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ABSTRACT
The widespread use of Sparse Matrix Dense Matrix Multiplication
(SpMM) and Sampled Dense Matrix Dense Matrix Multiplication
(SDDMM) kernels makes them candidates for hardware accelera-
tion. However, accelerator design for these kernels faces two main
challenges: (1) the overhead of moving data between CPU and ac-
celerator (often including an address space conversion from the
CPU’s virtual addresses) and (2) marginal flexibility to leverage
the fact that different sparse input matrices benefit from different
variations of the SpMM and SDDMM algorithms.

To address these challenges, this paper proposes SPADE, a new
SpMM and SDDMMhardware accelerator. SPADE avoids data trans-
fers by tightly-coupling accelerator processing elements (PEs) with
the cores of a multicore, as if the accelerator PEs were advanced
functional units—allowing the accelerator to reuse the CPU mem-
ory system and its virtual addresses. SPADE attains flexibility and
programmability by supporting a tile-based ISA—high level enough
to eliminate the overhead of fetching and decoding fine-grained
instructions. To prove the SPADE concept, we have taped-out a sim-
plified SPADE chip. Further, simulations of a SPADE system with
224–1792 PEs show its high performance and scalability. A 224-PE
SPADE system is on average 2.3x, 1.3x and 2.5x faster than a 56-core
CPU, a server-class GPU, and an SpMM accelerator, respectively,
without accounting for the host-accelerator data transfer overhead.
If such overhead is taken into account, the 224-PE SPADE system is
on average 43.4x and 52.4x faster than the GPU and the accelerator,
respectively. Further, SPADE has a small area and power footprint.
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1 INTRODUCTION
Two fundamental linear algebra kernels are Sparse Matrix Dense
Matrix Multiplication (SpMM) and Sampled Dense Matrix Dense
Matrix Multiplication (SDDMM). They are widely used in domains
such as machine learning [13, 26, 37, 50], parameter estimation [80],
image segmentation [67], atmospheric modeling [9, 49], aerody-
namic design [55], matrix factorization [35], and linear algebra
solvers [3, 5, 39, 61]. As an example, consider the popular Graph
Neural Networks (GNNs) [15, 25, 37, 68]. In GNNs, the message-
passing kernels that aggregate information for a vertex from its
neighbors can be implemented with SpMMs. Further, the message-
passing kernels that aggregate information for an edge from its
incident vertices can be implemented with SDDMMs [59, 71].

The SpMMand SDDMMkernels have very similar computational
and memory access behavior. They have a unique mix of sparse
and dense operands that sets them apart. Indeed, like in other
sparse computations, the nonzero structure of the input sparse
matrix determines the kernel characteristics. At the same time,
the dense matrices in SpMM and SDDMM increase the data reuse
and arithmetic intensity in the kernel. However, the data reuse
behavior heavily depends on the input sparse matrix structure. As
a result, for some matrices, SpMM and SDDMM can exhibit high
locality, benefiting from fast local memories (e.g., caches), while for
other matrices, they can show highly-irregular accesses and benefit
little from fast local memories. In the latter case, main memory
bandwidth becomes the bottleneck. In both cases, a non-negligible
fraction of the requests is typically served by the lower levels of
the memory hierarchy, making latency tolerance a major concern.

In addition, like dense kernels, SpMM and SDDMM can use SIMD
execution units effectively but, unlike dense kernels, they are not
easily amenable to spatial processing element (PE) arrays due to
their hard-to-predict sparse matrix-driven memory access patterns.

https://doi.org/10.1145/3579371.3589054
https://doi.org/10.1145/3579371.3589054
https://doi.org/10.1145/3579371.3589054


ISCA ’23, June 17–21, 2023, Orlando, FL, USA G. Gerogiannis, S. Yesil, D. Lenadora, D. Cao, C. Mendis, J. Torrellas

Overall, SpMM and SDDMM belong to a special category, which
has its unique challenges.

Given the importance of SpMM and SDDMM, there are proposals
for hardware accelerators of one or both kernels (e.g., [28, 64, 65]).
The Tensaurus accelerator [65], which supports SpMM and other
kernels, is a specialized array of PEs with access to HBM mem-
ory. It uses a custom compression format to stream sparse data. It
provides some hardware configurability that allows it to support
different matrix operations. Sextans [64] is an FPGA-based acceler-
ator designed for SpMM. It has an HBM module from which dense
and sparse data is streamed to on-chip scratchpads. Extensor [28]
proposes a technique to eliminate redundant computation in sparse
algebra. While very useful in computations involving more than
one sparse matrix, it is less beneficial for SpMM and SDDMM. More
details are presented in Section 8.

While these proposals advance the state of the art, the approach
they use faces two main challenges. First, moving data from the
CPU to the accelerator and back entails substantial overhead. Such
overhead results from the spatial separation between CPU and
accelerator, and their connection through slow links. Even if the
separation could be overcome, non-GPU accelerators still require
an address space conversion (e.g., with a DMA engine), as their
PEs do not support the CPU’s virtual addresses. GPUs support a
mechanism for virtual address sharing with CPUs, although it has
limited performance [4, 69]. Since future applications are likely to
benefit from fine-grain interleaving between CPU and accelerator
phases [44, 78, 81], these overheads need to be eliminated.

Second, these designs have only very marginal flexibility and
programmability. For SpMM and SDDMM, they do not support
different execution strategies based on the non-zero structure of
the sparse input matrix. It is well known [29, 77] that such struc-
ture determines the flavors of SpMM and SDDMM algorithms that
deliver the highest performance. To be future-proof, SpMM and
SDDMM accelerators must be programmable.

In this paper, we propose a novel hardware accelerator for SpMM
and SDDMM that explicitly focuses on minimizing the overhead of
data moves between CPU and accelerator, and on providing pro-
grammability without compromising performance. The accelerator
is called SPADE.1

SPADE minimizes data transfer overheads by tightly-coupling
accelerator processing elements (PEs) with the cores of a multicore,
as if the accelerator PEs were advanced functional units. Each core
is associated with one or more SPADE PEs, which share the core’s
secondary TLB, L2 cache, and last level cache (LLC). While such
a design is intrusive, it allows the accelerator to reuse the CPU’s
memory subsystem and virtual addresses, forgoing any data move
or address space conversion. Moreover, the design is scalable: larger
multicores with higher memory bandwidth become larger, higher-
bandwidth SPADE accelerators.

SPADE attains flexibility and programmability by supporting a
special ISA. The ISA does not use fine-grained instructions, which
induce instruction fetch and decode overheads; instead, it uses
high-level tile-based instructions. A core passes these high-level
instructions to the PEs, which break them into micro-operations.
The resulting programmability allows the accelerator to adapt to

1SPADE is named after the mix of SPArse and DEnse operands in SpMM and SDDMM.

the diverse sparsity patterns found in matrices originating from
different application domains.

SPADE is designed for high performance. As indicated above, PEs
do not have the overhead of fetching and decoding fine-grained
instructions. Moreover, the PE pipeline is conceived for latency
tolerance. Further, the cache subsystem flexibly allows cache by-
passing to reduce cache pollution.

To prove the SPADE concept, we have prototyped and taped-out
a simplified four-PE SPADE chip using TSMC 65nm technology. In
addition, we have simulated a SPADE system with 224-1792 PEs,
and shown that SPADE attains high speedups and is scalable. A
224-PE SPADE system is on average 2.3x, 1.3x, and 2.5x faster than
a 56-core Intel Ice Lake CPU, a server-class NVIDIA V100 GPU,
and a scaled-up, idealized version of the state-of-the-art Sextans
SpMM accelerator [64], respectively, without accounting for the
host-accelerator data transfer overhead. If such overhead is taken
into account, the 224-PE SPADE system is on average 43.4x and
52.4x faster than the GPU and the accelerator, respectively. Further-
more, SPADE has a small area and power footprint.

Overall, this paper’s contributions are:
• The SPADE approach to hardware acceleration of SpMM and SD-
DMM, which attains high performance by eliminating data transfer
overheads, flexibility by using a tile-based ISA, and scalability.
• The SPADE architecture, including a pipeline designed for latency
tolerance and a flexible memory subsystem.
• Demonstration of SPADE with a simulation-based evaluation of
its performance.

2 BACKGROUND
2.1 SpMM and SDDMM Operation
Figure 1 shows the operation of SpMM (top chart) and of SDDMM
(bottom chart). SpMM takes an input sparse matrix 𝐴 and an input
dense matrix 𝐵, and produces an output dense matrix𝐷 . Both dense
matrices have K columns. We refer to 𝐾 as the dense matrix row
size. Given a non-zero element (NNZ) in𝐴, (e.g., a), its column index
(c_id) is used to index a row of 𝐵 and its row index (r_id) is used to
index a row of 𝐷 . In SpMM, for every NNZ, the corresponding row
of 𝐵 is multiplied by the NNZ value, and the result is accumulated
on the corresponding row of 𝐷 .

