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Abstract—The paper describes research challenges arising
from the increasing interest in supporting more immersive and
more intelligent environments that enable the next generation of
seamless human and physical interactions. These environments
span the gamut from augmented-physical to virtual, and are
referred to hereafter as the Metaverse. We focus on challenges
that constitute a natural extension of Internet of Things (IoT)
research. Among the key applications of IoT has always been the
integration of physical and cyber environments to endow “things”
with a better contextual understanding of their surroundings, and
endow human users with more seamless means of perception
and control, ranging from smart home automation to industrial
applications. This IoT vision was based on the premise that the
number of physical “things” on the Internet will soon significantly
outpace humans. Intelligent IoT further envisions a proliferation
of edge intelligence with which humans will interact. The paper
elaborates the research challenges that extrapolate the above
trajectory.

Index Terms—Metaverse, IoT, Cyber-Physical Systems, AI,
Machine Learning.

I. INTRODUCTION

The rebranding of Facebook as Meta in 2021 [46], brought

to the forefront debates over the timeliness and viability of

the underlying technology roadmap.1 Taking a step back to

today’s capabilities and demands, this paper develops a vision

for emerging research challenges and applications in the space

of cyber-mediated intelligent interactions between humans and

their physical environment. We refer to these interactions as

Metaverse applications. We argue that viable applications will

build on two great successes of the preceding decade: (i) the

proliferation of Internet of Things (IoT) technologies, and (ii)

the popularization of practical machine intelligence. These two

pillars combined will drive a next generation of content and

usecases, centered around enabling new degrees of freedom in

perception, interaction, and control.

Spurred by prospects of immersive virtual spaces, many

Metaverse surveys emerged in the last few years. The most

comprehensive Metaverse survey to date is likely by Lee

et al. [51]. Several other surveys address aspects of the

problem [17], [21], [70], [72], [95]. These aspects include

policies, industries, and applications [70], immersion and

∗Authors listed in Alphabetical Order.
1For an example article (of many), see https://wsacommunications.co.uk/

blog/the-metaverse-is-dead-long-live-the-metaverse/ (March 2022)

interaction challenges [17], [21], [72], and privacy and se-

curity challenges [95]. Complementing the above efforts, this

paper extrapolates a research trajectory that intersects machine
intelligence and IoT research roadmaps, offering answers for

what might be both technologically possible and likely, given

the current impetus.

Over the last decade, significant and exciting advances in

the IoT landscape have redefined its vision, frontiers, and

challenges [6]. The natural extension of this roadmap leads to

the emergence of a more intelligent, interactive, and distributed

application ecosystem that bridges the cyber and physical

realms. Said differently, while saturating human senses will

ultimately take a bounded amount of bandwidth, it is the

explosive growth of world data, generated by the physical

environment, by software, and by machine intelligence that

will truly drive future content expansion frontiers. This expan-

sion will require innovative interfaces that enhance perception,

immersion, and control, in the face of challenges at the edge,

in the network, and at the back-end.

At the front end, emerging challenges will parallel two big

trends in IoT research and development. The first trend has

been the introduction of cloud-assisted machine intelligence at

the edge for sensing, data processing, and control [1], [22]. The

second trend has been the evolution of interaction modalities

with IoT devices. These modalities evolved from utilizing sim-

ple APIs (such as structured environmental controls in smart

home environments [42], [75]) to accepting human-like inputs,

such as gestures [38], natural language commands [33] and

visual likeness [73]. Extrapolating these trends, IoT research

will continue to seek more natural and intelligent interfaces

that allow individuals to interact with, influence, and perceive

physical environments or their digital representations, thanks

to new visual, acoustic, and haptic interfaces, paired with

autonomous agents, machine learning, and digital twinning

technology that significantly broaden the types of allowed

cyber-physical interactions.

In the network, as more immersive content becomes more

popular, applications will push the demand on high-bandwidth
low-latency networking [90] and call for advances in a wide

range of data services [78]. To create the abstraction of an

integrated ecosystem, where user identity and (some aspects

of) state persist across applications, application interoperability

must be achieved, as opposed to creating application-specific
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experiences and vertical silos. The data plane of the new

ecosystem will need to support decentralization, sharing, and

persistent state [36]. The control plane will support resource

allocation policies and control mechanisms for security, pri-

vacy, and financial transactions. These requirements will give

rise to network architecture challenges, reminiscent of the

exploration of design principles that informed today’s layered

Internet architecture [83].

