross-partition edges. An obvious way
is to assign the same color to all the nodes. But, this conflicts with
our next goal. To achieve parallel speedups, it is important to bal-
ance the load among threads. In other words, we would like to have
roughly equal number of AM edges per color.

We use a triphone-based partitioning scheme that leverages the
regular structure found in the AM graph. All valid paths through
the decoding graph correspond to valid sequences of acoustic model
states. In turn, each of these acoustic model states corresponds with
either the first, second, or third state of a context-dependent triphone
HMM. If a token occupies an arc belonging to the first state of a
triphone HMM, we can guarantee that the next two times that token
propagates forward, it will land on the second and third state of a re-
lated triphone HMM. In particular, all three states will be associated
with the same context-independent phone that served as the basis of
the context-dependent triphones. We utilize this property to devise a
partitioning scheme that reduces the number of cross-partition edges.

The partitioning scheme works as follows. For each context-
independent phone in the decoding graph, we find the relevant sub-
graphs containing all its triphones with different left and right con-
texts by doing a depth first traversal. Each triphone structure is ex-
plored until the beginning of the other triphones, and all the nodes
and arcs traversed within the structure are grouped together to form
the subgraph specific to that triphone. After this step, we have a
set of triphone based subgraphs for each of the 42 phones, as well as
any whole-word models present in the graph. This ensures that most
edges are not cross partition edges.

The amount of parallelism available in multi-core systems is
likely to be less than 42. Therefore, we assign a union of these
triphone-based subgraphs to threads, guided by runtime profile in-
formation from training-set runs, to achieve equitable workloads.
This load balancing is further refined dynamically, as described in
Section 2.6.

On the Voice Search dataset used in the evaluation (Section 3),
only 9% of the AM edges are cross partition with this scheme. In
contrast, a naive partitioning approach that colors a AM state based
on its node id (modulo total number of partitions desired), results
in 75% cross-partition edges. To determine how this translates to
runtime performance, we decoded the first 100 utterances from our
data set running with 12 threads, and found that 24.66% of tokens
are cross-partition at runtime as opposed to 47.68% cross-partition
tokens with the naive approach. As cross partition tokens are read
by two threads, this translates to a 30.54% reduction in the number
tokens processed after accounting for pruning effects.

! An advantage of the source-node-based partitioning scheme is that each
token is read at most twice per frame phase.



2.4. Token Recombination

With the source-node-based partitioning discussed above, all tokens
that land on an AM edge are guaranteed to be processed by a sin-
gle thread. But there is still a problem of dealing with tokens with
different LM histories landing on the same AM edge. A straight-
forward way to do the recombination is to maintain a data structure
per AM edge (say, a hashtable or a linear list) that maintains the cur-
rent best token for each LM history. However, performing a data
structure lookup to perform the recombination is expensive. Instead,
our encoder achieves the effect of a word-conditioned decoder [4]
by sorting the tokens based on their LM history at the beginning of
the AM phase and processes tokens (per thread) in this order. Ac-
cordingly, a single pointer per AM edge to remember the best token
for the current LM history is sufficient. This technique works for the
AM phase as the generated token has the same LM history as the
generating token.

However, sorting tokens by LM histories does not work for the
LM phase as the generated tokens can have arbitrary LM histories.
Fortunately, the LM phase generates far fewer tokens per frame
when compared to the AM phase. This allows a different trick.
The decoder redundantly generates tokens on an AM edge without
recombination. At the end of the LM phase, the encoder sorts all
these tokens by LM history and does a linear pass to compute the
best token (or the best n tokens) for each AM edge. This has the
additional benefit that it gets us one step closer to maintaining the
token sortedness for the next AM phase. As tokens generated in the
AM phase are already sorted by LM histories, one simply merges
these tokens with the sorted tokens from the LM phase. Moreover,
the redundant generation of LM-phase tokens means that the LM
phase is embarrassingly parallel. In fact, the LM-phase computation
in our parallel version is purely thread-local — each thread only
traverses the tokens it generated in the previous AM phase. Finally,
some of these optimizations speed up the sequential version of our
decoder as well. We incorporate any such optimizations in our
sequential baseline when calculating parallel speedups.