SDDMM takes an input sparse matrix 𝐴 and two input dense
matrices (𝐵 and the transposed of 𝐶 denoted as 𝐶𝑇 ), and produces
an output sparse matrix 𝐷 that has the same non-zero structure as
𝐴. Given an NNZ in 𝐴, its r_id is used to index a row of 𝐵, and its
c_id is used to index a row of 𝐶𝑇 . In SDDMM, for every NNZ, an
inner product is performed between the corresponding dense rows,
and the result is multiplied with the NNZ value, and stored in the
corresponding position in 𝐷 .

In both kernels, one of the dense matrices is accessed using
the NNZ r_id and the other dense matrix using the NNZ c_id.
We refer to the former (𝐷 in SpMM and 𝐵 in SDDMM) as row
matrix or rMatrix, and to the latter (𝐵 in SpMM and𝐶𝑇 in SDDMM)
as column matrix or cMatrix. Reuse opportunities for the dense
matrices depend on the structure of 𝐴: NNZs with the same r_id
indicate reuse for the rMatrix, while NNZs with the same c_id
indicate reuse for the cMatrix. The NNZ values are used only for a
single SIMD operation and are not reused.
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Figure 1: SpMM and SDDMM operation.

2.2 Versatile Architecture for Data Reuse
Matrix tiling is awell-studiedmethod to enhance data reuse in linear
algebra kernels. Tiles limit the working set size so that it fits in fast
local memory. In dense operations, deriving a good tiling strategy
is relatively straightforward. However, in sparse operations, this is
not the case, as the effect of the tile size is strongly affected by the
sparsity pattern of the matrices [29]. In fact, at high sparsity levels,
tiling may be useless due to limited reuse opportunities.

Sparse matrices may display reuse opportunities localized inside
tiles (Local Reuse) or spread across different tiles (Distant Reuse).
For an accelerator to be able to support a wide range of matrices,
it needs to provide architectural knobs to exploit different reuse
behaviors. Ideally, it needs to support: (1) tiles of arbitrary size,
(2) techniques to control the concurrent working set of multiple
threads in fast shared memories by deliberately ordering tile exe-
cution across threads, and (3) the bypass of different levels of the
memory hierarchy when there are no reuse opportunities. Note
that scratchpad-based solutions enforce strict limitations on tile
sizes and are not as versatile as caches.

Accelerators should support these capabilities, and allow pro-
grammers to select the tiling parameters, order tile execution across
threads to control the concurrent working set, and enforce caching
selectively. With this support, accelerators can adapt the computa-
tion to the sparsity patterns of the input matrix.

3 MOTIVATION: DATA TRANSFER COST
In most existing accelerator designs, the host memory is separate
from the accelerator memory (e.g., [14, 79]), and explicit data trans-
fer to and from the accelerator memory is needed to perform the
computation and get the results. In sparse computations, the cost of
this data transfer is harder to amortize, since the data reuse in the
accelerator is lower than in dense computations. Non-iterative ap-
plications and applications whose data does not fit in the accelerator
memory [2] are especially sensitive to this overhead.

To quantify the overhead of these data transfers, we measured
the execution time of a single SpMM iteration on two machines: (1)

a dual-socket Intel Ice Lake CPU server and (2) an NVIDIA V100
GPU connected to its own host via PCIe. The GPU execution time
includes the host-to-device and device-to-host data transfer time,
and any address mapping or translation overhead. In the GPU exper-
iment, we measure time using CUDA events. Unfortunately, these
measurements do not allow us to decouple the address mapping
overhead from the data transfer overhead. Hence, we report the
value of the combined overhead. We execute 10 different matrices
from the popular SparseSuite [17] matrix collection (which we de-
scribe in Table 2 of Section 6) and use two different dense matrix
row sizes (𝐾 equal to 32 and 128).

Figure 2 shows the execution time of the GPU system normal-
ized to the execution time of the CPU system. We show bars for
each matrix and 𝐾 value. The bars are broken down into transfer
overhead and kernel execution. We see that, if we just consider the
kernel execution, the GPU is always faster than the CPU. However,
if we consider both kernel execution and transfer overhead, the
GPU is always much slower than the CPU. This is because the
transfer overhead accounts, on average, for 97% of the total time.
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Figure 2: GPU execution times of a single SpMM iteration
(including the transfer overhead) normalized to CPU execu-
tion times. Times are broken down into transfer overhead
and kernel execution. The y scale is logarithmic.

4 OVERVIEW OF THE SPADE SYSTEM
SPADE is built on two principles: attain high performance by elim-
inating any data move between CPU and accelerator, and attain
flexibility without hurting performance by using a high-level tile-
based ISA for the accelerator.

As hinted in Section 3, the overhead of moving data from the
CPU to the accelerator and back can be substantial. It results from
the spatial separation between CPU and accelerator, which often
implies transfers through the slow PCIe bus. It is also caused by
the fact that non-GPU accelerators do not typically support the
CPU’s virtual addresses, and an address space conversion is required
(e.g., with a DMA engine). GPUs support a mechanism for virtual
address sharing with CPUs, although it is inefficient [4, 69]. Since
future applications are likely to benefit from fine-grain interleaving
between CPU and accelerator phases [44, 78, 81], this overhead
needs to be eliminated.

SPADE avoids this overhead by tightly-coupling accelerator pro-
cessing elements (PEs) with the cores of a multicore. Each core is
associated with one or more SPADE PEs, which share the core’s
secondary TLB (STLB), L2 cache, and lower cache hierarchy. While
such a design is intrusive, it allows the accelerator to reuse the
CPU’s memory subsystem and virtual addresses, and forgo any
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data move or address space conversion. One could think of the
SPADE PEs as advanced functional units for SpMM and SDDMM.

The second principle driving SPADE’s design is programmability
without lowering performance. Non-programmable accelerators
risk obsolescence as the algorithms they accelerate evolve. For ex-
ample, graph structures have been evolving, as social networks
create power-law graphs. Such graphs, represented as sparse matri-
ces, change the SpMM and SDDMM algorithm flavors that perform
best. Hence, for programmability, SPADE has an ISA. However,
using fine-grained instructions carries the overheads of instruction
fetching and decoding. To avoid these overheads, SPADE uses a
high-level tile-based ISA. A CPU core passes these instructions to
the PEs, which then break the instructions into micro-operations.
The result is programmability and high performance.

4.1 Tight Integration with the Host
SPADE is composed of many PEs that execute tiles of SpMM and
SDDMM operations, as required by the instructions supplied by
a simple general-purpose core called Control Processing Element
(CPE). The PEs are integrated in the cores of a multicore to be able
to: (1) directly access the cores’ memory system and (2) use the
cores’ virtual addresses and STLBs.

Figure 3 shows the multicore architecture. Each CPU core is
associated with a few (1-4) SPADE PEs which, for energy efficiency,
are clocked at a fraction of the core’s frequency (e.g., 1/4). The PEs
share the core’s STLB (like the DMA engines in [24]), the core’s L2
cache, and the lower cache hierarchy. Each PE has an L1 data cache
and, because many of the sparse data structures do not use caches
efficiently, a Bypass Buffer (BBF) that optionally allows PE accesses
to bypass the cache hierarchy. No instruction cache is needed, as
explained later. Overall, this coupling of CPU core and SPADE PE(s)
makes the system scalable: larger multicores with higher memory
bandwidth will result in larger, higher-bandwidth accelerators.

to memory 
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Figure 3: Integration of SPADE processing elements (PEs) and
the Control Processing Element (CPE) in a CPU multicore.

Programs interleave CPU-mode execution sections with SPADE-
mode execution sections. In the former, only CPU cores are active;
in the latter, only the SPADE PEs and the CPE are. Before a SPADE-
mode section starts, the pages of the matrix data structures are
pinned in physical memory, so that SPADE PEs do not suffer page
faults. SPADE PEs can suffer TLB misses.

Because SPADE PEs have their own L1 cache and can access data
through the BBF, especial cache operations are needed in the tran-
sitions between the two modes. Specifically, before transitioning

from SPADE to CPU mode, the SPADE PEs’ L1 caches are written
back to the L2 caches and invalidated, and the BBFs are written
back to main memory and invalidated.