At the back-end, as application-supported interactions be-

come AI-heavy, it will become important to investigate so-

lutions for accelerating the execution of machine learning

primitives and democratize access to AI capabilities at scale.

Cloud services in this space may include managing spatio-

temporal content [53], efficient storage [13], approximate

queries/search [59], distributed retrieval [63], and real-time

content summarization [66].

The rest of this paper is organized as follows. Section II

briefly reviews recent business drivers of Metaverse-like ap-

plications. Sections III, IV, V, VI, and VII overview the

five key challenge areas: namely, the IoT front-end, network,

back-end, application-inspired AI acceleration, and physical

integration/automation, respectively. The paper concludes with

Section VIII that summarizes the key points.

II. THE DRIVERS

According to a US-based survey, conducted by pwc.com

in 2022, 82% of the surveyed business executives said they

“expect Metaverse plans to be part of their business activities

within three years”2. What are the drivers behind these pre-

dictions? Today’s more optimistic Metaverse expectations are

reminiscent of business predictions for IoT, roughly a decade

ago, when a number of industry giants [24] projected an IoT

device explosion to (up to) 50 billion by 2020, driven by the

reduced cost of sensors, the growing availability of processing

capacity and communication bandwidth, and technological

advances such as IPv6 and ubiquitous wireless coverage.

Many drivers were cited from personal wearables and home

automation to office, healthcare, transportation, and smart city

services [89], prompting organizational and market research

pillars, such as McKinsey & Company, to predict the global

IoT market to reach $11.1 trillion by 2025 [20]. What is the

next step in this evolution?

Standardization: The prospective application domains of

the Metaverse are perhaps best reflected in the membership

of the Metaverse standards forum, founded in June 2022,

with the goal of ensuring interoperability of Metaverse compo-

nents. Current members include telecoms, search engines, chip

manufacturers, defense contractors, software/OS developers,

social media companies, the entertainment industry, game

engines, sports associations, and consumer retail outlets. They

feature such prominent names as Acer, Adobe, ARM, BBN,

Blockchain, Comcast, Deloitte, T-mobile, Ericsson, Fujifilm,

Google, Huawei, Ikea, Intel, Juniper, Lenovo, LG, Meta,

2https://www.pwc.com/us/en/tech-effect/emerging-tech/metaverse-survey.
html

Microsoft, the National Basketball Association (NBA), Nestle,

Nokia, NVIDIA, Pramount, Qualcomm, Samsung, Siemens,

SONY, Unity, Verizon, and W3C. As visions for Web 3.0 also

gain ground, discussions for Mataverse support in Web 3.0

promise to resolve logistic hurdles, such as authentication,

security, non-fungible tokens, and decentralized persistence

(e.g., blockchain) protocols [47]. A recent market analysis

report3 predicts the market size for Metaverse-based appli-

cations to reach nearly one trillion USD by 2030, up from

approximately $65B in 2022 (currently mostly attributed to

revenues of today’s gaming market, such as Epic Games,

Roblox, and Minecraft).

Gaming and Entertainment: While the most obvious near-

future Metaverse value generators are perhaps VR gaming

applications, other directions include revenue from 3D ad-

vertizing [43], online shopping [107], and social applications,

including teleconferencing, recently brought to focus by the

COVID-19 pandemic. The entertainment industry has also

made plans to capitalize on virtual reality offerings. For exam-

ple, Warner Music Group, in cooperation with Sandbox, have

announced the creation of virtual theme park that features,

among other things, virtual concerts and performances by top

artists. Universal Studios in Japan integrated some of their

rides with virtual experiences.

Training, Twinning, and Augmentation: Metaverse-based

training and education have been cited as other examples of

important applications [36], [92] with the potential to help

learners improve attention span, build confidence, and generate

a sense of community. This application space extends to life

sciences and physical sciences, where virtual interactions may

allow learners to explore and manipulate objects in novel

ways. It is an instance of human enhancement that augments

perception and manipulation capabilities with mediation from

digital twins and novel physical manipulators [4].

Services: On the government side, investments are being

made into using the Metaverse as a tool to improve public ser-

vices. South Korea has recently announced a three year effort

to create a virtual replica of Seoul [2]. Among other objectives,

it will allow citizens’ avatars to use tax services, libraries, and

other public resources. Virtual reality has also been a proposed

solution for preservation of cultural heritage [7], [41]. For

example, the rising ocean levels have prompted the island

nation of Tuvalu to embark on creating a Metaverse replica

of their nation to preserve its heritage and art before they

are fully submerged [41]. In a similar vein, a collaborative

discussion has started on preserving the Australian Aboriginal

(First Nation) culture by replication in the Metaverse [7], as

well as preserving Japanese cultural elements such as Japanese

tea ceremonies.

