
GRANITE: A Graph Neural Network Model for
Basic Block Throughput Estimation

Ondřej Sýkora Phitchaya Mangpo Phothilimthana† Charith Mendis∗ Amir Yazdanbakhsh†
Google Research †Google Research, Brain Team ∗University of Illinois at Urbana Champaign
ondrasej@google.com, mangpo@google.com, charithm@illinois.edu, ayazdan@google.com

Abstract
Analytical hardware performance models yield swift es-

timation of desired hardware performance metrics. However,
developing these analytical models for modern processors
with sophisticated microarchitectures is an extremely la-
borious task and requires a firm understanding of target
microarchitecture’s internal structure. In this paper, we
introduce GRANITE1, a new machine learning model that
estimates the throughput of basic blocks across different
microarchitectures. GRANITE uses a graph representation
of basic blocks that captures both structural and data
dependencies between instructions. This representation is
processed using a graph neural network that takes advantage
of the relational information captured in the graph and
learns a rich neural representation of the basic block that
allows more precise throughput estimation. Our results
establish a new state-of-the-art for basic block performance
estimation with an average test error of 6.9% across a wide
range of basic blocks and microarchitectures for the x86-64
target. Compared to recent work, this reduced the error by
1.7% wile improving training and inference throughput by
approximately 3.0×. In addition, we propose the use of multi-
task learning with independent multi-layer feed forward de-
coder networks. Our results show that this technique further
improves precision of all learned models while significantly
reducing per-microarchitecture training costs. We perform
an extensive set of ablation studies and comparisons with
prior work, concluding a set of methods to achieve high
accuracy for basic block performance estimation.

1. Introduction
A basic block is a sequence of instructions with neither

incoming nor outgoing branches. Basic blocks are natural
input objects to many code optimization algorithms because
the instructions of a basic block can be modified, as long as
the invariants at the beginning and at the end of the basic
block are preserved. See Table 1 for an example basic block.
Accurate and fast performance estimation of basic blocks
is often crucial at the various stages of compilation and
software optimization [1–7] because real hardware measure-
ments are expensive to collect and tedious to obtain. For
example, various performance estimation methods are used
for inlining [8], register allocation [1], fusing [9], hardware-
software co-design [10–13], and critical path analysis [14]. To

1 GRANITE: A GRAph Neural network model for basIc block Throughput
Estimation

provide a fast performance estimation, hand-tuned analytical
models [15–18], tailored for one or few sets of microar-
chitectures, have been developed. However, these analytical
models are often lack generality across different processors
and require domain expertise and thorough knowledge
of internal organization of microarchitectural components,
which are generally obscured by hardware companies. Even
with sufficient domain knowledge, developing a complete
and thorough analytical model for modern processors is
an error-prone and work-intensive task. In addition, due
to the increasing complexity of modern microarchitectures,
these analytical models may overlook some corner cases in
performance estimation and underperform in generalizing
the estimation to these cases. As such, using the analytical
models can mislead the optimization algorithm and yield
sub-optimal solutions.
Learned models for throughput estimation. To address
the aforementioned challenges, a handful of work delegated
the task of performance estimation to machine learning [8,
11, 12]. For basic block throughput estimation specifically,
Ithemal [19] uses a machine learning model based on a
sequential Long-Short Term Memory (LSTM) to learn a
representation of basic blocks followed by a linear transfor-
mation to predict the throughput values. While Ithemal [19]
delivered a notable accuracy improvement across multiple
x86-64 microarchitectures compared to analytical models
of the time, it represents a basic block as a sequence of
instructions without any additional information about its
structure. We argue that adding information such as data
dependency could contribute to the inductive bias of a model
and enables the model to reason about code with higher
accuracy.
Graph-based representation learning of basic blocks.
Data and control flow in basic blocks can be naturally
expressed using a graph [20]. This paper sets out to use
graph neural networks on this representation of code to learn
an expressive representation of basic blocks. The proposed
representation learning method, dubbed GRANITE, does not
commit to any feature engineering of the input basic blocks.
Compared to prior work, we believe that leveraging a graph
representation is a more natural and intuitive approach to

© 2022 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

ar
X

iv
:2

21
0.

03
89

4v
2

 [
cs

.L
G

]
 1

1
O

ct
 2

02
2

mailto:ondrasej@google.com
mailto:mangpo@google.com
mailto:charithm@illinois.edu
mailto:ayazdan@google.com

TABLE 1: An example basic block in x86-64 assembly from the BHive
dataset [22].

0: CMP R15D, 1
1: SBB EAX, EAX
2: AND EAX, 0x8
3: TEST ECX, ECX
4: MOV DWORD PTR[RBP - 3], EAX
5: MOV EAX, 1
6: CMOVG EAX, ECX
7: CMP EDX, EAX

represent basic blocks, better capturing the dependencies and
interactions between instructions.

GRANITE outperforms Ithemal [19] in terms of accuracy
and establishes a new state-of-the-arts results on x86-64 basic
block throughput estimation. We evaluate GRANITE for the
task of throughput estimation, achieving a new state of the art
accuracy, with a nearly 1.7% lower MAPE across multiple
x86-64 microarchitectures, compared to the most recent prior
work [19]. We argue that using a graph representation of
basic blocks is a key contributing factor in achieving higher
prediction accuracy, which is a direct consequence of better
generalization to unseen basic blocks.

Multi-task throughput estimation model. While there are
differences in performance of different microarchitectures,
there are often also many similarities because of how their
design evolved, but also due to instruction set semantics that
are microarchitecture-independent. Multi-task learning [21] is
a technique that uses a collection of related tasks to train the
same model. By exploiting the relatedness of the tasks, the
model learns a better internal representation of the problem
domain and it often leads to improved performance on the
individual tasks. To our best knowledge, existing work [19]
did not take full advantage of these similarities and focused
on developing or training a separate model for each target
microarchitecture. We argue that the similarities between
microarchitectures can be exploited to achieve faster training
and learning richer representations of code. To this end, we
propose a multi-headed task-dedicated representation learning
where the graph network is shared by all microarchitectures
and each head is trained for a different microarchitecture.

We evaluated a multi-task model against models that
were trained only for a single microarchitecture. Our results
demonstrate that it is feasible to learn a shared representation
of basic blocks that support performance predictions for
all target microarchitectures. The computational costs of
training a model supporting multiple microarchitectures are
only marginally higher than the cost of training a single
single-task model. In addition, we found that employing
multi-task learning further reduces the prediction errors on
all microarchitectures compared to training exclusively on
data from a single microarchitecture.

2. Motivation and Background

2.1. Manual Tuning of Simulator Parameters
Recent work [18] proposes an analytical model to predict

the throughput of basic blocks for Intel microarchitectures
with sufficient accuracy (< 1%). To develop this analytical
model, the authors performed a detailed study of the un-
derlying Intel microarchitectures and manually tuned the
microarchitecture-specific parameters of their simulator to
match the ground-truth values. The suggested analytical
model establishes stronger baselines for learned throughput
estimation across a limited set of microarchitectures and
provides interpretable insights about the underlying bottle-
necks of the target microarchitecture. However, the hand-
tuned analytical models generally suffer from: (1) a lack of
generality across wide-range of unseen microarchitectures,
(2) a tedious task of maintaining such an analytical model
after each generation of microarchitectures, and finally (3)
the demand of expert knowledge about the details of the
underlying microarchitecture. On the other hand, learned
models (such as our work and Ithemal [19]), marginally
trade off prediction accuracy and interpretability of the results
for generality across wide range of microarchitectures and
eliminating the need for expert knowledge in the development
process. In summary, analytical and learned models have
different objectives and could be beneficial in downstream
tasks with different objectives.

2.2. Learned Model for Throughput Estimation
Ithemal [19], the most recent learned model for basic

block throughput estimation, formulates the throughput
estimation problem as a regression problem with the objective
to minimize the mean absolute percentage error between
ground-truth data (obtained from hardware measurements)
and the output of the learned model. It employs a two-level
LSTM [23] network that generates an embedding vector
for each input basic block. The objective of the first level
LSTM network is to generate an embedding vector for each
instruction of the input basic block. The second level uses
the instruction embedding vectors to compute an embedding
vector for the whole basic block.

In the input, Ithemal receives a sequence of instructions
for each basic block (e.g. “SBB EAX, EAX”, as illustrated in
Table 1). When presenting instructions to the model, Ithemal
tokenizes each assembly instruction into (1) instruction
mnemonic, (2) input operands, and (3) output operands. For
example, “SBB EAX, EBX” is tokenized as “SBB | <S> |
EAX | EBX | <D> | EAX | <E>” tokens, where “<S>”, “<D>”,
and “<E>” are special tokens that separate the three groups
of tokens. Each token is mapped to a learned embedding
vector (each embedding vector is a real-valued vector of a
fixed size), and these vectors are fed to the first-level LSTM
network. Finally, the generated instruction embeddings pass
through the second LSTM layer to obtain an embedding
vector per basic block. The generated basic block embedding
is then passed to a decoder network to obtain an estimation of
the basic block throughput. In the Ithemal model, the decoder

is a dot product of the basic block embedding vector with a
vector of learned weights.