Similarly, before transitioning from CPU to SPADE mode, two
actions are done. First, the CPU cores’ L1 caches are written back
to the L2 caches and invalidated. Second, any data currently in
the cache hierarchy that, in the upcoming SPADE-mode section,
could be accessed by the SPADE PEs through the BBFs needs to be
written back to memory and invalidated from the cache hierarchy.
This is to ensure that the accesses through the BBFs will get the
correct data versions and that no stale data will be left in the caches
after the next SPADE-mode section. If the programmer or compiler
cannot identify the aforementioned data, all cached data may need
to be written back and invalidated.

The CPE gets the PEs to start, stop, or execute any instruction. To
do so, the CPE uses a mechanism similar to the Intel Architecture
MWAIT instruction [33], which enables a processor to wait for
a store operation to an address. Specifically, the CPE has a few
memory-mapped registers for each PE called Input registers. When
the CPE writes to one of the Input registers of a given PE, that PE
is informed in hardware, unless notifications are masked. With this
mechanism, the CPE can trigger operations on a PE.

Putting all this together, programs execute as follows. When the
CPU cores run, the PEs are paused. When the program wants to
switch from CPUmode to SPADEmode, the cores perform the selec-
tive cache writebacks and invalidations described above, notify the
CPE, and pause. The CPE writes an initialization instruction in the
Input registers of all the PEs, and then the tile-based coarse-grained
instructions that each PE needs to execute. Every time that the
CPE writes to an Input register, the corresponding PE is informed.
That PE reads the Input register that contains the instruction and
executes the instruction. As soon as a PE has read an Input register,
the CPE is informed, and the CPE can then overwrite the Input
register with a new instruction. After the SpMM or SDDMM op-
eration completes, the CPE commands the PEs to write back and
invalidate the L1s and BBFs, and terminate execution. The program
then resumes in CPU mode.

4.2 Tile ISA and Programming
The instructions that the CPE sends to PEs to execute are SpMM or
SDDMM operations on a tile. Before these instructions are gener-
ated, a compiler or a programmer analyzes the sparse input matrix
and decides on a set of good configuration parameters. These pa-
rameters include the size of the tiles of the sparse input matrix (Row
Panel Size and Column Panel Size, as shown in Figure 4(a)), the
order of tile execution, and whether PE accesses to the different
data structures should bypass the caches. The row and column
panel sizes chosen determine the layout of the matrix in memory,
as shown in Appendix A. Both in the appendix example and in our
evaluation, we use the COO format.

At run time, a program running on the CPE takes the layout of
a tiled matrix and generates instructions for the PEs. Specifically,
assume that we want to perform an SpMM or SDDMM operation as
shown in Figures 4(a) and 4(b). The figures show all the parameters
and, in shaded pattern, the tiles.

The CPE first creates the Initialization instruction, shown in Fig-
ure 4(c), which is passed to all PEs to initialize them. The instruction
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Initialization Instruction
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- cMatrix base address

- sparse_in r_ids base address

- sparse_in c_ids base address

- sparse_in vals base address

- sparse_out vals base address (SDDMM)

- rMatrix bypass strategy

- cMatrix bypass strategy

- sizeof indices

- sizeof vals

- dense row size (K)

B

D



=A

cMatrix

rMatrix

C𝑻

B

=

cMatrix
rMatrix

A

D

SpMM: D = A  B SDDMM: D = A  (BC𝑻) 

K

K K

K

(a) (c)
Col panel

size

Row panel 

size

Tile Instruction

Arguments:

- sparse_in start offset

- sparse_out start offset (SDDMM)

- NNZ_num
sparse output

sparse

input

sparse

input

Scheduling Barrier Instruction
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Figure 4: Matrix operations and instructions supported by SPADE.

includes, as arguments: the primitive type (SpMM or SDDMM); base
addresses of the rMatrix and cMatrix; base addresses of the r_ids,
c_ids, and vals arrays of the tiled input sparse matrix (shown in Ap-
pendix A) which, together with the sparse_in_start_offset metadata
of Appendix A, generate the addresses of the beginning of each tile
data; for SDDMM only, the base address of the vals array of the
tiled output sparse matrix; the cache hierarchy bypass strategy for
the row and column matrices (the two choices for each of them are
bypass or no bypass); the size of the indices and vals (which vary
depending on the size of the matrix and the type of the data); and
the size of the dense matrix row 𝐾 (shown in Figures 4(a) and 4(b)).
On reception of this instruction, the PEs store it in special registers
and reconfigure some of their hardware.

After that, the CPE creates Tile instructions that it sends to
individual PEs. A tile instruction, shown in Figure 4(c), specifies
the tile to work on. Its arguments are data from the tiling metadata
shown in Appendix A: the offset of the first nonzero of the tile in the
r_ids, c_ids, and vals arrays of the input sparse matrix; for SDDMM
only, the offset of the first nonzero of the tile in the vals array of
the output sparse matrix; and the number of nonzeros in the tile.
The PE that receives this instruction processes the tile. There are
no upper/lower bound constraints on the tile size.

The figure shows three more instructions, Scheduling Barrier,
WB&Invalidate, and Termination. They are discussed next.

4.3 Tile Scheduling
The CPE freely assigns tiles to the PEs. However, in SpMM, the
assignment must respect one constraint: all the tiles in a row panel
should be assigned to the same PE. A row panel is the set of tiles
that span the same set of rows of the matrix, as shown shaded in
Figure 5(a). The reason is that the SpMM operation on two tiles
of the same row panel updates the same rows of the rMatrix. To
avoid data races, only one PE processes such tiles. As an example,
Figure 5(a) shows the order of assignment of tiles to two PEs. PE
0 (in white circles) gets the tiles in Row Panel 0 and then those of
Row Panel 2; PE 1 (in black circles) gets the tiles in Row Panel 1
and 3. This assignment restriction does not apply to SDDMM.

A schedule like Figure 5(a) maximizes inter-tile rMatrix reuse,
but hinders inter-tile cMatrix reuse. Specifically, consider the tiles
assigned to PE 0 only (i.e., those with white circles), and assume
that Tiles labeled 2 and 6 in Figure 5(a) have non-zeros in the same
columns. As PE 0 executes Tile 6, it reuses cMatrix data brought
into caches during its execution of Tile 2. However, this Distant
Reuse, as described in Section 2.2, can be missed if the execution of
Tiles 3, 4, and 5 evicts the cMatrix data.

: Tiles assigned to PE 0

: Tiles assigned to PE 1

1 2 3 4

A

1 2 4

5 6 7 8

5 6 7 8

3

1 2 5 6

1 2 6

3 4 7 8

3 4 7 8

5

Tile assignment without 

scheduling barriers

A

Row panel 0

(a) (b)

Tile assignment 

with scheduling barriers

Figure 5: Tile scheduling without (a) and with (b) barriers.

When an analysis of the input matrix determines that this reuse
of cMatrix data is important, we want to force a schedule like in
Figure 5(b). In the figure, PE 0 and PE 1 first execute tiles in column
panels 0 and 1, and once they are both done, they move to the
next two column panels. Both PEs help each other reuse cMatrix
data. This behavior is attained with the SPADE Scheduling Barrier
instruction. The CPE passes Tiles 1, 2, 3, and 4 in Figure 5(b) to PE
0 and, after PE 0 has read the instruction for Tile 4, the CPE sends it
the barrier instruction. Similarly, after PE 1 has read the instruction
for its own Tile 4, the CPE sends it a barrier. The CPE will not send
any new tile instruction to any PE until both PEs have read the
barrier instruction—signifying that both PEs have completed their
last assigned tile.

A similar procedure is used to terminate a SPADE-mode section.
The CPE sends theWB&Invalidate instruction to all PEs. When a
PE reads it, the PE writes back and invalidates its L1 cache and BBF,
while the CPE sends the Termination instruction to the PE. When
the PE has completed the writebacks and invalidations, it reads the
termination instruction and pauses. When the CPE notices that all
PEs have read the termination instruction, it stops SPADE-mode
execution and CPU-mode execution can restart.

Finally, to ensure correctness in the presence of BBFs, there
are two data layout requirements. First, the dense matrix row size
(𝐾) must be a multiple of the cache line size and, therefore, dense
rows start at cache line boundaries. Second, in SDDMM, the first
nonzero value of each tile in the output sparse matrix must be at the
beginning of a cache line. To satisfy these conditions, padding may
be inserted in the cMatrix, rMatrix, and the output sparse matrix
of SDDMM.