The Caveat: It remains to note one important difference

between the explosive growth of the IoT ecosystem a decade

ago and the prospective rise of the Metaverse today. IoT

visions were driven by a proliferation of a new type of

3https://www.grandviewresearch.com/industry-analysis/metaverse-market-
report
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created content, namely, the creation of sensor data thanks

to the abundance of smart sensors and low-cost embedded

computing and network hardware. This new type of created

content was then monetized via a range of IoT applications.

This is similar to the way the growth of YouTube leveraged

the ubiquitous creation of video content (thanks to camera

phones) and the growth of Instagram leveraged the ubiquitous

creation of images. In contrast, the Metaverse is driven by

visions of immersive content consumption at a time when the

creation of immersive content is not yet commonplace. While

advances in such devices as 360 cameras [100] might soon

change the status quo, successful expansion of the Metaverse

remains contingent on the democratization of content creation.

Moreover, due to the inherently compute-heavy nature of

content services in the Metaverse, leveraging its full potential

may also be contingent on democratizing access to machine

learning at scale and democratizing the creation of digital

twins for physical artifacts. The research roadmap presented

in this paper discusses such infrastructure prerequisites.

III. THE FRONT END: ACCELERATION FOR IMMERSION

The front end of the Metaverse resides in the edge com-

puting platforms that are either on one’s person (e.g., head-

mounted displays) or in one’s physical vicinity (e.g., ambient

displays), and realize a Capture-to-Delivery (C2D) pipeline

that is at the core of cross- and mixed-reality interaction

and immersion. The end-to-end C2D pipeline is a multi-

stage one with functions that include capture (acquire signals

carrying information about the user and their surrounding),

perception (estimate from sensor data the state of the user

and various entities in the environment), cognition (derive

from the perceived state an understanding of the current

situation and project its future trajectory), memory (isolate

and store significant information relevant for future iterations

of the C2D pipeline), communication (collaborate with other

edge computing platforms and with premise, edge, and cloud

based networked computing resources to optimize various

dimensions of user experience, and, presentation (deliver to

the users various multisensory experiences that fuse real and

virtual information). The front end needs to provide these

capabilities in diverse operational settings that range from

well-instrumented indoor spaces (e.g., office, home, factory,

store, hospital, etc.) to out in the wild (e.g., on the road,

battlefield, forest, etc.).

Scene Capture & Perception: Essential to providing a user

with a good cross-reality immersive experience is the ability of

the system to know what is the user’s state (not just physical

but also physiological, cognitive, and other) and what is going

on around the user, both in the real world and in the virtual

world. This task of perception involves two steps: acquire

using sensors physical signals relevant to the state information

of interest and process those signals to predict the state

information. To eventually immerse the user in a multisensory

experience that is at least as rich as the real world we live in,

Metaverse front end capture multimodal signals from the user

and their environment, some corresponding to common human

senses (e.g., vision and sound) and some beyond-human ones

(e.g., RF and inertial). There are two key goals: capture high-

fidelity information about the visual and acoustic aspects of

the scene so that a digital twin can be constructed at a different

time or place, and track detailed position and orientation of the

user and their body parts relative to the scene so that sensory

experiences can be suitably transformed as the user moves

and interacts with the scene. Currently used sensing modalities

include various types of cameras (2D, 360, RGBD), Lidars,

acoustic arrays, inertial sensors, and wireless (WiFi, mmWave,

UWB). While there have been considerable advances in both

Inside-out and Outside-in tracking [49] – in the former, a body-

mounted device (such as a head-mounted one) performs the

necessary sensing while in the latter ambient devices such as

in the environment take on the burden – the current state of the

art leaves much to be desired. Outside-in approaches limit the

user to a specific region of the physical world which is a priori

instrumented, while Inside-out approaches present physical

burden for the user due to the heavy weight of current devices

and also fail to provide complete position and orientation of

the entire body (e.g., it is hard to infer the state of the lower

body from sensors in a head-mounted display).