While Ithemal demonstrates a promising path forward
for performance estimation of basic blocks, its input data
format presents the instructions to the model linearly, as
they are laid out in memory, and it relies on the model and
the training process to discover dependencies between the
instructions on it own. Since these dependencies are well
defined and easy to extract using existing tools, we suggest
including them in the basic block representation explicitly, to
guide the computation of the model. This work wields graphs
as a natural and intuitive way to represent basic blocks and
the underlying dependencies, expecting that a graph neural
network model will be able to benefit from the additional
information and produce more precise throughput estimates.

2.3. Graph Neural Network
The family of graph neural networks (GNNs) [24–28]

has shown to be effective in a diverse range of applications
and domains [29–32]. Generally, GNNs yield promising
results in applications with highly structured inputs where
the relationships between elements of the input can be easily
expressed using a graph. The main objective of a GNN
is to learn to map the information structured as a graph
into an embedding space (a vector representation). In a
nutshell, the learning process of a GNN model consists of
propagating information between graph nodes and edges
via multiple message passing iterations, followed by an
aggregation step. At each message passing iteration, the
node and edge embeddings are updated according to received
messages from their neighbors in the graph. The final learned
embeddings are then employed in downstream tasks such as
regression, classification, and ranking.

3. GRANITE Model Architecture
The GRANITE model is composed of the following

building blocks:

• Graph encoding of basic blocks → The first step in
GRANITE is to transform basic blocks into a graph
representation and convert the instructions and basic
block dependencies into node and edge labels according
to their types. The constructed graph representation for
basic blocks is used as input to the graph neural network.

• Graph neural network → Next, GRANITE uses a
GNN model with the objective to learn an expressive
embedding for each basic block. As part of the training
process, the GNN model iteratively exchanges relevant
information between basic block elements with the
objective of computing the embedding vectors.

• Decoder network → Each instruction embedding vec-
tor passes through an additional decoder network with
non-linearity that computes the contribution of the
instruction to the basic block throughput. GRANITE
predicts the final throughput values for each basic block
by adding all individual instructions’ contributions to
the overall throughput.

• Multi-task decoder network→ The multi-task version
of GRANITE uses a multi-task decoder that predicts the
throughput values across multiple microarchitectures
simultaneously. Other parts of the model are shared
across all target microarchitectures. Intuitively, the task
of the shared parts is to learn an internal representation
of basic block structure, while the decoder networks
are responsible for throughput estimation.

3.1. Graph Encoding of Basic Blocks

We model each basic block as a dependency graph
inspired by [20], but using a more compact format. The
GRANITE graph is designed to capture the semantic relation-
ships between instructions as well as the type and category of
instructions and registers. The nodes of the graph consist of
a set of instruction and value nodes (e.g. values in registers,
immediate values, etc.), whereas the edges indicate data and
structural dependencies between the instructions and values
represented by the nodes. Figure 1 shows an example basic
block in the GRANITE encoding.

Each node of the graph corresponds to an element of
the assembly language, similar to one token in the Ithemal
model [19]. Broadly, we can categorize node types into two
groups: instruction nodes that represent instructions, and
value nodes that model the input and output values passed
between instructions. Table 2 summarizes the node types
in GRANITE graph representation and assembly language
tokens that can be associated with them. We represent each
assembly instruction by a unique instruction mnemonic node.
Infrequently, an assembly instruction may have prefixes
that modify their behavior, such as “LOCK” or “REP”.
We represent each prefix by a separate graph node that
is connected to the instruction mnemonic node by an edge.

Each instruction node is connected to zero or more value
nodes representing the instruction operands. The operands
are values stored in registers or memory, immediate values,
and results of address computation. Each value node has zero
or one incoming edge from the instruction mnemonic node of
the instruction that produces it (no incoming edge means that
the value is not produced by an instruction of the block), and
zero or more outgoing edges to instructions that consume the
value. These edges represent the data dependencies between
instructions. The token associated with a value node is the
name of a register if the value is stored in a register, or
a special token if the value is stored in memory, it is an
immediate value, or it is the result of an address computation.

Note that the nodes represent a value in a storage location,
not the storage location itself and the graph may contain
multiple value nodes with a given register name, if multiple
instructions in the block write to this register. For example, in
Figure 1, register “RAX” is a destination operand for “MOV”
instruction and is used as a source operand to calculate the
memory address for “ADD” instruction. In the same example,
you can see two different “Memory” nodes; one is used as
an input operand, the other as an output operand. Since the
value written by the “ADD” instruction maybe different from
the value it reads, they are represented as two distinct nodes.

TABLE 2: The node types in GRANITE graph representation.

Node Type Token
Instruction Nodes
Mnemonic The mnemonic of the instruction

(e.g. ADD).
Prefix The prefix of an instruction (e.g.

LOCK)

Value Nodes
Register Register name (e.g. RBX).
FP immediate value Special token shared by all floating-

point immediate values.
Immediate value Special token shared by all imme-

diate value nodes.
Address

computation
Special token shared by all address
computation nodes.

Memory value Special token shared by all values
stored in memory.

Table 3 summarizes the list of all edge types in the
GRANITE graph representation. In a nutshell, the existence
of an edge between two graph nodes captures the semantic
relationships of the connected nodes as well as their sequen-
tial ordering. As such, all the edges in the graph are directed.
The last column in Table 3 depicts the color code that we
used to show the dependency between graph nodes in the
example of a basic block in Figure 1.

3.2. Graph Neural Network
The objective of a graph neural network model is to learn

representative feature vectors for graph nodes and edges that
express their underlying characteristics in a latent space.
The graph neural network propagates information between
graph elements through message passing iterations. Before
training starts, the graph elements (e.g. nodes and edges) are
initialized to unique vector values that are representative of a
particular property of each graph element. GRANITE uses the
“full GN block” architecture as described in Section 4.2 of
[28]. In each message passing iteration, all feature vectors are
updated using Algorithm 1 from [28], employing multi-layer
feed forward ReLU networks with residual connections [33]
and layer normalization [34] at input as update functions.
The initial values of the feature vectors of elements of the
graph depend on the type of the element and the associated
elements of the assembly language:
• Node: The initial feature vector of a node is a learnable

embedding vector corresponding to the assembly language
token associated with the node. The vector size of the
node embedding vector is a model hyper-parameter.

• Edge: Similar to node initial embedding, the initial fea-
ture vector for an edge is a learnable embedding vector
corresponding to the type of the edge. The vector size of
the edge embedding vector is a model hyper-parameter.

• Graph: Finally, we also assemble an initial feature vector
for the whole graph, called global feature in [28]. The
initial value of global feature vector indicates the relative
frequencies of the tokens and edge types used in the graph.

TABLE 3: The edge types in GRANITE graph representation.

Edge Type Description Color Code

Structural Dependency From an instruction mnemonic
node to the instruction
mnemonic node of the
following instruction.

Input Operand From a value node to an instruc-
tion mnemonic node.

Output Operand From an instruction mnemonic
node to a register or a memory
value node.

Address Base From a register node to an ad-
dress computation node.

Address Index From a register node to an ad-
dress computation node.

Address Segment From a register node to an ad-
dress computation node.

Address Displacement From an immediate value node
to an address computation node.

MOV RAX, 12345
ADD DWORD PTR [RAX + 16], EBX

Immediate MOV ADD

RAX

Immediate

EBX

Memory

EFLAGS

Address

Memory

Figure 1: An example basic block with two instructions and its graph
representation. The first instruction stores an immediate value (12345)
to a register (RAX). The second instruction adds a 32-bit value from
the register EBX to a 32-bit value in memory at the address RAX +
16.

The size of global feature vector is equal to the number
of token and edge types in the model.

3.3. Decoder Network

Once the graph embedding vectors are produced by the
GNN, the decoder network uses these vectors to predict
the estimated basic block throughput values. The decoder
is a multi-layer feed forward ReLU network with residual
connections and layer normalization [34] at input that is
applied to the feature vector of each instruction mnemonic
node and returns a scalar output. Intuitively, an instruction
mnemonic node represents the instruction, and the decoder
network computes the contribution of the instruction to the
overall throughput. We sum the outputs of the decoder for
each instruction mnemonic node to compute the throughput
estimation for the whole basic block.