4.4 Processing Element Pipeline
The PE pipeline is designed for latency tolerance. It is composed
of three logical stages: sparse front-end, vOp Generator, and dense
back-end (Figure 6). We describe each stage next.
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Figure 6: SPADE processing element pipeline overview.
Sparse front-end. This stage receives the tile instruction from
the CPE and performs two functions: issue requests for the sparse
matrix data and generate the addresses of the dense matrix data.
As discussed in Section 4.2, the instruction has all the information
needed to load the sparse data. Since the sparse data is not reused,
the loads are issued by a Sparse Data Loader to the BBF and bypass
all caches. As the data is received, the hardware uses the information
in the r_ids and c_ids arrays to generate the addresses of the dense
cMatrix and rMatrix rows needed. Specifically, for each value in the
vals array, it generates a Tuple Operation (tOp) with: {begin address
of rMatrix row, begin address of cMatrix row, value from the vals
array}. For SDDMM, there is a fourth field: address of the entry in
the val array of the output matrix that will receive the result.
vOp Generator. The PE operates as a simple out-of-order vector
engine and has a Vector Register File (VRF). Each Vector Register
(VR) stores a full cache line. However, a tOp refers to dense matrix
rows, which may extend over multiple cache lines. Hence, the vOp
Generator stage breaks down each tOp into potentially multiple
vector-long operations called Vector Operations (vOps). The two
operands of a vOp are cache-line sized and thus fit in VRs.

Next, for each vOp, the vOp Generator allocates two VRs for the
two operands, and the Dense Data Loader requests the operands
from memory. These dense accesses are directed to either the L1
or the BBF, depending on the cache bypassing strategy chosen. A
vOp includes: {VR ID for the first operand, VR ID for the second
operand, value from the vals array}. In addition, for SDDMM, the
vOp also includes a destination VR ID (for the scalar output data),
and the offset of the output data in the destination VR. Eventually,
in SDDMM, this destination VR will contain scalar outputs from
multiple vector operations that generate the data in the destination
memory line. For SpMM, the implicit destination VR is the VR of
the rMatrix input. In all cases, the VRs allocated are tagged with
the memory line addresses requested. Note that, before allocating
a register, the hardware checks the VRF tags to see if the requested
data is already in a register from a previous operation. If so, the
data is not requested from memory.
Dense back-end. This stage pushes the newly-generated vOps
to the vOp Reservation Stations. Once the two operands of a vOp
are ready, the operation is dispatched to a pipelined SIMD unit,
which executes multiply-accumulate and multiply-reduce opera-
tions. The result is stored in the VRF. Since there are no explicit
store instructions, a Write-back Manager unit periodically writes
back the contents of dirty VRs to the memory subsystem.

This pipeline is designed for latency tolerance, maximizing the
overlap of memory accesses with each other and with computation.
First, the sparse front-end coalesces and overlaps read requests to
sparse data. Second, the pipeline overlaps sparse data read requests

issued in the front-end with requests issued in the subsequent
two stages (dense data read and write requests and sparse data
write requests). Finally, the back-end uses out-of-order execution,
overlapping read and write requests with each other and with
computation.

5 KEY ARCHITECTURE COMPONENTS
In this section, we provide more architectural details.

5.1 Detailed Pipeline Analysis
To understand the pipeline better, we explain it with an SpMM
example. Figure 7 illustrates with numbers in circles the correspon-
dence between the pipeline structures, the pipeline functionality
and the memory accesses. It also shows the processing of the first
tile of an input matrix in COO format.
Tile instruction 0○. Figure 7 shows the three arrays (r_ids, c_ids
and vals) of the sparse matrix. The tile instruction has the offset
of the tile (sparse_in_offset) relative to the beginning of the arrays
(given in an earlier initialization instruction) and the number of
non-zeros (NNZ_num) of the tile. In our example, these values are 0
and 7. This information is enough to address all the tile non-zeros.
Loading non-zeros 1○. The Sparse Data Loader generates cache-
line sized requests for data from the 3 one-dimensional arrays. We
assume that a cache line contains 4 elements. The figure shows the
response for the first request. For as long as there are free entries
in the Sparse Load Queue and the total tile NNZ_num has not
been reached, a new request is issued every cycle. In our example,
the next request would bring the next four elements of the arrays.
However, because NNZ_num is 7, only three of the elements of the
second request would be used. No more requests will be issued.
Determining dense addresses and generating tOps 2○- 3○. Ele-
ments from the Sparse Load Queue are popped and tuples of the
form (r_id, c_id, val) are isolated. In the figure, we show the first
tuple, namely (0, 2, a). The r_id and c_id are used to index an rMa-
trix row and a cMatrix row, respectively. The base addresses of the
dense matrices (which have been given in an earlier initialization
instruction) are incremented by the r_id and c_id displacements. In
our example, r_id is multiplied with the size of a dense row (K) and
added to the rMatrix base to create the address range rMatrix[0,0:𝐾];
the same is done with c_id to create cMatrix[2,0:𝐾]. The tOp Gen-
erator module takes these two address ranges plus the non-zero
value (a) and creates a Tuple Operation (tOp) (Figure 7).
Allocating vector registers and generating vOps 4○. The core
operation of SPADE is a SIMD operation between a sparse value and
dense rMatrix/cMatrix rows. In order for the SIMD operations to
take place, the rMatrix and cMatrix operands must be fetched from
memory and stored in VRs. The pipeline is equipped with a Vector
Register File (VRF) with a Vector Length (VL) equal to the system
cache line size. However, a dense row may extend over multiple
cache lines. For this reason, the tOp is broken down into finer-
grained Vector Operations (vOps) whose operands are cache-line
sized. In our example, we assume that the dense row size 𝐾 extends
over 2 cache lines (i.e., 𝐾=2*𝑉𝐿). Hence, 2 vOps are generated from
each tOp; one for the first half of the dense rows and one for the
second half of the dense rows.
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Figure 7: Pipeline structures, pipeline functionality, and memory access behavior.

The vOpGeneratormodule has a VRTag structure, which records
the addresses of the cache-line-sized data stored in each VR. In our
example, the vOp Generator module picks four empty registers and
tags them with the four addresses of the two vOps. As shown in the
figure, rMatrix[0,0:𝐾/2], cMatrix[2,0:𝐾/2], rMatrix[0,𝐾/2:𝐾], and
cMatrix[2,𝐾/2:𝐾] are assigned to VR1, VR2, VR3, and VR4.

A desired vOp operand may already be in the register file from a
previous operation. Consequently, before filling an entry in the VR
Tag, the vOp Generator checks whether the address is already in the
VR Tag. If so, the vOp Generator picks the corresponding VR for the
vOp. The VR Tag structure is organized as a content-addressable
memory (CAM).

There is also an auxiliary VR Status RAM that has additional
status bits for each VR. They indicate if the entry is dirty or unused.
They can be updated on a VR access and allocation/deallocation.
Pushing vOps into the vOp reservation stations 5○. Once the
VRs of vOps have been allocated, the vOps are pushed to slots in the
vOp Reservation Stations for out-of-order execution. Figure 7 shows
the two slots used by vOp1 and vOp2. A vOp carries additional
information beyond the VR ids. It carries the input scalar value
(a in our example) and, not shown in the figure, information that
records: (i) inter-vOp dependencies and (ii) offsets of sub-cache
line operands. These offsets are translated to masks to prevent
overwriting unwanted cache-line contents.
Loading dense values 6○. The Dense Load Queue issues requests
for the operands of the vOps. These are cache-line requests for rMa-
trix and cMatrix data. If the VRs corresponding to these addresses
already contain the data from a previous operation, no request is
issued to memory.
Dense data arrival and execution 7○- 8○. The vOps execute out of
order. A vOpwaits in a vOp reservation station if an operand has not
yet arrived frommemory or has a data dependence with an operand
of an earlier vOp. Once the vOp receives all its operands and its

dependencies are resolved, the vOp is dispatched for execution in
the pipelined SIMD.

Data dependence tracking between vOps is simple for SpMM and
SDDMM. Consider SpMM first. A vOp can only write to an rMatrix
cache line and, furthermore, it must read the line first. Moreover,
when the vOp Generator module accesses the VR Tag for a vOp,
it marks that the selected VR will be both read and then written.
As a result, the only data dependence that can exist between two
different vOps is RAW—i.e., the second vOp will read the value that
the first vOp will write. The dependence is detected and recorded
when the vOp Generator accesses the VR Tag for the second vOp.

With this design, the pipeline may process vOps out of program
order. This is not a problem because the accumulation operation
of SpMM is associative. The same argument is true for SDDMM,
except that the output is a single scalar rather than a vector.
Writing data back to memory 9○. SPADE does not have explicit
store instructions. vOps simply update the VRF. Hence, dirty VRs
must be written back to memory in the background to free-up
VRs to allocate new operands. Two extreme approaches are: (1) to
write back a VR as soon as it gets dirty and (2) to write back VRs
only when the VRF is all filled with dirty VRs. Unfortunately, the
first approach causes an excessive number of stores to the memory
subsystem, and the second one places writebacks in the critical path.
Therefore, SPADE has a Write-back Manager unit in the pipeline
that uses an intermediate approach: it initiates writebacks when
the fraction of VRs that are dirty exceeds a certain threshold, and
stops when the fraction falls below a second threshold.