Beyond position tracking, the Metaverse also requires sens-

ing finer-grained and richer state about the user and their en-

vironment. For example, sensing what kind of floor is the user

walking on [102] or sensing what gesture is the user making

with their fingers or what is the force with which they are

touching the object [74] or what is the expression on their face.

To accomplish these sensing tasks, the captured physical signal

must be suitably processed to derive the desired inferences.

For example, Lidar point clouds require complex processing to

isolate from the background [98], RGB and depth images need

to be processed to create meshes for display, and 360 video

cameras produce equirectangular format which then needs to

be transformed into other representations such as navigation

graphs [71]. While in the past, the sensor information was

processed using first-principles algorithms based on physics

and signal processing, in recent years deep neural networks

with a large number of parameters and trained using data have

shown much superior performance because of their ability

to model complex and unknown physics [80], [81] as well

as an ability to extract state information from unstructured

hight dimensional sensor signals, but have also resulted in the

challenge of implementing deep neural networks on low SWaP

edge platforms without sacrificing performance [82].

Cognition & Memory: While scene capture and perception

provide an awareness of the current state of the user and

various entities in their surroundings, providing a meaningful

multimodal immersive experience to the user requires process-

ing the multidimensional state information to understand the

significant spatiotemporal events and activities in the scene

and projecting them into the future so as to both guide

autonomous actions by the system (e.g., interacting on the

user’s behalf with other entities) as well as to provide the

user with information relevant for their decisions and actions.

Moreover, such understanding and projection can also guide
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the process of making memories, i.e., storing information that

may be useful as context at a future moment in time. The

primary challenge arises from the the the mismatch between

the resources available on the edge computing platforms

employed in the Metaverse systems and the large deep neural

network models that are needed for good performance, such as

those based on transformer architectures being used for image,

video, speech, and natural language. Another challenges arise

from the dynamic nature of the front end, for example with

continual changes in sensor perspectives due to mobility,

impairment of select sensing modalities due to environmental

factors, and sensor occlusions due to body movement and

ambient clutter. Lastly, in light of limited memory storage,

the system needs to be intelligent about identifying the key

change points that should trigger memory formation actions.

A key to meeting these challenges will be to leverage the

current or predicted user attention [69] to focus the limited

processing resources on the most high value sensors streams

or regions within a stream (e.g., in the case of 360 cameras),

and to devise multimodal architectures that can adapt to the

availability of sensor modalities by employing shared cross-

modal latent representations [54], [99], and the availability

of computing resources by employing approximate compu-

tations [104], neural network model compression [48], [56],

[106], and input resolution adjustment [34]. As data memory

consumes significant power, reducing memory footprint for

both the models and the stored contextual data is important;

for the former besides model compression methods such

as weight virtualization [52] can help, while for the latter

compression methods exploit semantics and latent represen-

tations are promising [105]. Lastly, important for address-

ing Cognition & Memory related challenges would be new

hardware capabilities such as accelerators optimized not just

for convolutional layers but newer transformer architectures,

and tighter memory-processing integration such as compute-

in-memory.

Edge Communication: Communication is core to the

Metaverse, with communication taking place both in the

virtual world (a user’s digital twin exchanging information

with digital twins of other users and with other entities) and

the real world (user-worn and ambient devices exchanging

information for sensing and presentation, and for off-loading

computing to on-premise, edge, and cloud servers). The main

challenge arises from the simultaneous requirements of high

data rates due to rich sensors (such as cameras and Lidars) and

high-resolution displays, as well as ultra low latency and tight

time synchronization due to human perception requirements

and to avoid adverse health effects such as nausea. This

confluence of high-throughput (Gpbs) and low-latency (ms) is

currently beyond the reach of low-power wireless technologies

that can be incorporated into front end devices for use in

the wild, and come with severe range limitations, essentially

tethering the user to within a local area. The development

of suitable wireless technologies is a barrier challenge that

needs to be solved for Metaverse viability, and would involve

addressing challenges across the entire wireless stack from

antennas up. As high data rate would require the use of high

carrier frequencies whose propagation is easily impaired by

environment clutter and user’s own body, it would be essential

to take a joint sensing-communication approach whereby

sensing of the world and user state informs the communication

decisions. Also important would be compression that exploits

semantics to significantly reduce data rate requirements. Se-

mantic compression and decoding technology can represent

complex concepts in multimedia streams concisely in low-

dimensional latent representation spaces and decode efficiently

from such spaces to generate realistic real-time environments

for the user [15], [29], [103]. Such technologies can further

be enhanced with asymmetric encoder/decoder design [14],

[105] that places a lower computational burden on the headset,

while compensating by using more computationally-heavy

algorithms on the edge server. For example, deep compressive

offloading [105] uses a lightweight encoder to compress out-

going data on the end device and a resource-intensive decoder

to restore the data at the edge server. It further uses knowledge

of downstream tasks to determine which data features could

be compressed away and which features are more important

for the specific task at hand, thereby achieving a higher overall

compression ratio.