BB0

BBk BB1

Inst1

Inst2

Inst3

Insti

Inst1

Inst2

Inst3

Insti

Inst1

Inst2

Inst3

Insti

Ivy Bridge

Haswell

Skylake

∑
BB0: [18.4, 16.2, 17.3]

BB1: [3.4, 6.1, 5.3]

BBk: [10.2, 6.2, 7.3]

Instruction
Embeddings

Per-Task
Decoders

Per-Block
Predictions

Figure 2: High-level schematic of the GRANITE model with multi-task
heads.

3.4. Multi-task Decoder Network
The multi-task version of the model uses the same

decoder network architecture as the single-task decoder,
but there is a separate decoder network for each target
microarchitecture. The graph neural network is shared across
all tasks, learning a shared representation of basic blocks
regardless of their target microarchitectures, whereas the
dedicated decoder networks are used to predict the throughput
values for different microarchitectures. Figure 2 shows a
high-level architecture of a multi-task GRANITE model.

4. Methodology
Dataset. We trained and tested the GRANITE model on
two existing datasets: (1) the dataset used in the Ithemal
paper [19] with more than 1.4M basic blocks2 and (2)
BHive [22], an open-source benchmark suite with more
than 300K basic blocks. Both datasets provide throughputs
from measurements on three recent Intel microarchitectures:
Ivy Bridge, Haswell, and Skylake. However, Ithemal [19]
and BHive [22] datasets were constructed using different
measurement tools and it is challenging to blend the measure-
ments from these datasets. These datasets embody various
domains, including database, compiler [35] and performance
optimization benchmarks [36, 37], scientific computing, and
machine learning.

To evaluate, we randomly split each dataset into a training
part comprising 83% of blocks and a test part containing
17% of blocks. We use the same split of the data set in
all experiments to isolate the impact of dataset distribution
on the final results. When training the models, we let the
training algorithm run for ≥6M training steps (roughly one
week of real time). We further split the training data into
training (98%) and validation (2%). We use the validation
split to select the best checkpoint during training.
Implementation. We implemented GRANITE using Tensor-
Flow 1.x [38] and DeepMind’s Graph Nets library [39].

2 The authors of the Ithemal paper [19] kindly shared the dataset with us.

TABLE 4: GRANITE hyper-parameters used during training.

Hyper-parameter Value

Learning Rate 1e-3
Number of Basic Blocks / Batch 100
Node Update Layers 2×256
Node Embedding Size 256
Edge Update Layers 2×256
Edge Embedding Size 256
Global Update Layers 2×256
Global Embedding Size 256
Task Decoder Layers 2×256
Number of Message Passing Iterations 4-8
Layer/Decoder Normalization True
Layer/Decoder Residual Connections True
Aggregation Type

∑
Node Embeddings

For the embedding update functions, we used a two-layer
feedforward ReLU network. For the purpose of evaluation,
we re-implemented the Ithemal [19] model using the same
version of TensorFlow3. To ensure consistency between the
models, we employ the same setup for training and evaluation.
In all the comparisons, we regard Ithemal [19] as the baseline
model. We employ Mean Absolute Percentage Error (MAPE)
as the loss function, an identical loss function to Ithemal [19]:

L(actual, predicted) =
|actual - predicted|

|actual|
where actual and predicted indicate the measured throughput
from hardware and predicted throughput from learned models,
respectively. We use Adam [40] optimizer with a learning rate
of 1e-3 and the default decay rates for moment estimations.
Table 4 summarizes the rest of default hyperparameters
and the architecture of learned models. Unless otherwise
specified, we use the default hyperparameter values in all
the experiments.
Extensions to the Ithemal model. The Ithemal model as
described in [19] is trained to predict throughput values
for a single microarchitecture. In addition, the Ithemal [19]
model uses a single dot-product operation as its decoder
network. In our evaluations, we find that a multi-task decoder
network using a multi-layer ReLU feed forward network can
boost model accuracy. To have a head-to-head comparison
and isolate the impact of the GNN on the quality of the
predictions, we augmented the Ithemal [19] model with these
extensions. We add these extensions, replacing the single
dot-product operation with the same decoder network as
described in Section 3.4. We refer to this extended Ithemal
model as “Ithemal+”.

5. Evaluation
5.1. Baseline Comparisons

This section provides the model accuracy comparison
results with baseline learned model [19] on the Ithemal

3 The source code of our implementations can be found under open-source
license at https://github.com/google/gematria.

https://github.com/google/gematria

TABLE 5: Comparison of best accuracy results achieved with GRAN-
ITE (ours), Ithemal [19], and Ithemal+ when trained and tested on the
Ithemal dataset. Bold and underline values show the best and second
best results, respectively.

Dataset Microarchitecture Model MAPE Spearman / Pearson

Ithemal

Ivy Bridge
Ithemal 8.34% 0.9640 / 0.2768
Ithemal+ 7.89% 0.9744 / 0.9631
GRANITE 6.67% 0.9721 / 0.8936

Haswell
Ithemal∗ 9.90% 0.9720 / 0.3615
Ithemal+ 8.82% 0.9777 / 0.9231
GRANITE 7.61% 0.9752 / 0.8255

Skylake
Ithemal 8.30% 0.9643 / 0.2871
Ithemal+ 7.51% 0.9754 / 0.9035
GRANITE 6.47% 0.9717 / 0.7888

∗ We obtained the results by training the models with mean squared percentage
error. The accuracy results when training the models with mean absolute percentage
error was significantly worse.

dataset. In summary, GRANITE outperforms Ithemal by a
margin of roughly 1.7%, and by 1.93% on average across
all microarchitectures.
Comparison with Ithemal. We evaluate the accuracy of
GRANITE, Ithemal (baseline), and Ithemal+ (Ithemal with
our proposed extensions) with respect to the ground truth
throughput data across three x86-64 microarchitectures. We
trained all models on the Ithemal training dataset and we
report their accuracy on Ithemal testing dataset. Table 5
presents the accuracy comparisons and two correlation met-
rics (e.g. Spearman and Pearson). The Spearman correlation
metric measures the rank correlation between two variables,
whereas Pearson correlation metric gauges the linear relation
between them. On the Ithemal testing dataset, GRANITE
outperforms Ithemal across all the microarchitectures by at
least 1.67%, and by 1.93% on average.

When model trained on the Ithemal dataset is tested on
the BHive dataset, the prediction accuracy for both learned
models drops significantly. This trend is expected because the
BHive dataset uses a different methodology to measure the
throughput values. Nevertheless, under this setting GRANITE
still yields lower prediction error in comparison to Ithemal
model, on average, by 0.39%. The prediction accuracy on
the BHive dataset between Ithemal+ and GRANITE are
comparable. GRANITE consistently outperforms Ithemal+
on Ivy Bridge (10.47% vs. 11.01%) and Skylake (11.26%
vs. 11.39%) microarchitectures, whereas Ithemal+ yields
marginally lower accuracy on Haswell microarchitecture
(11.64% vs. 11.57%). All the learned models yield compara-
ble Spearman correlations (0.96-0.98). However, we obtain
the best Pearson correlations with Ithemal+ and GRANITE,
significantly outperforming Ithemal vanilla model.

Table 6 summarizes the test error when GRANITE and
Ithemal+ are trained and tested on the BHive dataset (with
a proper split between and training and testing). We did
not include vanilla Ithemal in this comparison because
of consistent numerical instability in the training process.
GRANITE consistently outperforms Ithemal+ across the three
microarchitectures in terms of test error as well as Pearson
correlation. On average, GRANITE yields 0.64% lower test

TABLE 6: Performance of GRANITE, trained and tested on the BHive
dataset. The correlation metrics use the same terminology as [19].

Microarchitecture Model MAPE Spearman / Pearson

Ivy Bridge Ithemal+ 9.25% 0.9725 / 0.5424

GRANITE 8.44% 0.9593 / 0.9873

Haswell Ithemal+ 9.19% 0.9684 / 0.5334

GRANITE 8.41% 0.9550 / 0.9633

Skylake Ithemal+ 9.45% 0.9698 / 0.8402

GRANITE 9.12% 0.9524 / 0.9423

error, while providing considerably better Pearson correlation.
Both models yield comparable Spearman correlation.
Analysis of learned models on Ithemal dataset. Figure 3
shows the prediction heatmap analysis for each microarchi-
tecture. We use the same methodology as [19] to obtain the
heatmaps, except we normalize the throughput values to a
single run of each basic block. The first row shows the results
for Ithemal, whereas the second one shows the results for
GRANITE. Our model uniformly yields higher density along
the y = x line (perfect estimator line). The Ithemal model
has a tendency to underestimate (higher density under the y
= x line), which is avoided by GRANITE. We conjecture that
this is due to the per-instruction decoding of the GRANITE
model. To better illustrate this behavior, Figure 4 shows the
distribution of relative errors of both models across various
microarchitectures.
Analysis of learned models on the BHive dataset. Figure 5
illustrates the same analysis for GRANITE model when
trained and tested on the BHive dataset. Note that the Ithemal
data set is 5× bigger than the BHive dataset; hence, the
heatmaps in Figure 5 appear to be sparser than heatmaps in
Figure 3. Similar to the trend observed in Figure 3, GRANITE
on the BHive dataset yields a comparable performance
between underestimated and overestimated predicted values.
These detailed analysis of the learned models indicates that
GRANITE consistently outperforms Ithemal [19] across the
measured throughput spectrum.