5.2 Cache Bypassing
The ability of SPADE to provide a flexible cache hierarchy, with
the capability to bypass the caches is important. The reason is that
different input matrices can use the cache hierarchy very differently.
To understand the choices, consider the different data structures in
an SpMM and SDDMM operation.



ISCA ’23, June 17–21, 2023, Orlando, FL, USA G. Gerogiannis, S. Yesil, D. Lenadora, D. Cao, C. Mendis, J. Torrellas

Table 1: Microarchitecture of SPADE and its host CPU multicore system, modeled after a 2-socket Ice Lake with 56 cores total.
Parameter Ice Lake SPADE Parameter Ice Lake SPADE Parameter Ice Lake SPADE

Core PE Core PE Core Total PE Total

Frequency 2.6/3.5GHz
(base/turbo) 0.8GHz Physical vector

registers 224 64 (WB thres:
0.25, 0.15)

L1D
size 48KB 2.625 MB 32KB 7.2MB

Issue width 5 uOp / cycle 1 vOp / cycle Load queue size 128 entries 32 (dense) +
6 (sparse)

L1I
size 32KB 1.75 MB - -

ROB size 352 entries N/A Store queue size 72 entries 8 entries BBF - - 32 entries
64B/entry 0.45MB

SIMD FP
units 3 1 (single precision) Phys. register

allocation
Register alias

table
VR tag
CAM

Victim
cache - -

16KB
2-way

64B/entry
3.6MB

OoO execution
support

160
scheduler
entries

32 vOp
res. station
entries

Frontend
complexity

High: L1I,
branch predictor,

decode, etc.

Low: Simple
address

calculation

L2
size 1.25 MB 70 MB 1.25 MB

per 4 PEs 70 MB

Integer units yes no (hardwired
address calculation)

Frontend - Backend
interface

Allocation queue
140 entries

tOp queue
16 entries

LLC
size

1.5
MB

84
MB

1.5 MB
per 4
PEs

84
MB

Speculative
execution

yes: shadow
RAT etc. no # of cores or PEs

in 2 sockets 56 224
TOTAL
DRAM
BW

max theoretical:
410GB/s

max. theoretical:
410GB/s; max.

observed: 304GB/s

For the input sparse matrix data, since each tuple is read once,
used for a single tOp, and never reused again, it is best to bypass
all caches and avoid polluting them.

When it comes to the rMatrix data, recall that individual rMatrix
rows are reused only by a single PE to avoid data races. Since L2
caches and lower-level caches are shared by multiple PEs, one needs
to be careful to cache rMatrix data, lest it pollute the caches for
other PEs. Consequently, we identify three cases, depending on the
pattern of non-zeros in the sparse input matrix and the size and
order of tiles processed by a PE, as determined by barriers.

First, if the VRs have high reuse in the VRF, then caching the
rMatrix does not offer significant benefits and, therefore, it is best
to bypass the caches. Second, if the size and schedule of tiles is such
that the distance between reusing rMatrix lines is very large, then
VR reuse in the VRF will be low, and it is best to cache the lines, so
they can still be in the caches when needed. The third case is like
the second one except that the working set of reused rMatrix lines
is small at any time, while the overall footprint of rMatrix lines is
large. Caching all the rMatrix lines would pollute the caches for
small gains. Hence, we augment the BBF with a small Victim Cache.
The few rMatrix lines in the working set bypass the caches and use
the victim cache in the BBF.

For the cMatrix data, caching is the best choice. The reason is
that, inside a tile, data is processed in row order. As a result, the VRs
in the VRF rarely have good reuse. Finally, for the output sparse
matrix of SDDMM, cache bypass is most beneficial. The reasons
are that bypassing eliminates cache pollution and, in addition, the
output sparse matrix has high reuse in the VRF, as the vOps that
access a given output cache line are bunched up.

6 METHODOLOGY
A. Architectures: Table 1 lists the architecture parameters of the
simulated SPADE accelerator and its host CPU multicore. The latter
is modeled after a dual-socket Intel Ice Lake server with 28 cores per
socket. Its architectural details are taken from the literature [32, 74].
The SPADE PEs cycle at only 0.8GHz and, for hardware simplicity,
only issue one tOp and vOp every cycle. A PE has 64 physical vector
registers. As soon as 25% of them are dirty, the writeback manager
starts writing them back until only 15% are dirty. Four PEs share

the L2 of a CPU core. Neither L2 nor the LLC are partitioned. We
evaluate SPADE with cycle-level simulations using SST [60]. To
simulate DRAM, we integrate DRAMsim3 [41] in SST.

As baseline machines to compare to SPADE, we use a CPU,
a GPU, and the state-of-the-art Sextans SpMM accelerator [64],
which is an FPGA-based accelerator connected to its host through
PCIe. The CPU baseline platform is the dual-socket Intel Ice Lake
server described above. The GPU baseline platform is a server-class
NVIDIA V100 connected to its host through PCIe, with 16GB of
global memory and 900GB/s achievable global memory bandwidth.
We simulate Sextans using SST and DRAMsim3. For fairness, we
scale-up Sextans by using 16 PE groups (PEGs), each with 16 PEs
clocked at 0.8 GHz. Each PE is equipped with 16 Processing Units
(PUs).We scale-up the capacity of the on-chip scratchpads to 170MB
(which is more than the total capacity of the SPADE cache subsys-
tem). We additionally: (1) do not take into account AXI-related
FPGA limitations, (2) disregard intra-PEG load imbalance, and (3)
idealize the Sextans computation engine by only accounting for
the time needed for memory accesses. Finally, we compress the
sparse data so that each {row_id, col_id, val} tuple consumes 8B,
and implement the address interleaving used by the authors. Al-
though SPADE could also benefit from such optimizations, we do
not employ them for SPADE.
B. Benchmarks: We use 10 large graphs from SparseSuite [17]
coming from different domains (Table 2). We present our evaluation
for two different dense row sizes (K=32 and K=128). We group
matrices based on whether they benefit from tiling or scheduling
barriers. If they always benefit from them, we say the matrices have
a high Restructuring Utility (RU); if they sometimes benefit from
them (e.g., in only one of SpMM or SDDMM, or only for K=128),
we say they have a medium RU; for the remaining matrices, we say
that they have a low RU. Table 2 shows the RU of the matrices.
C. Software kernels for the baseline machines: For the Ice
Lake server, we use the Inspector-Executor (IE) kernel from Intel’s
MKL [70] library for SpMM. We believe that MKL IE already em-
ploys optimizations such as tiled execution. Since MKL does not
include an SDDMM kernel, we use the SDDMM implementation
from TACO [38] (similar to prior work [28]). TACO does not in-
clude an input-aware kernel. The kernels were compiled using the
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Table 2: Benchmark graphs evaluated.

Graph (Short Name) Domain Nodes
(Mill.)

Edges
(Mill.)

Density
(Order)

Restructuring
Utility

asia_osm (ASI) Road graph 11.9 25.4 10−7 Low
com-LiveJournal (LIV) Social network 4.0 69.4 10−6 Medium
com-Orkut (ORK) Social network 3.1 234.4 10−5 High
coPapersCiteseer (PAP) Citation graph 0.4 32.1 10−4 Medium

delaunay_n24 (DEL) Geometry
problem 16.8 100.7 10−7 Low

kron_g500-logn20 (KRO) Synthetic
graph 1.0 89.2 10−5 High

mycielskian17 (MYC) Mathematics
(fractals) 0.1 100.2 10−2 High

packing-500x100x100-b050
(PAC)

Numerical
simulations 2.1 35.0 10−5 Low

road_usa (ROA) Highway graph 23.9 57.7 10−7 Low

Serena (SER) Environmental
science 1.4 64.1 10−5 Medium

2022.2.1 version of IntelOne’s DPC++/C++ compiler. For the GPU,
we use the SpMM kernel from Nvidia’s cuSPARSE library [48], and
the SDDMM kernel from dgSPARSE [30] using CUDA 11.6. We
profiled both the transfer time and the kernel execution time.

In our baselines, we use the CSR format for high performance. In
SPADE, we use the COO format. This is conservative, since SPADE
could also benefit from CSR’s reduced memory footprint.
D. Chip prototype: We prototyped in a chip a simplified SPADE
design called miniSPADE and taped it out using TSMC 65nm tech-
nology. EachminiSPADE die (Figure 8) consists of 4 in-order SPADE
PEs. Each PE is equipped with a bypass buffer (BBF) and an L1
cache. The die also includes a shared L2 cache and a memory buffer.

Figure 8: The miniSPADE die.