Display & Presentation: The final stage of the C2D

pipeline is presentation of multimedia content to the user, and

then closing the loop by sensing user’s actions to continually

adapt the presentation. Recent years have seen tremendous ad-

vances in audio-visual content presentation technologies such

as AR/VR headsets that provide immersive visual experiences,

lightfield-based parallel reality ambient displays that provide

simultaneous viewer-specific content to a large number of

users, and tiny earables with spatial audio that adapts to

head position and room acoustics. For headsets and earables,

communication bandwidth and battery life remain a painpoint.

For example, Today’s Meta Quest Pro headset4 weighs over

700g. It comes equipped with 256GB storage, a 12GB RAM,

and a SnapDragon processor that consumes several Watts of

power, making cooling a potential concern when in protracted

use. To ameliorate these challenges, solutions that decrease

headset power consumption are needed. Such power-efficiency

solutions might, for example, leverage architectural innova-

tions that improve computational capacity per Watt [8], [101],

or exploit protocols that balance computation between the

headset and back-end support (e.g., edge or cloud servers)

to minimize the computational needs of the former [62].

Besides audio-visual content, other innovative interfaces might

emerge, such as haptic [18], olfactory [68] and cognitive [67]

interfaces. For example, recent advances demonstrated the

feasibility of communicating signals over a network from

one user’s brain to another [37]. Direct brain stimulation has

also been shown to modulate cognitive performance [64] or

induce certain affective states [84]. Combined with audio-

visual stimuli, such interfaces could serve a wide variety of

functions from stimulating productivity to enhancing immer-

4https://www.meta.com/quest/quest-pro/
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sive entertainment. Olfactory and visual media must come

together to provide a unique immersive experience. However,

one of the challenges is synchronization of delivered media

due to their different propagation delays to user’s senses [68].

Haptics and immersive video have their own challenges such

as delays introduced by force rendering, and overall reduction

of disparity between haptic and visual data [10].

IV. NETWORK PROTOCOLS

Moving away from the edge network, a key challenge will

be to reduce or mask end-to-end latency. In applications where

users interact with each other or with a remote environment

across long distances, latency may interfere with illusions of

virtual presence. Even at the speed of light, it takes over 100ms

to circle Earth once, which can be quite perceptible to an

end user. Unfortunately, network latencies in local-, metro-,

and wide-area settings are typically much larger than speed

of light, due to suboptimality of Internet path selection (e.g.,

AS path inflation, hot potato routing), congestion, reliance

on third-party services such as DNS, and protocol overheads.

Even worse, the nature of these underlying properties is highly

variable, leading to statistical effects such as jitter and non-

stationarity, complicating the ability to counter them.

Combating Latency: Predictive algorithms may extrapolate

from the current state to compute and render predicted future

states ahead of data reception or to prefetch data ahead of

user requests to offer the illusion of a more timely interaction

with the remote environment. “Dead reckoning” has been

widely used within video gaming environments to overcome

latency, and such techniques could perhaps be extended to

predict the more complex interactions found in metaverse

environments. Some metaverse services may be replicated

using content distribution networks or cloud services; the

advent of edge computing may enable placement of services at

the network edge close to users. The mechanisms underlying

these services, such as anycast and network mapping, have

been widely explored in the context of traditional Internet

services (such as web hosting), and may need to be extended to

support the novel low-latency and highly collaborative nature

of multiverse services. Protocols will be needed to efficiently

convey change. Receiver-side models could be used to predict

future frames based on an activity model shared with the

sender. The sender can then prioritize the transmission of only

those bits that cannot be accurately predicted from the models.

Wide-area Scalability: The advent of cloud computing

led to fundamental changes in the Internet’s design, with

the advent of massive private intra-cloud networks, edge

computing CDNs, and a general “flattening” of the Internet’s

hierarchical structures. The metaverse will place new demands

on the Internet to achieve real-time communications at scale.