5.2. Ablation Studies
In this section, we perform detailed ablation studies

across various hyper-parameters of the learned model and
summarize our observations.
Sensitivity to the number of message passing iterations.
We first sweep the number of message passing iterations
in the graph neural network with one, two, four, eight,
and twelve. Each message passing iteration constitutes
a synchronous exchange of embedding vectors between
adjacent graph nodes and edges. The number of message
passing iterations limits the distance that information from
each node and edge can “travel” in the graph. Increasing the
number of iterations allows information exchange between
more distant nodes, but at the same time it makes training
and inference more computationally expensive.

2 4 6 8

2

4

6

8

(a) Ivy Bridge - Ithemal

2 4 6 8

2

4

6

8

(b) Haswell - Ithemal

2 4 6 8

2

4

6

8

(c) Skylake - Ithemal

2 4 6 8

2

4

6

8

(d) Ivy Bridge - GRANITE

2 4 6 8

2

4

6

8

(e) Haswell - GRANITE

2 4 6 8

2

4

6

8

(f) Skylake - GRANITE

Figure 3: Heatmaps for ground-truth (x axis) and predicted values (y axis) for Ithemal [19] and multi-task GRANITE learned models on the
Ithemal dataset [19] across three different x86-64 microarchitectures for the throughput values under 10 cycles.

TABLE 7: Sensitivity of GRANITE to the number of message passing
iterations on Ithemal dataset [19] across three different microarchitec-
tures.

Microarchitecture # of Message Passing Iterations Mean Absolute Error

Ivy Bridge
1 8.48%
2 7.85%
4 7.49%
8 6.67%

12 7.30%

Haswell
1 9.42%
2 9.09%
4 8.40%
8 7.61%

12 8.44%

Skylake
1 8.40%
2 7.47%
4 7.05%
8 6.47%

12 6.97%

Table 7 summarizes the results across all three microar-
chitectures. With eight message passing iterations, GRANITE

achieves the lowest test prediction error, on average, 6.67%
and 0.65% lower than GRANITE with two and six mes-
sage passing iterations, respectively. The results show that
GRANITE’s performance is indeed sensitive to the number
of message passing iterations, suggesting a search to find the
sweet spot for this hyper-parameter. We postulate that as the
number of nodes (instructions) increases, a higher number of
message passing iterations could potentially further reduce
the prediction error, owing to better capturing the underly-
ing dependencies between nodes. However, increasing the
number of message passing iterations more than a certain
value (eight in our setup) could lead to a higher inductive
bias to training dataset.
Impact of the decoder network. To determine the effect
of the decoder network on the quality of the model, we
modified the Ithemal model [19] to use the same multi-
layer feed forward network with ReLU non-linearity. We
observed that adding the decoder network improved the
Ithemal+ model accuracy by 0.25%, 0.39%, and 1.1% for Ivy
Bridge, Haswell, and Skylake, respectively. We attribute these

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

1000

2000

3000

4000

5000

6000

7000

8000

(a) Ivy Bridge - Ithemal

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

1000

2000

3000

4000

5000

6000

7000

(b) Haswell - Ithemal

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

1000

2000

3000

4000

5000

6000

7000

8000

(c) Skylake - Ithemal

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

2000

4000

6000

8000

10000

(d) Ivy Bridge - GRANITE

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

2000

4000

6000

8000

(e) Haswell - GRANITE

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0

2000

4000

6000

8000

(f) Skylake - GRANITE

Figure 4: Distribution of relative error (x axis) and the number of basic blocks (y axis) for Ithemal [19] and multi-task GRANITE learned models
on the Ithemal dataset [19] across three different x86-64 microarchitectures, corresponding to heatmaps in Figure 3.

improvement to the additional non-linearity of the decoder
network that incorporate more inductive bias to the network.
We observe a similar trend in multi-task training, where multi-
task learning is most effective in the presence of multi-layer
feed forward network. The following provides a possible
explanation for this trend. In the vanilla Ithemal model [19], a
simple dot-product operation is used to model the throughput
computation. We hypothesize that such modeling imposes the
task of throughput prediction as well as semantic modeling of
basic block dependencies onto LSTM layers, which possibly
hinders the capability of the model to construct an expressive
representation of basic blocks.
Sensitivity to layer normalization. Layer normalization
has proved to be effective in stabilizing the training for
recurrent neural networks [34]. As part of the sensitivity
study, we explore the impact of layer normalization on
GRANITE accuracy. For this experiment, we remove all the
layer normalization from node and edge update networks
and the decoder network. The results show that without layer
normalization the test prediction error, significantly increases
by 15.19%, 12.87%, and 12.27% for Ivy Bridge, Haswell, and

Skylake microarchitectures, respectively. We also observed
that disabling layer normalization significantly increases
numerical instability that we had to counter by using gradient
clipping. This significant increase in the test prediction error
suggests the importance of layer normalization in achieving
the state-of-the-art accuracy for basic block throughout
estimation as well as improving the numerical stability of
the training.
Sensitivity to loss function. Finally, we analyze the impact
of various loss functions on the final model error. The vanilla
Ithemal [19] model trains and evaluates the models using
MAPE. However, employing different loss functions may
potentially lead to better generalization to unseen data and
less overfitting [41]. To verify that MAPE is indeed the best
loss function for GRANITE, we trained the model with other
loss functions and evaluated the model MAPE against an
equivalent model trained with MAPE. The additional loss
functions that we studied are mean squared error (MSE)
and Huber loss [42] in two setups: (1) with absolute error,
calculated as the difference between predicted and ground-
truth values and (2) relative error, computed as the absolute

2 4 6 8

2

4

6

8

(a) Ivy Bridge - GRANITE

2 4 6 8

2

4

6

8

(b) Haswell - GRANITE

2 4 6 8

2

4

6

8

(c) Skylake - GRANITE

Figure 5: Heatmaps for ground-truth (x axis) and predicted values (y axis) for Ithemal and GRANITE learned models on the BHive dataset
across three different x86-64 microarchitectures for the throughput values under 10 cycles. Note that the BHive [22] dataset contains 5× less
data compared to the Ithemal dataset [19]; Hence the sparser heatmaps.

TABLE 8: The effects of multi-task training on GRANITE and Ithemal
models [19] across different x86-64 microarchitectures.

Microarchitecture Model MAPE (Single-Task) MAPE (Multi-Task)

Ivy Bridge
Ithemal 8.34% 8.82%
Ithemal+ 8.37% 7.89%
GRANITE 7.02% 6.67%

Haswell
Ithemal 9.90% 9.62%
Ithemal+ 8.87% 8.82%
GRANITE 7.76 % 7.82%

Skylake
Ithemal 8.30% 8.77%
Ithemal+ 7.65% 7.51%
GRANITE 7.34 % 6.75 %

error normalized by the ground-truth value. Compared to
MSE, the Huber loss is known to be less sensitive to outliers
in the dataset. In all the experiments with Huber loss, we
set δ = 1.

Table 9 summarizes the comparison between different
loss function across different microarchitectures. We report
various comparison metrics (columns three to six of Table 9)
for each loss function. While training with MAPE generally
provides best results, we observe that relative MSE may also
be a viable option. Other loss functions and in particular loss
functions that do not use normalization perform significantly
worse due to the high dynamic range of the predicted
throughput values.

5.3. Multi-Task Learning
In this section, we evaluate the impact of multi-task

learning on performance prediction. Each task in this con-
text represents a target microarchitecture (e.g. Ivy Bridge,
Haswell, and Skylake). Our goal is to explore whether
it is feasible to design a generalized model that works
across different microarchitectures, likely with disparate
characteristics. When training a multi-task model, we selected
basic blocks where we had ground truth data for all target

microarchitectures. In addition, for each basic block, we
update the weights for all target microarchitectures at the
same time.