At 65nm, the die
size is 1.75mm x
1.00 mm, domi-
nated mainly by
SRAM for the caches
andmemory buffer.
At 200MHz, the
power consump-
tion of the die is
30mW. Due to the
simplified PE design and the large feature size, miniSPADE is not
a fully representative depiction of the actual envisioned system.
However, it serves as a proof-of-concept for various SPADE features
(e.g., front-end, tOps, vOps, and cache bypassing).
E. Area and power estimation: To estimate the area and power
of SPADE, we model the L1D, BBF, victim cache, and all the pipeline
memory structures (CAMs, RAMs, and registers) using CACTI [11]
targeting 32nm. For the single-precision FP SIMD unit, we use
the numbers from [20]. Our synthesis of miniSPADE suggests that
additional logic (e.g., multiplexers and finite statemachines) account
for less than 5% of the miniSPADE pipeline area. Thus, for SPADE,
we conservatively assume that the additional logic accounts for 20%
of its pipeline area and power. Since Ice Lake uses 10nm technology,
we scale both the power and area of SPADE down to 10nm by using
the scaling factors from [66]. Finally, we use CACTI to estimate the
L2 and LLC power consumption and DRAMsim3 for the DRAM.

7 EVALUATION
A. Performance comparison to CPU and GPU: We consider
three SPADE variants: SPADE Base, SPADE Opt, and SPADE2 Base.
The SPADE Base variant does not use any flexibility knobs: sparse

matrix tiles always have a row panel size equal to 256 rows and
a column panel size equal to the total number of columns in the
matrix; the rMatrix and cMatrix data is accessed without bypassing
caches; and there are no scheduling barriers.

To configure SPADE Opt, we test: (1) three different tile row
panel sizes and three column panel sizes; (2) accesses to rMatrix
that bypass or do not bypass the cache hierarchy; and (3) for the
medium-sized column panels that we test, not inserting or inserting
scheduling barriers to limit the LLC working set. For the small
and large column panels, we do not use scheduling barriers. The
parameters tested are shown in Table 3. For the MYC sparse matrix,
which has a very small number of rows, we also test a row panel
size of 16 to mitigate load imbalance. Although SPADE supports a
large space of different parameter settings, we limit our analysis to
these. Then, we set SPADE Opt to be, for each individual matrix,
the version with the best-performing parameter settings that we
tried. SPADE Opt is the proposed system variant in this paper.

Table 3: Parameters examined to set SPADE Opt.

Dense Row
Sizes

Row Panel
(RP) Sizes

Column Panel
(CP) Sizes

rMatrix
Caching
Strategies

Scheduling
Barriers

K=32 64, 256,
1024

8192, 524288,
all_columns

No bypass,
bypass

No,
yes for CP=524288

K=128 64, 256,
1024

2048, 131072,
all_columns

No bypass,
bypass

No,
yes for CP=131072

SPADE2 Base is a scaled-up version of SPADE Base with double
PE count, DRAM bandwidth, LLC size, and link latencies.

Figure 9 shows the speed-up of the server-class GPU (assuming
zero host-device data transfer overhead), SPADE Base, SPADE Opt,
and SPADE2 Base over the baseline CPU server. For matrices that
do not fit in the GPU memory (i.e., DEL and ROA for K=128) we
assume a GPU speedup over the CPU of 1.

As shown in Figure 9, the speedups of SPADE Base, and the effec-
tiveness of SPADE’s flexibility as demonstrated by SPADE Opt, vary
for each matrix category. First, for low RU matrices, the SPADE Base
speedups are lower. This is because matrices in this category show
limited reuse opportunities and, therefore, the SPADE Base speedup
mainly stems from better utilization of the available memory band-
width. In addition, we see that the benefit of SPADE Opt’s flexibility
is smaller. The reason is that SPADE Base with very large tiles is al-
ready a good fit for this category. Furthermore, without accounting
for the host-device data transfer, the GPU is faster than SPADE Opt,
due to having an achievable memory bandwidth (900GB/s) that is
much higher than the maximum observed bandwidth of SPADE
Opt (304GB/s). Although SPADE2 Base only has a bandwidth of
600GB/s, it is competitive with the GPU baseline.

For high andmedium RUmatrices, both the SPADE Base speedup
and the flexibility benefits of SPADE Opt are higher. A sizable por-
tion of the requests are served from caches with low-latency and
without introducing DRAM bandwidth pressure. The SPADE PEs
can utilize this pattern, by being able to satisfy a larger number of
requests from the caches while long-latency main memory ones are
pending, hence hiding the latency of the latter. By using the flexi-
bility knobs, SPADE Opt outperforms the GPU for most matrices
in these categories. The speedups of SPADE2 Base are higher.

Overall, on average across all the environments shown in Fig-
ure 9, SPADE Base, SPADE Opt, and SPADE2 Base are 1.67x, 2.32x,
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Figure 9: Speedup of the SPADE variants and the GPU (ignoring data transfers) over the CPU. Matrices are grouped into low,
medium, and high Restructuring Utility (RU).
and 3.52x faster, respectively, than the CPU. The corresponding
speedups over the GPU are 1.03x, 1.34x, and 2.00x. The performance
gap between SPADE Opt and SPADE Base reveals that flexibility
is a key feature for an SpMM/SDDMM accelerator. Further, the
performance of SPADE2 Base suggests that our system is scalable.
Our evaluation reveals that SPADE is a superior architecture in
comparison to GPUs even if host-to-device data transfers and address
remapping overheads are ignored. If these overheads are taken into
account (Figure 2), SPADE Opt is 43.4x faster than the GPU.
B. Pipeline analysis: To provide further insight into the effect
of some of the system optimizations, we perform an optimization
analysis for SpMM with K=32. We evaluate 5 different SPADE sys-
tem configurations by progressively adding system features. Table 4
presents the configurations.

Table 4: Evaluated SPADE configurations.
Config. SPADE features included

CFG0 Tile instructions, 3-entry sparse load queue, overlap of sparse
and dense requests, 16 vOps RS entries, 56 SPADE PEs at 3.2GHz

CFG1 CFG0 with 32 vOps RS entries
CFG2 CFG1 with 224 SPADE PEs at 0.8GHz
CFG3 CFG2 with 6-entry sparse load queue
CFG4 CFG3 + sparse data bypasses the cache hierarchy (≡ SPADE Base)
CFG5 CFG4 + flexible execution (≡ SPADE Opt)

Since SPADE is built for high latency tolerance, we evaluate
each of the SPADE configurations for three different link latencies.
Specifically, we consider the average round-trip latency of an access
from the PE to a memory controller, without including the latencies
to access the memory or any of the caches on the way. We call
this time the link latency (LL). We set this LL to 60ns (default for
our SPADE architecture), 480ns, and 960ns. For CFG5, we only
evaluate LL=60ns to reduce the number of experiments required.
For each configuration and LL value, Figure 10 shows the number of
DRAM accesses, the number of LLC accesses, the average number

of requests that the pipelines collectively issue per cycle, and the
execution time. The figure shows the geometric mean of the metrics
across all the matrices, normalized to CFG0 for 60ns LL.

Compare the different configurations for a given LL. A high
number of requests per cycle indicates active pipelines. It can mean
either enhanced latency tolerance or decreased latency due to better
utilization of the caches. If an increase in requests per cycle is not
accompanied by a decrease in DRAM and/or LLC accesses, it is an
indicator of increased latency tolerance.

From the figure, we see that the optimizations progressively ap-
plied in CFG1, CFG2, and CFG3 result in an increased number of
requests per cycle being generated without the LLC or DRAM ac-
cesses decreasing. Hence, they increase latency tolerance. CFG4 and
CFG5 increase the number of requests per cycle while decreasing
the LLC and DRAM accesses, and thus decrease the average request
latency. We also see that the reduction in execution time induced
by the progressive optimizations increases as LL increases.
C. Evaluation of flexibility knobs: We now show how the
different flexibility knobs of SPADE benefit different sparsematrices.
Recall that the knobs are: different tile sizes, cache bypassing or
not, and scheduling barriers or not. First, we perform a sensitivity
analysis of how the tile row panel (RP) and column panel (CP)
sizes affect the execution time. We disable bypassing and insert
no barrier. Figure 11 shows the results for three matrices. It shows
the execution times normalized to the execution time of the worst-
performing setting. Thus, lower values and darker colors are better.
We observe that KRO, which belongs in the High RU category,
benefits from tiles with a small CP and a large RP since, in this way,
cMatrix reuse opportunities can be maximized. On the other hand,
DEL, which has low RU, benefits from tiles with a CP that extends
over all of the columns. Finally, for MYC, which has a small number
of rows, the selection of small RPs mitigates load imbalance.