While low-latency communication mechanisms have pervaded

cloud computing deployments with Infiniband and RDMA,

we lack comparable technologies for the wide area. A chal-

lenge will be developing incentive-compatible mechanisms

which can provide advanced quality of experience across

multiprovider networks. Latency may be further reduced by

exploring novel congestion control mechanisms optimized for

real-time delivery, resizing router buffers and exploring novel

router architectures to provide cost-effective guarantees on

packet delivery at scale, and content distribution network

architectures that decentralize metaverse systems, offloading

core functions to edge computing. In recent years, intent-based

networking has gained significant traction within industry,

allowing operators to manage their networks through direct

expression of high-level policies; however, much work in this

space has focused on reachability policies, a challenge will be

to develop frameworks to support customizable intents on user

quality of experiences and metrics related to the metaverse

experience. Programmable networks, including frameworks

such as P4, may further creation of customizable packet

processing logic that can adapt to changing workloads and

operational constraints. Finally, operators may also benefit

from more formal approaches to peering for low latency, lever-

aging machine learning and predictive technologies, as well as

network surveys and structural observations to determine the

best locations and approaches to peer.

A related issue is architecture design principles for the

Metaverse that allow interoperability and give rise to a com-

mon ecosystem, as opposed to a set of individual applications

that share in common the use of immersive content.

V. THE BACK-END: CONTENT PROCESSING SERVICES

A growing fraction of today’s global computational de-

mands stems fundamentally from the need to process net-

worked world data [23], [88]. Since the Metaverse application

ecosystem will give rise to new more immersive data formats,

novel challenges arise in back-end data processing.

Access, Indexing, and Search: Among the largest drivers

for increased computational needs in recent history has been

the democratization of at-scale content sharing, driven by

Web and social network platforms. Today, the most visited

websites are those that offer global content access, indexing,

and search, such as Google, YouTube, Facebook, and Twitter.

The Metaverse application ecosystem offers the next step in

immersion and thus advances the modalities of shared content.

It will popularize a next generation of content that evolves

from text, images, sound, and video to 3D environments with

haptic audio-visual modalities [19] and possibly cognitive

influence interfaces. Platforms for content sharing will need

to evolve to support operations on the new content modalities.

At present, scalable search of complex content modalities,

such as video, is still relatively new [40]. While initial

systems exist for scalable video analytics using machine-

learning approaches [39], [79], the interfaces for specifying

visual concepts for search purposes and algorithms for ranking

potential matches remain an active research topic. Searching

immersive 3D multimedia content for specific types of activity,

experiences, or artifacts is an important future challenge.

Summarization: A related issue is to re-imagine the very

role of search services in the Metaverse age. The interface

of today’s search engines has not substantially changed in 30

years; a list of matching entries, such as videos, Webpages,
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or Tweets, is returned the way it was when the first browser

appeared [5]. In the meantime, the number of Internet users

has grown by orders of magnitude. Metaverse content con-

sumers should be empowered with mechanisms that facilitate

understanding the content beyond the top matching items. For

example, imagine what it might be like to retrieve past tourist

experiences at a particular landmark. Technologies are needed

to generate summaries of representative experiences, possibly

from thousands of distinct specific experiences stored. Means

for summarizing both individual content items and content

collections will become necessary. The emergence of the

Metaverse may precipitate the development of next-generation

algorithms for organizing and summarizing unstructured mul-

timedia data in an unsupervised manner. Hierarchical catego-

rization and summarization will help consumers understand

the totality of content and efficiently navigate to shared clips,

memories, or experiences, much the way they can navigate

review categories on Yelp or Travelocity today. An example

of an unstructured content summarization service today (for

the most parsimonious content modality – text), based on

pre-trained language models [76] (as opposed to knowledge-

base grounding), is ChatGPT [93]. It is likely to be the first

of many more AI-based services that will increasingly target

multimedia and more resource-intensive content to generate

more engaging and immersive summaries.

Generative Foundation Models: A related direction might

lie in the creation of immersive experiences based on pre-

trained foundation models (in AI) [9]. Foundation models are

large deep neural networks that are pre-trained using a self-

supervised approach on extensive amounts of data and are

customizable to a variety of downstream content generation

tasks. For example, ChatGPT [93] is a foundation model

that can generate text in response to a prompt. Foundation

models are also being explored in other fields as a way

to summarize common knowledge, somewhat analogously to

large-scale simulations. An example is foundation models for

networking [50]. The 3D immersive environment of the envi-

sioned Metaverse suggests that future foundation models might

assimilate text, audio, and visual content, offering customized

multimedia experiences, prompted by user input, or synthesize

multimedia summary highlights based on user queries.