Table 8 compares the performance of GRANITE multi-
task model and Ithemal+ with multi-task heads. It shows
that in most cases using multi-task learning (1) improves
the quality of the trained model, and (2) it makes training
more efficient by training a single model for multiple
microarchitectures at once. The main case where multi-task
learning has negative impact on the results is in case of
the unmodified Ithemal model [19]. We attribute this to the
simplicity of the task-specific decoder part in this model;
we see that when the model is augmented with a more
complex task-specific decoder, the model can benefit from
multi-task training. We also take this as an indication that
the shared part of the network learns a representation of
code that is sufficiently powerful to support multiple target
microarchitectures.

5.4. Computational efficiency
Last, we consider the computational efficiency of the

models. Efficiency is an important aspect of machine learning
models deployed in practical applications. We have evaluated
the training and inference throughput of GRANITE and
compared it to the efficiency of other models discussed
in this paper. We used a Linux workstation with an Intel
Xeon E5-1650-v3 CPU running at 3.50GHz, 128GB RAM,
and an NVIDIA RTX 2080 Ti GPU. For training, we report
the average time per batch over 300 training steps of each
model, whereas for inference, we report the average time per
batch on the whole BHive data set of ca 300k basic blocks.
In both cases, we used batches of 100 basic blocks.

Table 10 summarizes our results. Overall, we found that
GRANITE is roughly 3x faster than Ithemal and Ithemal+
models both in training an inference when running on a GPU.
When running inference on a CPU, GRANITE is 27% slower.

TABLE 9: Comparison between different loss functions in GRANITE on Ithemal dataset [19]. Note that in our data sets, throughput values are
per 100 iterations of each basic block which explains higher MSE and Huber loss values.

Microarchitecture Loss Function MAPE MSE Relative MSE Mean Huber Mean Relative Huber

Ivy Bridge

MAPE 7.49% 2353023.37 0.926 91.23 0.022
MSE 24.94% 1709602.44 1.670 124.28 0.072
Relative MSE 7.72% 1922472.84 0.044 86.85 0.016
Huber 10.21% 1941646.88 0.966 87.52 0.036
Relative Huber 8.34% 1702852.03 0.676 88.72 0.022

Haswell

MAPE 8.33% 4883716.03 0.923 146.7 0.024
MSE 27.07% 16328409.43 2.651 221.21 0.092
Relative MSE 8.88% 4138913.04 0.056 145.62 0.019
Huber 11.51% 4175191.19 0.931 142.59 0.039
Relative Huber 9.44% 3777885.85 0.632 147.65 0.025

Skylake

MAPE 7.32% 1407284.56 0.651 83.52 0.021
MSE 26.78% 1202691.79 1.570 110.10 0.086
Relative MSE 7.31% 1282483.60 0.032 80.24 0.013
Huber 9.54% 820971.73 0.579 66.44 0.029
Relative Huber 7.93% 1334057.40 0.491 81.31 0.019

We did not include CPU training time in our evaluation
based on the observation that training is virtually always
done using GPUs or other accelerators.

Moreover, our measurement have also shown that the
overhead of training a multi-task models is negligible com-
pared to training a similar model for a single task both for
GRANITE and models based on the Ithemal architecture. That
is, the training cost per microarchitecture of a multi-task
model with three heads is almost one third of the cost of
training three equivalent single-task models.

6. Related Work
GRANITE takes a fundamentally different approach than

the prior proposals for performance estimation of basic
blocks. In contrast to prior performance estimation work,
GRANITE takes one step further and leverages graph neural
network theory to obtain expressive architecture embedding
that translates to higher accuracy in the learned models.
Below, we overview the most relevant work.
Performance estimation. There is a growing body of work
on developing models for performance estimation that can
be categorized into analytical models [15, 17, 43–56] and
learning based models [19, 57–63]. Generally, developing
analytical models is an intricate and tedious task in terms
of human development, require meticulous understanding
of internal microarchitectural details, and are rarely general-
izable to different architectures. In contrast, GRANITE is a
learning based model that aims to mitigate these challenges
by leveraging machine learning techniques.

In the learned model category, Ithemal [19] is the closest
work to this paper in terms of overall approach. Ithemal
uses a sequential LSTM-based model in which only the
structural dependencies between adjacent instructions are
present in an explicit form. In contrast, GRANITE uses
GNNs to capture both short- and long-range dependencies

between instructions in a graph representation of the basic
block. In addition, this work takes one step further and,
for the first time to the best of our knowledge, presents
multi-task learning [21] for throughput estimation across
different architectures. Kaufman et al. [57] introduce a GNN-
based performance model for tensor computation graphs
on TPUs [64]. While tensor computation kernels are more
complex than straight-line code like basic blocks, the in-order
execution model of TPUs and the lack of hardware caching
simplifies the task significantly. In contrast, GRANITE targets
throughout prediction in architectures with complex out-of-
order execution models and multi-level caching.
Graph neural networks. There is a growing interest of
using graph neural networks in various reasoning tasks and
to construct expressive low-dimensional representations from
graph structures [28, 65–71, 71–73]. These learned low-
dimensional representations are then generally processed
to estimate desired metrics. Computer programs can be
represented naturally as graphs in which the nodes are
associated with different elements of the assembly language
representation of the code and the edges model different
dependencies between these elements. Recent work [20, 74–
76] explores the idea of constructing graphs from source code
and shows the strength of graph neural networks in various
prediction tasks. As a natural step, we also use graphs to
represent the dependencies in basic blocks and leverages the
recent progress in graph neural networks [67] to construct
expressive representations for throughput estimation.

7. Conclusion
We present GRANITE, a graph neural network model that

establishes the state-of-the-art model accuracy for throughput
estimation of basic blocks across various x86-64 microar-
chitectures. Our results show that GRANITE estimates the
throughput of basic blocks with average test error of 6.91%

TABLE 10: Run time per batch of 100 blocks of training and inference (in seconds)

Model Microarchitecture GPU training GPU inference CPU inference

Ithemal single task
Ivy Bridge 0.0996s 0.0491s 0.0551s
Haswell 0.1236s 0.0501s 0.0558s
Skylake 0.0775s 0.0502s 0.0556s

GRANITE single task
Ivy Bridge 0.0354s 0.0147s 0.0749s
Haswell 0.0367s 0.0147s 0.0750s
Skylake 0.0349s 0.0146s 0.0751s

Ithemal+ multi-task Ivy Bridge & Haswell & Skylake 0.1086s 0.0515s 0.0602s

GRANITE multi-task Ivy Bridge & Haswell & Skylake 0.0361s 0.0157s 0.0768s

across different microarchitectures, 1.7% over the previous
state-of-the-art model [19], while also achieving 3x higher
throughput in training and inference, which can be further
multiplied by training a single model to predict throughput for
multiple target microarchitectures at the same time. We have
achieved these results by bringing in ideas from other fields
of machine learning, such as graph neural networks [28] and
multi-task learning [21].

These promising results reinforce our claim about the
expressiveness of the low-dimensional representations of
basic blocks using graph neural networks. We argue that
using graphs to represent programs not only leads to richer
low-dimensional representations which translate to higher
accuracy and better generalization, but also paves the way
to associate low-level microarchitectural features, such as
performance counters, to each instruction. This relational
association between low-level microarchitectural features and
programs is an exciting future research direction.

Acknowledgments
We would like to extend our gratitude towards Jon

Orwant, Corinna Cortes, Cliff Young, James Laudon, Stella
Aslibekyan, the “Learn to Design Accelerators” team, the
EXEgesis team, and the extended Google Research Brain
Team for their invaluable feedback and comments.

References
[1] R. C. Lozano, M. Carlsson, F. Drejhammar, and C. Schulte,

“Constraint-based Register Allocation and Instruction Scheduling,” in
CP, 2012.

[2] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly,
“Meta Optimization: Improving Compiler Heuristics with Machine
Learning,” ACM sigplan notices, 2003.

[3] A. McGovern and J. E. B. Moss, “Scheduling Straight-line Code
Using Reinforcement Learning and Rollouts,” in NeurIPS, 1999.

[4] D. Nuzman and A. Zaks, “Autovectorization in GCC–Two Years
Later,” in GCC Developers Summit, 2006.

[5] Z. Jia, J. Thomas, T. Warszawski, M. Gao, M. Zaharia, and A. Aiken,
“Optimizing DNN Computation with Relaxed Graph Substitutions,”
SysML, 2019.

[6] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “PipeDream: Generalized
Pipeline Parallelism for DNN Training,” in SOSP, 2019.

[7] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “Heterogeneity-Aware Cluster Scheduling Policies for
Deep Learning Workloads,” in OSDI, 2020.

[8] M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski, and D. Li,
“MLGO: A Machine Learning Guided Compiler Optimizations Frame-
work,” arXiv preprint arXiv:2101.04808, 2021.