SPADE: A Flexible and Scalable Accelerator for SpMM and SDDMM ISCA ’23, June 17–21, 2023, Orlando, FL, USA

DRAM
accesses

LLC
accesses

                    Link Latency = 60 ns

Requests
per cycle

Execution
time

DRAM
accesses

LLC
accesses

                    Link Latency = 480 ns

Requests
per cycle

Execution
time

DRAM
accesses

LLC
accesses

                    Link Latency = 960 ns

Requests
per cycle

Execution
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
et

ric
 n

or
m

al
ize

d
to

 C
FG

0 
LL

=6
0n

s

5.9|4.5SpMM K=32
CFG0 CFG1 CFG2 CFG3 CFG4 CFG5

Figure 10: Impact of progressively adding system features to SPADE system configurations.
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Figure 11: Execution time of SpMM with K=32 for different
tile column/row panel sizes, normalized to the worst param-
eter setting. Lower numbers and darker colors are better.

Table 5 examines the impact of applying scheduling barriers.
It shows the percentage change in execution time of the setting
with medium RP and CP sizes and no cache bypassing when we
apply barriers. Positive numbers are slowdowns. We observe that
the effect of barriers is matrix-dependent. It can either increase the
execution time (by up to 80.5% in ASI SpMM with K=128) or reduce
it (by up to 57.1% in ORK SpMM with K=128).

Table 5: Percentage change in execution time by applying
scheduling barriers. Positive numbers are slowdowns.

Algorithm Low RU Medium RU High RU
& K value ASI DEL PAC ROA LIV PAP SER ORK KRO MYC
SpMM32 22.8 41.1 4.3 31.7 24.2 0 1 -29.6 -12.6 0
SDDMM32 9 6.5 0.6 5 -15 0 0.6 -48.3 -1.2 0
SpMM128 80.5 76.6 12.8 56.2 34 47.7 9.4 -57.1 -37 0
SDDMM128 19.6 37.8 8.2 22.9 -16.9 13.2 -3.8 -53.7 -36.9 0

Table 6 examines the impact of applying cache bypassing for the
rMatrix. For each benchmark, we pick the setting of tile RP and CP
sizes and scheduling barriers that delivered the best performance.
On top of this setting, we apply cache bypassing. The table shows
the percentage change in execution time when we apply cache
bypassing. Positive numbers are slowdowns. We observe that, for
most of the benchmarks, rMatrix cache bypassing is beneficial. It
can reduce the execution time by up to 32.9% in ORK SpMM with
K=128. However, it can also slow down the execution. For example,
in KRO SpMMwith K=32, cache bypassing leads to a 169.2% increase
in execution time. Recall from Figure 11 that KRO benefits from a
large row panel. Unfortunately, this row panel size overflows the
victim cache in the BBF, leading to many main memory spills.

Table 6: Percentage change in execution time by bypassing
the caches for the rMatrix. Positive numbers are slowdowns.

Algorithm Low RU Medium RU High RU
& K value ASI DEL PAC ROA LIV PAP SER ORK KRO MYC
SpMM32 -7 -6.7 4.2 -2.3 -0.8 13.9 -1.8 -17.2 169.2 0.7
SDDMM32 -3.2 0.1 -0.3 -1.2 -6.8 0.2 -0.1 -7 0.2 0.1
SpMM128 -9.9 -10.4 -9 -12.2 -0.7 -7.1 -14.4 -32.9 -6.3 -1.9
SDDMM128 -4.5 -0.3 -1.1 -1.9 -13.2 -6.3 -12.8 -18.7 -8.4 -2.7

Overall, the input-dependent impact of tiling, scheduling barriers,
and cache bypassing justifies our emphasis on flexibility.

D. Overhead of mode transitions: When execution repeatedly
interleaves CPU and SPADE mode sections, it will repeatedly suffer
mode transition overheads. We have measured such overheads for
our benchmarks. The transition from SPADE to CPU mode involves
writing back the PEs’ L1 caches to the L2s, writing back the BBFs
and victim caches tomemory, and invalidating L1s, BBFs, and victim
caches. For our benchmarks, this overhead is on average 0.2% of
the SPADE mode duration.

The overhead of the transition from CPU to SPADE mode is
generally application dependent. We assume an execution that
repeatedly interleaves CPU sections and SPADE PEs executing
SpMM, or CPU sections and SPADE PEs executing SDDMM. We
additionally assume that the CPU updates a dense matrix that will
be an input for SPADE (i.e., cMatrix for SpMM and rMatrix or
cMatrix for SDDMM); this is a reasonable assumption for social
network GNN applications. For SpMM, all that is needed is to write
back and invalidate the CPU’s L1 caches. There is no action to take
for the two structures that SPADE PEs will access through the BBFs
(rMatrix and input sparse matrix): the rMatrix is not accessed by
the CPU and the input sparse matrix is only read. For SDDMM, the
transition needs to write back and invalidate the CPU’s L1 caches
and write back and invalidate the rMatrix from the caches. This
is because, of the three structures that SPADE PEs access through
the BBFs (the rMatrix and the input and output sparse matrices),
only the rMatrix is a potential concern: the sparse output matrix
is not accessed by the CPU and the input sparse matrix is only
read. For our benchmarks, these transition overheads are negligible
for SpMM and on average 3.4% of the SPADE mode duration for
SDDMM. Overall, transition overheads are small.

In all of our experiments, when computing the execution time
of an application on SPADE, we have included two overheads: the
start-up overhead due to caches starting empty rather than warmed-
up and the termination overhead, which is the above overhead of
transitioning from SPADE to CPU mode. For our benchmarks, the
start-up overhead is on average 0.9% of the SPADE mode duration.
E. Scalability: We perform a strong scaling analysis of SPADE.
Figure 12 shows the speedup of different SPADE system sizes over
the baseline 224-PE SPADE (as described in Table 1), which has
the default link latency of 60ns. SPADE2 Base, SPADE4 Base, and
SPADE8 Base are scaled-up versions with 2x, 4x, and 8x the PE
count, DRAM bandwidth, LLC size, and link latency. For reference,
the figure also shows bars with linear scaling.

SPADE scales well in most benchmarks. The exceptions are MYC
and KRO, which have few sparse matrix rows; load imbalance hin-
ders their strong scaling. Superlinear speed-up is observed in some
cases due to the increase in LLC size. We repeated this experiment
for 𝐾=128 and for SDDMM, and observed similar results.



ISCA ’23, June 17–21, 2023, Orlando, FL, USA G. Gerogiannis, S. Yesil, D. Lenadora, D. Cao, C. Mendis, J. Torrellas

LIN
-

EA
R ASI DEL PA

C
ROA LIV PA

P
SE

R
ORK

KR
O

MYC AVG

Benchmark

0

2

4

6

8

10

Sp
ee

du
p 

vs
 S

PA
DE

1 
Ba

se SpMM K=32
SPADE2 Base
SPADE4 Base
SPADE8 Base

Figure 12: Scaling analysis of SPADE.
F. Performance comparison to an ideal Sextans accelerator:
Sextans [64] is a high-performance FPGA-based accelerator for
SpMM. Like other accelerators, it does not address the cost of host–
device data transfers. It adopts a one-size-fits-all execution model
based on data streaming and sequentially-batched phases, which
has some similarities with applying scheduling barriers in SPADE.
Its execution model suffers from multiple reads to sparse data when
the dense row size K increases. It can also lead to multiple accesses
to the dense input for large matrices (e.g., ROA, DEL and ASI) when
the dense output does not fit on the Sextans scratchpad.

We simulate Sextans and compare it to SPADE. As discussed
in Section 6.A, we idealize many parts of the Sextans architecture
in our simulation and disregard the host data transfer cost. For
these reasons we call it ideal Sextans. Note that by removing the
FPGA-related limitations, our Sextans version achieves a maximum
memory bandwidth utilization of 50%, which is significantly higher
than the 15% reported in [64].

Figure 13 shows the bandwidth utilization, DRAM accesses, and
speedup of SPADE Opt, all normalized to Sextans (for SpMM K=32).
SPADE Opt issues many concurrent requests for both sparse and
dense data, across different matrix regions. This results in a 40%
higher average bandwidth utilization. In addition, by supporting dif-
ferent parameter settings on a per-matrix basis, SPADE eliminates
redundant memory accesses, issuing 32% fewer memory accesses
(up to 73% for ROA). Moreover, thanks to SPADE Opt’s decoupled
and flexible design, SPADE Opt is much faster than ideal Sextans.
Its average speedup is a significant 2.4x (and a maximum of 5.1x).
Ideal Sextans performs marginally better only for ORK and LIV
(10% and 3%). Recall from Table 5 that these matrices benefit from
barriers, which resemble the Sextans execution strategy.
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Figure 13: Bandwidth utilization, DRAM accesses, and
speedup of SPADE Opt, all normalized to ideal Sextans.