2.5. Beam Search

The beam search removes tokens that are a beam-width worse than
the token with the best score. This width is dynamically adjusted to
ensure that there is roughly a parameter-specified number of tokens
per frame. Our sequential baseline performs a beam-based pruning
once after the AM phase and once after the LM phase. In particular,
it performs online pruning where the phases maintain the current
best score and actively avoids generating tokens that will eventually
be pruned.

There are two problems in parallelizing such an online pruning
algorithm. First, maintaining a global-best score requires expensive
synchronization that we avoid. If each thread locally maintains the
best score it has seen, its online pruning will be less effective, unless
it happens to be the thread that sees the globally-best token. This in-
effectiveness results in the parallel version generating up to 3 times
more tokens than the sequential version in our experiments. To al-
leviate this problem, our parallel decoder periodically exchanges the
current best score seen by the threads. Such an exchange can be
done with a racy update to a global best score with no synchroniza-
tion. Nevertheless, frequent updates can result in expensive cache
exchanges between the threads. Our current implementation per-
forms this exchange once per ten tokens generated.

The second issue is that in order to retain the sequential seman-
tics, one needs barriers between the AM phase, LM phase, and the
two pruning steps. To eliminate these barriers we use a per-thread

Wasted Work
1
0.8
=
206
T
2
® 0.4
2
0.2
0 S ournusucorrEstiEfiNRASanGCNARASLiNARASSARERRE
Frames

W/0 Dynamic Load Balancing With Dynamic Load Balancing

Fig. 2. Wasted work before (blue) and after (red) dynamic load bal-
ancing

pruning algorithm that dynamically sets the beam-width such that
there is roughly a parameter-specified number of tokens per thread
as opposed to globally. This results in slightly less decoding accu-
racy. Our evaluation uses two parallel versions of decoders that has
this optimization turned off or on.

2.6. Dynamic Load Balancing

While graph partitioning (Section 2.3) balances the number of tokens
processed per thread, the difference in the computation per token
can result in load imbalance. This is particularly troublesome for the
LM phase, where the irregularity of LM graph lookups with variable
backoffs can result in large load imbalance.

To overcome this, we implemented a token-stealing scheme, in-
spired by the idempotent work-stealing implemented in task sched-
ulers [5, 6, 7]. The basic idea is to have the less-loaded threads
steal tokens from loaded threads. The challenge is in doing so with-
out adding synchronization that could slow down the already loaded
thread. This is achieved by stealing from the tail of a token array
while the loaded thread processes tokens from the head of the to-
ken array. In cases when the token array is almost empty, a token
can be both processed by the loaded thread and stolen. This redun-
dancy does not result in correctness issues as token processing is
idempotent. However, to minimize performing additional work, our
implementation avoids stealing when the token array is smaller than
a specific amount.

To measure load imbalance, we introduce a metric called wasted
work, defined as the ratio of the time threads spend waiting for the
slowest thread over the total time spent by all the threads. Figure 2
shows the reduction in the amount of wasted work for each frame
in a particular utterance. It is clearly seen that the load imbalance
between threads have reduced with dynamic load balancing.

2.7. Memory Optimizations

Viterbi in speech decoding is heavily memory bound as it maintains
several large data structures for maintaining the tokens read and writ-
ten per frame and randomly accessing large AM and LM graphs.
This makes it very important to make efficient use of caches and to
structure access patterns in strides that trigger hardware prefetching.

We employ several memory optimizations. First, we (manually)
performed range analysis to compress fields of data structures. For
instance, if a pointer field can only take values in a range of size less
than 232, this pointer can be encoded in a 32 bit field as opposed to
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Fig. 3. Speedups for the parallel algorithm over the sequential ver-
sion (blue).

a 64 bit field. Second, we split each struct based on fields that are
only read or read-and-written in particular phases. For instance, AM
phase only reads some fields in the tokens generated in the previous
frame. By separating these fields from those that are not read (such
as the predecessor of the token), we are not only reducing the total
memory traffic but also improving cache efficiency as now more to-
kens effectively fit in a cacheline. Together, these optimizations lead
to a 26% reduction in memory traffic.