[9] T. Gysi, T. Grosser, and T. Hoefler, “Absinthe: Learning an Analytical
Performance Model to Fuse and Tile Stencil Codes in One Shot,” in
PACT, 2019.

[10] A. Yazdanbakhsh, C. Angermueller, B. Akin, Y. Zhou, A. Jones,
M. Hashemi, K. Swersky, S. Chatterjee, R. Narayanaswami, and
J. Laudon, “Apollo: Transferable Architecture Exploration,” arXiv
preprint arXiv:2102.01723, 2021.

[11] Y. Zhou, X. Dong, T. Meng, M. Tan, B. Akin, D. Peng, A. Yazdan-
bakhsh, D. Huang, R. Narayanaswami, and J. Laudon, “Towards the
Co-design of Neural Networks and Accelerators,” MLSys, 2022.

[12] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W.
Fletcher, “Mind Mappings: Enabling Efficient Algorithm-Accelerator
Mapping Space Search,” in ASPLOS, 2021.

[13] A. Kumar, A. Yazdanbakhsh, M. Hashemi, K. Swersky, and S. Levine,
“Data-Driven Offline Optimization For Architecting Hardware Accel-
erators,” ICLR, 2022.

[14] J. Laukemann, J. Hammer, G. Hager, and G. Wellein, “Automatic
Throughput and Critical Path Analysis of x86 and ARM Assembly
Kernels,” in PMBS, 2019.

[15] A. D. Biagio and M. Davis, “LLVM Machine Code Analyzer,” https:
//llvm.org/docs/CommandGuide/llvm-mca.html, 2019, accessed: 2020-
09-10.

[16] C. Courbet and G. Chatelet, “Static Execution Performance Analysis
with LLVM,” https://github.com/google/EXEgesis/tree/master/llvm_
sim, 2020, accessed: 2020-09-10.

[17] I. Corporation, “Intel Architecture Code Analyzer,”
https://software.intel.com/content/www/us/en/develop/articles/
intel-architecture-code-analyzer.html, 2019, accessed: 2020-09-10.

[18] A. Abel and J. Reineke, “UiCA: Accurate Throughput Prediction of
Basic Blocks on Recent Intel Microarchitectures,” in ICS, 2022.

[19] C. Mendis, A. Renda, S. P. Amarasinghe, and M. Carbin, “Ithemal:
Accurate, Portable and Fast Basic Block Throughput Estimation using
Deep Neural Networks,” in ICML, 2019.

[20] Z. Shi, K. Swersky, D. Tarlow, P. Ranganathan, and M. Hashemi,
“Learning Execution through Neural Code Fusion,” in ICLR, 2019.

[21] R. Caruana, “Multitask Learning,” Machine Learning, 1997.

[22] Y. Chen, A. Brahmakshatriya, C. Mendis, A. Renda, E. Atkinson,
O. Sỳkora, S. Amarasinghe, and M. Carbin, “BHive: A Benchmark
Suite and Measurement Framework for Validating x86-64 Basic Block
Performance Models,” in IISWC, 2019.

https://link.springer.com/chapter/10.1007/978-3-642-33558-7_54
https://dl.acm.org/doi/abs/10.1145/780822.781141?casa_token=MaQ0HcE8jiUAAAAA:diQBmDTQYoJhCeHjKPQHQgkbQSOL8qzI4loidiyHi-ht4mhV1CvpovWDdMjultlxVRMgzRl3GUitu98
https://dl.acm.org/doi/abs/10.1145/780822.781141?casa_token=MaQ0HcE8jiUAAAAA:diQBmDTQYoJhCeHjKPQHQgkbQSOL8qzI4loidiyHi-ht4mhV1CvpovWDdMjultlxVRMgzRl3GUitu98
https://proceedings.neurips.cc/paper/1998/hash/596f713f9a7376fe90a62abaaedecc2d-Abstract.html
https://proceedings.neurips.cc/paper/1998/hash/596f713f9a7376fe90a62abaaedecc2d-Abstract.html
https://www.researchgate.net/profile/Jan-Hubicka/publication/255615364_Interprocedural_optimization_on_function_local_SSA_form_in_GCC/links/5a85b0ab458515b8af88c576/Interprocedural-optimization-on-function-local-SSA-form-in-GCC.pdf#page=151
https://www.researchgate.net/profile/Jan-Hubicka/publication/255615364_Interprocedural_optimization_on_function_local_SSA_form_in_GCC/links/5a85b0ab458515b8af88c576/Interprocedural-optimization-on-function-local-SSA-form-in-GCC.pdf#page=151
https://proceedings.mlsys.org/paper/2019/hash/b6d767d2f8ed5d21a44b0e5886680cb9-Abstract.html
https://dl.acm.org/doi/abs/10.1145/3341301.3359646?casa_token=-2BvMBamAbsAAAAA:TZA-IEpDUWID8qroe80dZ0D_wQvpXt9lTY5ygBFvEbtX6S_b271cIRZ6oto5PwPxkiHpISWIe_JPcHQ
https://dl.acm.org/doi/abs/10.1145/3341301.3359646?casa_token=-2BvMBamAbsAAAAA:TZA-IEpDUWID8qroe80dZ0D_wQvpXt9lTY5ygBFvEbtX6S_b271cIRZ6oto5PwPxkiHpISWIe_JPcHQ
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://arxiv.org/abs/2101.04808
https://arxiv.org/abs/2101.04808
https://ieeexplore.ieee.org/abstract/document/8891630?casa_token=px8RWRkDB9kAAAAA:8nYEA7C17aUA5EgEQRaYaX4GKxGZKt9OyL8OCVpV2AaC5kWaCQmwQp3l4_OSdxDoX7t30wL1sJn6
https://ieeexplore.ieee.org/abstract/document/8891630?casa_token=px8RWRkDB9kAAAAA:8nYEA7C17aUA5EgEQRaYaX4GKxGZKt9OyL8OCVpV2AaC5kWaCQmwQp3l4_OSdxDoX7t30wL1sJn6
https://arxiv.org/abs/2102.01723
https://proceedings.mlsys.org/paper/2022/hash/31fefc0e570cb3860f2a6d4b38c6490d-Abstract.html
https://proceedings.mlsys.org/paper/2022/hash/31fefc0e570cb3860f2a6d4b38c6490d-Abstract.html
https://dl.acm.org/doi/abs/10.1145/3445814.3446762
https://dl.acm.org/doi/abs/10.1145/3445814.3446762
https://arxiv.org/abs/2110.11346
https://arxiv.org/abs/2110.11346
https://ieeexplore.ieee.org/abstract/document/9059263
https://ieeexplore.ieee.org/abstract/document/9059263
https://ieeexplore.ieee.org/abstract/document/9059263
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://github.com/google/EXEgesis/tree/master/llvm_sim
https://github.com/google/EXEgesis/tree/master/llvm_sim
https://software.intel.com/content/www/us/en/develop/articles/intel-architecture-code-analyzer.html
https://software.intel.com/content/www/us/en/develop/articles/intel-architecture-code-analyzer.html
https://dl.acm.org/doi/abs/10.1145/3524059.3532396
https://dl.acm.org/doi/abs/10.1145/3524059.3532396
https://proceedings.mlr.press/v97/mendis19a.html
https://proceedings.mlr.press/v97/mendis19a.html
https://proceedings.mlr.press/v97/mendis19a.html
https://arxiv.org/abs/1906.07181
https://link.springer.com/article/10.1023/A:1007379606734
https://ieeexplore.ieee.org/abstract/document/9042166/
https://ieeexplore.ieee.org/abstract/document/9042166/
https://ieeexplore.ieee.org/abstract/document/9042166/

[23] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural
computation, 1997.

[24] M. Gori, G. Monfardini, and F. Scarselli, “A New Model for Learning
in Graph Domains,” in IJCNN, 2005.

[25] F. Scarselli, S. L. Yong, M. Gori, M. Hagenbuchner, A. C. Tsoi, and
M. Maggini, “Graph Neural Networks for Ranking Web Pages,” in
WI, 2005.

[26] T. N. Kipf and M. Welling, “Semi-supervised Classification with
Graph Convolutional Networks,” arXiv preprint arXiv:1609.02907,
2016.

[27] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A Com-
prehensive Survey on Graph Neural Networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[28] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. Dahl,
A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess,
D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu,
“Relational Inductive Biases, Deep Learning, and Graph Networks,”
arXiv preprint arXiv:1806.01261, 2018.

[29] N. Park, A. Kan, X. L. Dong, T. Zhao, and C. Faloutsos, “Estimating
Node Importance in Knowledge Graphs using Graph Neural Networks,”
in KDD, 2019.

[30] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved
Code Summarization via a Graph Neural Network,” arXiv preprint
arXiv:2004.02843, 2020.