VI. AI ACCELERATION AND APPLICATION SERVICES

The computational challenges posed by Metaverse appli-

cations on the computing infrastructure will drive advances

in hardware and compiler technology. Much recent work has

already focused on accelerating different AI-inspired compu-

tational kernels. Future advances are needed to support the

computational needs of creating, summarizing, searching, or

otherwise processing Metaverse content.

Compiler Infrastructure and Optimizations: First, ma-

chine learning models and methods used in metaverse appli-

cations tend to have sparse components and hence we can

leverage advances in domain specific hardware and compiler

techniques in sparse tensor algebra to accelerate such work-

loads. For example, a collaborative filtering content recom-

mendation system might compute its recommendations from

observing who liked what in the past, as well as their similarity

relations to the item being recommended. However, “who liked

what” is a very sparse matrix, as each user likely interacts with

only a small subset of all available items. Recent advances

in domain specific compilation techniques targeting sparse

tensor algebra [45], [85] and graph computations [109] can

potentially be used to automatically generate fast code for

these applications. Different compiler techniques focusing on

eliminating redundancies [111] and workspaces [44] have been

suggested to further improve upon these compiler infrastruc-

tures. Additionally, we can gain even more runtime perfor-

mance by specializing the optimization strategies specific to

the sparsity pattern of the sparse matrices. Some works focus

on selecting the best sparse storage format [110]. Others

propose adaptive optimizations such as input-sensitive load

balancing schemes [97], adaptive sparse tiling [32] and cache-

aware graph segmentation schemes [108]. These techniques

use both heuristic-based compiler algorithms as well as data-

driven auto-tuning techniques.

Also, it is important to carefully select and invent compiler

and program optimization techniques for machine learning

models that run on hardware that are designed for metaverse

applications. For example, heavily pruned [27], quantized

machine learning models [30] may dominate inference tasks

in metaverse. Therefore, the applications should leverage com-

piler techniques that focuses on applying those approximate

techniques and optimizes for those. Works that focus on

training neural networks with low memory requirements [57],

works that focus on applying approximate optimization tech-

niques [87], works that focus on edge devices [12] and

infrastructures for federated learning [35] will be of relevance

in this front. Moreover, in processing streaming content, such

as immersive multimedia, there are ample opportunities to

optimize computations. There have been many efforts at lever-

aging compiler optimizations to speedup these multimedia

computations including vectorization [16], specialized code

generation through frameworks such as FFTW [28] and SPI-

RAL [26], early work on optimizing streaming computations

such as Streamit [91] and work on optimizing compression

and decompression workloads [77]. These approaches should

be adapted to work with hardware platforms that will drive

content delivery and computation in metaverse applications.

Distributed Acceleration: Training large AI models, such

as foundations models for multimodal/3D immersive content,

will require distributed computation. Metaverse applications

will thus push the envelope of distributed learning, moti-

vating and advancing the development of frameworks that

significantly accelerate distributed AI [65]. Different from

conventional distributed training, we envision future Metaverse

learning will ingest a diverse set of data (texts, images, and

videos) and run a DAG of heterogeneous models. For example,

the DAG may start with models targeting a specific format

of data and later get additional training across data types.

This brings new challenges for acceleration because we may

incur different delay at different training stages for different
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data types. We can address this challenge by leveraging new

algorithms and accelerators to data preprocessing, compres-

sion, and feature extraction (e.g., by leveraging hardware-

based video decoder and in-network computing). Moreover,

we need to dynamically allocate various computing resources

(accelerators, GPUs) to different training tasks based on the

workloads in the runtime. We need to allocate more resources

to parallelize those bottleneck tasks more.

Another challenge is latency (especially tail latency). We

need to continuously collect data and make fine-tuning de-

cisions for the training models. Any delay in Metaverse

significantly affect user experiences or decisions. Therefore,

we need to introduce streaming algorithms that process images

and videos even before they fully arrive at the servers. Our

runtime system needs to incorporate deadline-aware schedul-

ing, which prioritize those operations and data on the critical

path. We also need to dynamically select the right models

based on the latency requirements. Moreover, we need to

introduce approximate solutions that explore the tradeoffs

between latency and accuracy. We also need to mitigate

stragglers while retaining accuracy. Multi-tenancy is another

challenge for accelerating distributed training. Different users

may provide different amounts and types of data and may

need different training models. We need to identify new ways

to share GPU resources across tenants with minimal context

switching overhead. Moreover, we need to find ways to enforce

end-to-end sharing policies into individual components in the

data processing pipeline (e.g., NICs, CPUs, and GPUs).