For K=128, it can be shown that SPADE Opt’s average speedup
is 2.6x. Sextans does not support SDDMM. Finally, including the
PCIe data transfer overhead for Sextans, the average SPADE Opt
speedup is 52.4x (for a single SpMM iteration).
G. Area and power evaluation: Augmenting a dual-socket Ice
Lake [32] with the SPADE PEs, L1 caches, BBFs, and victim caches

adds a very small area and power overhead. This is because, com-
pared to the 5-issue speculative Xeon core, a SPADE PE has a simple,
single-issue pipeline (Table 1). Further, the PE L1 and victim cache
have a single port and low associativity. Using the tools of Sec-
tion 6.E, we estimate that the 224 SPADE PEs with their L1s, BBFs,
and victim caches consume 20.3W and take 24.64𝑚𝑚2 at 10nm.
Compared to a dual-socket Ice Lake server that has a TDP of 470W
and a combined die size of 1000𝑚𝑚2 [62], the SPADE power is 4.3%
of the host TDP, and its area is 2.5% of the host area.

In SPADE-mode execution, the server disables the Xeon cores
and L1 caches, and the SPADE PEs use the server’s memory sub-
system. In this environment, Figure 14 breaks down the power
consumed into the fraction spent by the 224 SPADE PEs, L1s, BBFs,
and victim caches; by the L2 caches; by the LLC; and by the DRAM.
We conservatively assume that the PE pipelines operate with maxi-
mum dynamic power. We see that the SPADE PEs, L1s, BBFs, and
victim caches consume on average only 14% of the total power. The
power dissipated in the lower levels of the cache hierarchy is also
low because the sparse matrix and (sometimes) the rMatrix bypass
the caches. Finally, DRAM power accounts for more than 50% of
the total power.
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Figure 14: Breakdown of the power consumed in SPADE-
mode execution for SpMM and K=32.

8 RELATEDWORK
A. SpMM/SDDMM accelerators: Several accelerators have been
proposed for either both or one of SpMM and SDDMM [28, 64, 65].
Extensor [28] proposes a technique to eliminate redundant com-
putation in sparse algebra. This technique only yields significant
benefits in kernels where more than one matrix is sparse (e.g.,
Sparse Matrix Sparse Matrix multiplication). For SpMM and SD-
DMM, Extensor’s speedups are lower and they mainly stem from
placing specialized units closer to memory. Tensaurus [65] relies
on a custom compression format to ensure streaming accesses of
sparse data, a specialized PE array, and HBM. Sextans [64] was
described in Section 7.F. Recently, the scalability of SpMM was
investigated in PIUMA, which is an architecture designed by Intel
for graph analytics at scale [1, 2]. Thanks to the huge capacity of
the PIUMA memory pool, the number of data moves from host
CPU to PIUMA is minimized.

These prior works do not provide a solution for fine-grained
interleaving between host and accelerator phases. For example,
Tensaurus and Sextans assume that the matrices already reside in
the accelerator’s HBM and do not account for the low bandwidth of
host-device data transfers. In addition, none of these works offers
knobs for flexible execution catered to the unique characteristics of
SpMM and SDDMM .
B. GNN and sparse Deep Neural Network (DNN) accelerators:
There are several accelerator and software optimization proposals
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for accelerating GNNs [8, 21, 22, 24, 31, 36, 40, 43, 45, 59, 71–73, 75].
They often focus on overlapping the memory intensive SpMM with
compute-intensive dense matrix multiplications. However, these
approaches are not applicable to accelerate SpMM and SDDMM as
stand-alone primitives. Accelerators [27, 54, 58] and CPU extensions
such as SAVE [23] and VEGETA [34] have been proposed to increase
the utilization of the compute units in sparse DNN applications.
Although these approaches are effective for the low sparsity levels
of DNNs (10%-90%), for the high sparsity levels of real world graphs
(Table 2), the memory subsystem becomes the bottleneck. In order
to accommodate such sparsity levels, SPADE interacts with the
memory subsystem in an efficient and flexible manner.
C. Eliminating host-accelerator transfer overhead: In some
architectures such as the Qualcom Snapdragon [12], the GPU and
CPU are integrated in the same SoC and share the datapath and
memory. Although this approach may be viable for mobile devices
or desktops, integrating a server-class CPU (e.g., a 500𝑚𝑚2 Ice
Lake) with a server-class GPU (e.g., a 815𝑚𝑚2 V100 [51]) in the
same die is currently impractical. Instead, combining the small
area footprint of SPADE with the reuse of the area-hungry lower
levels of the CPU caches is a more attractive alternative. Recently,
NVIDIA introduced Grace/Hopper [52], where GPUs are able to
access the host CPU main memory through the high-bandwidth
NVLink interconnect. Although such high-bandwidth interconnects
can alleviate much of the CPU-GPU data transfer penalty [18],
it is still unknown whether this new approach will completely
eliminate the inefficiencies of prior CPU-GPU virtual address space
sharing methods [4, 69]. With SPADE, we show a way to eliminate
both overheads that does not require precious high-performance
network resources. Finally, our evaluation reveals that even in
the ideal case when both data transfer and address remapping
overheads are eliminated in GPUs and accelerators, SPADE still
outperforms both GPUs and accelerators (Figures 9 and 13). Recent
trends towards built-in HBM in high-end CPU servers [63] are only
going to increase the performance benefits of SPADE.
D. Flexible accelerators: Motivated by the importance of flexibil-
ity in graph and sparse linear algebra algorithms, researchers have
developed accelerators that can be reconfigured to support differ-
ent algorithm variants or dataflows [16, 19, 42, 47], compression
formats [57], data-dependent execution patterns [7], or that use het-
erogeneity [56] as a flexibility enabler. Transmuter [53] is a CGRA-
based architecture that reconfigures its memory type and dataflow
to accommodate kernels of varying arithmetic intensity. SPADE
supports flexibility through a tile-based ISA, providing flexibility
knobs tailored to the unique characteristics of SpMM/SDDMM.
E. Flexible execution strategies in CPU/GPU systems: Input-
aware techniques such as enhancing locality through reordering [6,
10, 29, 46], improving load-balancing [30] through row partitioning,
or selecting the appropriate execution strategy based on machine
learning [76, 77] improve SpMM and SDDMMperformance in CPUs
and GPUs. These techniques are orthogonal to SPADE.

9 CONCLUSION AND FUTUREWORK
This paper proposed SPADE, a hardware accelerator for SpMM
and SDDMM. SPADE avoids data transfer overheads by tightly-
coupling accelerator PEs with the cores of a multicore, as if they

were advanced functional units—allowing the accelerator PEs to
reuse the cores’ memory system and virtual addresses. SPADE at-
tains flexibility and programmability by supporting a tile-based ISA.
Simulations of SPADE with 224-1792 PEs showed its high perfor-
mance and scalability. A 224-PE SPADE system is on average 2.3x,
1.3x, and 2.5x faster than a 56-core CPU, a server-class GPU, and a
state-of-the-art SpMM accelerator, respectively, without accounting
for the host-accelerator data transfer overhead. If such overhead is
taken into account, the 224-PE SPADE system is on average 43.4x
and 52.4x faster than the GPU and the accelerator, respectively.
Further, SPADE has a small area and power footprint

Our future work involves distributing SPADE acceleration across
the nodes of a large distributed cluster, and augmenting SPADE to
support more operations. SPADE can already support Sparse Matrix
Vector Multiplication (SpMV) and Sampled Dense Vector-Dense
Vector Multiplication (SDDVV). We believe that, with lightweight
modifications, it can support a richer set of primitives (e.g., TTV,
TTM, and MTTKRP [38]).

APPENDIX A: A TILED SPARSE MATRIX
This section shows the tiled sparse matrix representation that we
use. Figure 15(a) shows a 4x4 sparse matrix, represented with the
three conventional arrays in COO format. Figure 15(b) shows the
representation of the matrix when tiled with a row panel size and a
column panel size equal to two. The entries of the r_ids, c_ids, and
vals arrays have been reordered, consolidating the per-tile entries
together. In addition, we have the tiling metadata: offsets of the be-
ginning of each tile (sparse_in_start_offset); number of non-zeros in
each tile (tile_NNZ_num); for SDDMM only, the offsets of the begin-
ning of each tile in the output sparse matrix (sparse_out_start_offset,
necessary because output tiles have to be aligned to cache lines); and
which row panels each tile belongs to (tile_row_panel_id), needed
so that all the tiles in a panel row are executed by the same PE to
avoid data races in SpMM.
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Figure 15: Representation of a tiled sparse matrix.
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