[31] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural Message Passing for Quantum Chemistry,” arXiv preprint
arXiv:1704.01212, 2017.

[32] M. Bajaj, L. Wang, and L. Sigal, “G3raphGround: Graph-Based
Language Grounding,” in ICCV, 2019.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[34] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[35] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in CGO, 2004.

[36] SPEC, “SPEC CPU®2006,” https://www.spec.org/cpu2006/, 2006,
accessed: 2022-07-06.

[37] ——, “SPEC CPU®2017,” https://www.spec.org/cpu2017/, 2017,
accessed: 2022-07-06.

[38] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems,” 2015, software available from tensorflow.org. [Online].
Available: http://tensorflow.org/

[39] “Graph Nets Library,” https://github.com/deepmind/graph_nets, 2020.

[40] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[41] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the
Loss Landscape of Neural Nets,” NeurIPS, 2018.

[42] P. J. Huber, “Robust Estimation of a Location Parameter,” in Break-
throughs in statistics, 1992.

[43] J. Laukemann, J. Hammer, G. Hager, and G. Wellein, “Automatic
Throughput and Critical Path Analysis of x86 and ARM Assembly
Kernels,” in PMBS, 2019.

[44] J. Laukemann, J. Hammer, J. Hofmann, G. Hager, and G. Wellein,
“Automated Instruction Stream Throughput Prediction for Intel and
AMD Microarchitectures,” in PMBS, 2018.

[45] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microar-
chitectural Simulation of Thousand-core Systems,” ACM SIGARCH
Computer architecture news, 2013.

[46] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: A Full System
Simulator for Multicore x86 CPUs,” in DAC, 2011.

[47] X. E. Chen and T. M. Aamodt, “A First-order Fine-grained Multi-
threaded Throughput Model,” in HPCA, 2009.

[48] T. M. Taha and S. Wills, “An Instruction Throughput Model of
Superscalar Processors,” IEEE Transactions on Computers, 2008.

[49] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A Timing
Analyzer for Embedded Software,” Science of Computer Programming,
2007.

[50] V. S. Adve and M. K. Vernon, “Parallel Program Performance
Prediction using Deterministic Task Graph Analysis,” TOCS, 2004.

[51] V. Blanco, J. A. González, C. León, C. Rodrıguez, G. Rodrıguez,
and M. Printista, “Predicting the Performance of Parallel Programs,”
Parallel Computing, 2004.

[52] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
H. Theiling, S. Thesing, and R. Wilhelm, “Reliable and Precise WCET
Determination for a Real-life Processor,” in International Workshop
on Embedded Software, 2001.

[53] R. Rugina and K. E. Schauser, “Predicting the Running Times of
Parallel Programs by Simulation,” in IPDPS, 1998.

[54] T. Fahringer and H. P. Zima, “A Static Parameter based Performance
Prediction Tool for Parallel Programs,” in ICS, 1993.

[55] C. Y. Park, “Predicting Program Execution Times by Analyzing Static
and Dynamic Program Paths,” Real-Time Systems, 1993.

[56] F. Hartleb and V. Mertsiotakis, “Bounds for the Mean Runtime of
Parallel Programs,” in Proceedings of the Sixth International Confer-
ence on Modelling Techniques and Tools for Computer Performance
Evaluation, 1992.

[57] S. Kaufman, P. Phothilimthana, Y. Zhou, C. Mendis, S. Roy, A. Sabne,
and M. Burrows, “A Learned Performance Model for Tensor Process-
ing Units,” MLSys, 2021.

[58] A. Adams, K. Ma, L. Anderson, R. Baghdadi, T.-M. Li, M. Gharbi,
B. Steiner, S. Johnson, K. Fatahalian, F. Durand, and J. Ragan-Kelley,
“Learning to Optimize Halide with Tree Search and Random Programs,”
TOG, 2019.

[59] S. A. Seshia and A. Rakhlin, “Quantitative Analysis of Systems using
Game-theoretic Learning,” TECS, 2012.

[60] S. A. Seshia and J. Kotker, “GameTime: A Toolkit for Timing Analysis
of Software,” in TACAS, 2011.

[61] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik,
“Predicting Execution Time of Computer Programs using Sparse
Polynomial Regression,” in NeurIPS, 2010.

[62] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle, and
O. Temam, “Fast Compiler Optimisation Evaluation using Code-feature
based Performance Prediction,” in CF, 2007.

[63] K. Seshadri, B. Akin, J. Laudon, R. Narayanaswami, and A. Yazdan-
bakhsh, “An Evaluation of Edge TPU Accelerators for Convolutional
Neural Networks,” in IISWC, 2022.

[64] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon,
J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,