3. EVALUATION

We evaluated our parallel speech decoding algorithm on a large
acoustic model with 1.4 million edges and a language model with
59 million ngrams generated from a vocabulary of size 200,000. We
used the voice search development dataset which has 6214 utter-
ances for testing. The evaluation was done on a 2.67GHz Intel(R)
Xeon(R) X5650 machine with 2 sockets, each socket with 6 cores
running Windows 8.1. Each core consists of its own L1 and L2
caches of sizes 32 kB and 256 kB respectively. 12 MB L3 cache is
shared within a socket and all cores share 64 GB of RAM. For all
our experiments we disabled hyper-threading to achieve consistent
performance numbers. We kept beam width at 18k and maximum
tokens per frame at 100k for the experiments. The original sequen-
tial baseline performance of our system was running at 1.8 real
time.

With per-thread beam search (Section 2.5), our parallel imple-
mentation runs at 0.27x real time with 12 threads for the entire
dataset, leading to a 6.67x performance improvement over our se-
quential baseline. We incur a 0.08% absolute increase in word-error
rate (WER) with per-thread beam search on. Without per-thread
beam search, our parallel version runs in 0.35% real time with no
loss in accuracy. This is a performance improvement of 5.14x.

To evaluate the parallel speedup, we used the parallel decoder
running with one thread as the baseline. This baseline runs at 1.56 X
real time reflecting the sequential improvements of our optimiza-
tions. Figure 3 demonstrates the performance as we increase the
number of threads. To complete the experiments in a reasonable
amount of time, these runs only use the first 100 utterances from our
dataset. While not perfectly linear (as shown by the dotted line), the
speed up curve demonstrates that the parallel decoder robustly scales
to 12 threads with possible scaling beyond 12 threads.

Figure 4 shows the WER vs decoder performance with respect
to real time (xRT). Each curve represents a beam width value chosen
from 13k, 15k, 18k, 20k, while varying the maximum number of
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Fig. 4. Performance vs WER curve.

tokens processed per frame. These runs do not use the per-thread
beam search. The best WER of 14.73% is achieved with a beam-
width set to 18k for the maximum number tokens set to 100k. At
this configuration, turning the per-thread beam search increases the
WER to 14.81%.

4. RELATED WORK

While designing performant LVCSR systems is an active area of re-
search (see for instance [4]), we focus on prior work that attempts
to parallelize the Viterbi computation. The main advantage of the
source-node-based partitioning described in this paper is that token
recombination is synchronization free. To the best of our knowledge,
this is the first paper to do so. Other token recombination approaches
either require partially sequential execution or costly atomic opera-
tions [3, 8, 9, 10, 11]. In addition, we show how judicious partition-
ing balances load and minimizes inter-thread communication. While
prior work [3, 8, 12] do report 3 to 6 speedups, which is comparable
to those reported in this paper, they use a far smaller vocabulary set
than ours.

You et al. [3] introduce a parallel speech algorithm that switches
between a pull model where each AM edge reads tokens from its
predecessors or a push model where a token updates its successors.
The push model on large vocabulary uses costly atomic operations
to perform token recombination and the pull model requires several
synchronizations for a single frame. Ravishankar [8] also does tri-
phone based partitioning, but his scheme involves grouping together
triphones which have the same right context for a particular phone,
whereas our partitioning works on per phone basis. Also he does not
union subgraphs for static load balancing.

Phillips and Rogers [12] proposed another parallel speech de-
coding algorithm which requires reduction at the end of each frame.
With the performance difference between CPU and memory widen-
ing since this work was done, it is unclear if this approach scales in
modern hardware platforms. You et al. [13] proposed a new multi-
core approach but only show 2x speedup with 4 threads with a vo-
cabulary 10X smaller than ours.

There are several other parallel implementations of speech
decoding for other platforms such as ARM processors [14] and
GPUs [3, 9, 15, 16]. The GPU implementations require several
levels of interactions with the host CPU for communication inten-
sive phases for each frame which results in excessive overhead.
Since our parallel approach is synchronization-free, we expect that
a many-core implementation of it to be faster than others.
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