https://ieeexplore.ieee.org/abstract/document/6795963
https://www.researchgate.net/profile/Franco-Scarselli/publication/4202380_A_new_model_for_earning_in_raph_domains/links/0c9605188cd580504f000000/A-new-model-for-earning-in-raph-domains.pdf
https://www.researchgate.net/profile/Franco-Scarselli/publication/4202380_A_new_model_for_earning_in_raph_domains/links/0c9605188cd580504f000000/A-new-model-for-earning-in-raph-domains.pdf
https://ieeexplore.ieee.org/abstract/document/1517930?casa_token=eD7jdHS1ctUAAAAA:IbLbYMhdOUsLLDJLDndhJMYcZVeYd4td4BFDm6QEWVZrO8s9HZTFh-ZVvPS6b3zCs2eFlAR1FYPQ
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://ieeexplore.ieee.org/abstract/document/9046288?casa_token=jEoG5QtpuwgAAAAA:h5LGmtnd4OmWIdfTbOgIlr_G1rHiRV1M-IvTER1sEMyNUHhdO7y3KEupI2_XQ5XcdEE-9pEfxiKk
https://ieeexplore.ieee.org/abstract/document/9046288?casa_token=jEoG5QtpuwgAAAAA:h5LGmtnd4OmWIdfTbOgIlr_G1rHiRV1M-IvTER1sEMyNUHhdO7y3KEupI2_XQ5XcdEE-9pEfxiKk
https://arxiv.org/abs/1806.01261
https://dl.acm.org/doi/abs/10.1145/3292500.3330855
https://dl.acm.org/doi/abs/10.1145/3292500.3330855
https://dl.acm.org/doi/abs/10.1145/3387904.3389268?casa_token=rS5_k7zRKHcAAAAA:n3dAiYdt2O8rsGFoEAS_XJMSjAFDNFt32vfMQpj90f-66_KFBn7hNS56XxQEq4NUKBzCzr7tvDzqfOA
https://dl.acm.org/doi/abs/10.1145/3387904.3389268?casa_token=rS5_k7zRKHcAAAAA:n3dAiYdt2O8rsGFoEAS_XJMSjAFDNFt32vfMQpj90f-66_KFBn7hNS56XxQEq4NUKBzCzr7tvDzqfOA
https://proceedings.mlr.press/v70/gilmer17a.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Bajaj_G3raphGround_Graph-Based_Language_Grounding_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Bajaj_G3raphGround_Graph-Based_Language_Grounding_ICCV_2019_paper.html
https://arxiv.org/abs/1607.06450
https://ieeexplore.ieee.org/abstract/document/1281665/?casa_token=omkVcMOPrAUAAAAA:yHcX0XQFgw7NPBQ_HW8jSzZGiCTNInZgIaX6DndeojZomB5ER5fQnpYSnfpGc8i0zzkv7Q4C80Sr
https://ieeexplore.ieee.org/abstract/document/1281665/?casa_token=omkVcMOPrAUAAAAA:yHcX0XQFgw7NPBQ_HW8jSzZGiCTNInZgIaX6DndeojZomB5ER5fQnpYSnfpGc8i0zzkv7Q4C80Sr
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
http://tensorflow.org/
https://github.com/deepmind/graph_nets
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_35
https://arxiv.org/abs/1910.00214
https://arxiv.org/abs/1910.00214
https://arxiv.org/abs/1910.00214
https://ieeexplore.ieee.org/abstract/document/8641578/
https://ieeexplore.ieee.org/abstract/document/8641578/
https://dl.acm.org/doi/10.1145/2508148.2485963
https://dl.acm.org/doi/10.1145/2508148.2485963
https://ieeexplore.ieee.org/document/5982026
https://ieeexplore.ieee.org/document/5982026
https://ieeexplore.ieee.org/abstract/document/4798270/?casa_token=QyGnyzAlreEAAAAA:qIDYYZV_NCcMRisb3IBGSiEsVai7yrkunWg-c5SNt07bSW0kcwP_0I5bgyyTVGPQ57ASilPtbq3B
https://ieeexplore.ieee.org/abstract/document/4798270/?casa_token=QyGnyzAlreEAAAAA:qIDYYZV_NCcMRisb3IBGSiEsVai7yrkunWg-c5SNt07bSW0kcwP_0I5bgyyTVGPQ57ASilPtbq3B
https://ieeexplore.ieee.org/abstract/document/4358262/?casa_token=hWCk9D9ShNAAAAAA:5K216xBu8aH-rnKk-mLJ36NslVQ96LsTA1UPoeQ0_mwSu5TRi_Smempijlmk28xTsTwhEjSYT2lw
https://ieeexplore.ieee.org/abstract/document/4358262/?casa_token=hWCk9D9ShNAAAAAA:5K216xBu8aH-rnKk-mLJ36NslVQ96LsTA1UPoeQ0_mwSu5TRi_Smempijlmk28xTsTwhEjSYT2lw
https://www.sciencedirect.com/science/article/pii/S0167642307001633
https://www.sciencedirect.com/science/article/pii/S0167642307001633
https://dl.acm.org/doi/abs/10.1145/966785.966788?casa_token=UFPcfFrx4V4AAAAA:MMbYcQiKmwxiAVRDxuTMjlt-nDbXo2RgDpnWWonWDJhBxQuGbYgsopjS9eUjVo9xmvvKv9v2XnInArk
https://dl.acm.org/doi/abs/10.1145/966785.966788?casa_token=UFPcfFrx4V4AAAAA:MMbYcQiKmwxiAVRDxuTMjlt-nDbXo2RgDpnWWonWDJhBxQuGbYgsopjS9eUjVo9xmvvKv9v2XnInArk
https://www.sciencedirect.com/science/article/abs/pii/S0167819104000079
https://link.springer.com/chapter/10.1007/3-540-45449-7_32
https://link.springer.com/chapter/10.1007/3-540-45449-7_32
https://ieeexplore.ieee.org/abstract/document/669996/?casa_token=z9gBc830E-wAAAAA:CVghWUk-MBgb-QYI8vtfko1OuIwW7AS2LNsmgzpXDPlDBxqQPSy2T8gDMk2pVipH0hDsLUuCUqYk
https://ieeexplore.ieee.org/abstract/document/669996/?casa_token=z9gBc830E-wAAAAA:CVghWUk-MBgb-QYI8vtfko1OuIwW7AS2LNsmgzpXDPlDBxqQPSy2T8gDMk2pVipH0hDsLUuCUqYk
https://dl.acm.org/doi/abs/10.1145/165939.165971
https://dl.acm.org/doi/abs/10.1145/165939.165971
https://link.springer.com/article/10.1007/BF01088696
https://link.springer.com/article/10.1007/BF01088696
https://proceedings.mlsys.org/paper/2021/hash/85d8ce590ad8981ca2c8286f79f59954-Abstract.html
https://proceedings.mlsys.org/paper/2021/hash/85d8ce590ad8981ca2c8286f79f59954-Abstract.html
https://dl.acm.org/doi/abs/10.1145/3306346.3322967?casa_token=XpP_1os7-ugAAAAA:eYr7U3BLZ85V5Z4c_ebQH0iK71RNo7oIEzE7uEE9vOEYybEJDRq1g3g3ulMVzbzLYhkrw0veI5G0qKI
https://dl.acm.org/doi/abs/10.1145/2331147.2331165?casa_token=Xt6nK7zPDjoAAAAA:efDGbCrZp2xKC1FLgSJjUhp_DGRuvGiLrGEzVrGABWmnjaEJQ8kRsq1jWEBEZotUQMyKNkDHavUuIf0
https://dl.acm.org/doi/abs/10.1145/2331147.2331165?casa_token=Xt6nK7zPDjoAAAAA:efDGbCrZp2xKC1FLgSJjUhp_DGRuvGiLrGEzVrGABWmnjaEJQ8kRsq1jWEBEZotUQMyKNkDHavUuIf0
https://link.springer.com/chapter/10.1007/978-3-642-19835-9_34
https://link.springer.com/chapter/10.1007/978-3-642-19835-9_34
https://proceedings.neurips.cc/paper/2010/hash/995665640dc319973d3173a74a03860c-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/995665640dc319973d3173a74a03860c-Abstract.html
https://dl.acm.org/doi/abs/10.1145/1242531.1242553?casa_token=C6W5AHzQ4Q4AAAAA:ZXWCgENRZj8MOZcMRJgG3jKGbrJmTLj2ZlFhtwxmjQr_OCuiQXpbyrs_RgLc0OZPSpkIC-FgL0juA5g
https://dl.acm.org/doi/abs/10.1145/1242531.1242553?casa_token=C6W5AHzQ4Q4AAAAA:ZXWCgENRZj8MOZcMRJgG3jKGbrJmTLj2ZlFhtwxmjQr_OCuiQXpbyrs_RgLc0OZPSpkIC-FgL0juA5g
https://arxiv.org/abs/2102.10423
https://arxiv.org/abs/2102.10423

R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon, “In-Datacenter Performance Analysis of
a Tensor Processing Unit,” in ISCA, 2017.

[65] D. Beck, G. Haffari, and T. Cohn, “Graph-to-Sequence Learning using
Gated Graph Neural Networks,” arXiv preprint arXiv:1806.09835,
2018.

[66] T. H. Nguyen and R. Grishman, “Graph Convolutional Networks With
Argument-Aware Pooling for Event Detection,” in AAAI, 2018.

[67] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph Neural Networks: A Review of Methods and Applications,”
arXiv preprint arXiv:1812.08434, 2018.

[68] D. Marcheggiani, J. Bastings, and I. Titov, “Exploiting Semantics
in Neural Machine Translation with Graph Convolutional Networks,”
arXiv preprint arXiv:1804.08313, 2018.

[69] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an,
“Graph Convolutional Encoders for Syntax-aware Neural Machine
Translation,” arXiv preprint arXiv:1704.04675, 2017.

[70] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu,
P. Battaglia, and T. Lillicrap, “A Simple Neural Network Module for
Relational Reasoning,” in NeurIPS, 2017.

[71] N. Peng, H. Poon, C. Quirk, K. Toutanova, and W.-t. Yih, “Cross-
Sentence N-ary Relation Extraction with Graph LSTMs,” TACL, 2017.

[72] M. Miwa and M. Bansal, “End-to-end Relation Extraction us-
ing LSTMs on Sequences and Tree Structures,” arXiv preprint
arXiv:1601.00770, 2016.

[73] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and K. Kavukcuoglu,
“Interaction Networks for Learning about Objects, Relations and
Physics,” in NeurIPS, 2016.

[74] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
Distributed Representations of Code,” POPL, 2019.

[75] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
Represent Programs with Graphs,” arXiv preprint arXiv:1711.00740,
2017.

[76] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather,
“ProGraML: Graph-based Deep Learning for Program Optimization
and Analysis,” arXiv preprint arXiv:2003.10536, 2020.

https://arxiv.org/abs/1704.04760
https://arxiv.org/abs/1704.04760
https://arxiv.org/abs/1806.09835
https://arxiv.org/abs/1806.09835
https://ojs.aaai.org/index.php/AAAI/article/view/12039
https://ojs.aaai.org/index.php/AAAI/article/view/12039
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1804.08313
https://arxiv.org/abs/1804.08313
https://arxiv.org/abs/1704.04675
https://arxiv.org/abs/1704.04675
https://proceedings.neurips.cc/paper/2017/hash/e6acf4b0f69f6f6e60e9a815938aa1ff-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e6acf4b0f69f6f6e60e9a815938aa1ff-Abstract.html
https://arxiv.org/abs/1708.03743
https://arxiv.org/abs/1708.03743
https://proceedings.neurips.cc/paper/2016/hash/3147da8ab4a0437c15ef51a5cc7f2dc4-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/3147da8ab4a0437c15ef51a5cc7f2dc4-Abstract.html
https://dl.acm.org/doi/abs/10.1145/3290353
https://dl.acm.org/doi/abs/10.1145/3290353
https://arxiv.org/abs/1711.00740
https://arxiv.org/abs/1711.00740
https://arxiv.org/abs/2003.10536
https://arxiv.org/abs/2003.10536

	1 Introduction
	2 Motivation and Background
	2.1 Manual Tuning of Simulator Parameters
	2.2 Learned Model for Throughput Estimation
	2.3 Graph Neural Network

	3 Granite Model Architecture
	3.1 Graph Encoding of Basic Blocks
	3.2 Graph Neural Network
	3.3 Decoder Network
	3.4 Multi-task Decoder Network

	4 Methodology
	5 Evaluation
	5.1 Baseline Comparisons
	5.2 Ablation Studies
	5.3 Multi-Task Learning
	5.4 Computational efficiency

	6 Related Work
	7 Conclusion
	References