VII. PHYSICAL AUTOMATION

With advances in autonomy and robotics, pervasive automa-

tion will increasingly delegate physical functions to drones,

robotic assistants, and autonomous machines. At the same

time, a growing number of IoT devices will automate increas-

ingly many applications from smart home energy control to

city-wide traffic management. These applications will offer

control APIs in the Metaverse, thus allowing Metaverse users

to perform tasks in the physical environment.

Users in the metaverse will be empowered to interact with

a set of agents in the physical world, an evolution of today’s

IoT applications, including various forms of control agents

(e.g., HVAC), mobility devices (e.g., autonomous cars, and

drones), and delegated physical functions (e.g., household and

industrial robotics). Support for automation will become em-

bedded in increasingly more everyday items, giving them the

appearance of intelligence on a budget, within limits on their

embedded memory and computational capacity. Significant

optimizations will be needed to offer these capabilities while

respecting the constraints of their resource-limited computa-

tional environment.

Safety and Security: Task execution that impacts the physi-

cal environment brings about a myriad of concerns, commonly

associated with computational systems that interact with their

physical environment, or cyber-physical systems [86]. For

example, safety and security assurances will become more

important [96]. Solutions will be needed that vet the safety

of actions in real-time before they are committed to the

environment. Conflicting actions and actions with conflicting

policy goals should be avoided [60], [61].

Digital Twins: To ameliorate safety problems and offer

an opportunity for safe “what-if” analysis, a proliferation

of digital twins is expected for networked “things” [11].

Digital twins are thus envisioned to become commonplace

Metaverse citizens [25], [58]. Several companies including

BMW, Coca-Cola, and NASCAR have recently announced

partnerships around building replicas of their products in the

Metaverse. For example, BMW’s digital twin allows it to

explore different configurations of factory automation that op-

timize the manufacturing workflow. Challenges in maintaining

digital twins include reliable low-latency communication [94],

synchronization [31], [31], networking [3], security/privacy

considerations [25], low-resource operation, and edge-cloud

coordination [55], with applications in both industrial and

social contexts. Digital twinning through the metaverse will

transform the way operators and developers create and manage

cyber physical infrastructures. When designing a new infras-

tructure, the developer will leverage the metaverse to rapidly

mock up and prototype their designs without the constraints

of physical hardware. To test their designs, developers will

create physical “unit tests” and other testing frameworks by

manipulating the metaverse environment, running the device

under test through diverse environmental scenarios, and ex-

posing it to unexpected contingencies. ensuring the device

will perform as expected. The self-contained properties of the

digital twin will provide a natural location to apply verifica-

tion and synthesis technologies, providing further assurance

that system software and protocols are properly implemented

with bounded behaviors. The operator can then “push” their

implementations from the cloud out into the real physical

environment, ensuring that their pre-tested implementation and

properly-tuned configuration is what is running in the real

environment. After deployment, the operator can make use

of advanced ML and anomaly detection algorithms to study

behavior of the deployed device, as well as to dynamically

tune operational settings.

Modeling the Environment: An additional challenge will

be in twinning the physical environment surrounding the de-

ployed system. Many simulators exist today for both software

systems (computer networks, microcontroller architectures,

etc.) as well as physical media (mechanical stress, hydrology

and fluid flow, etc), but several things are lacking. First, we

lack comprehensive environmental simulators that can “stitch

together” the joint behaviors of objects and software across

different objects and materials within an environment. Second,

simulators often lack mechanisms to represent environments

with the finer levels of granularity that may be important for

effective twinning. For example, network simulators such as

ns-3 and CORE provide highly effective environments to simu-

late wireless protocol behaviors, yet lack the ability to simulate

specific environmental considerations that may greatly affect

wireless operations (e.g., suppose there are three trees between

the sender and receiver – how is multipath affected?) To
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address this, it may be possible to leverage advances in high

fidelity wireless simulations (e.g., by using ray tracing). Third,

we lack effective ways to quickly prototype and instrument

dynamic environments within simulations. The emergence of

LIDAR and mmWave to map physical environments may

provide effective technologies to assist in rapidly prototyping

metaverse environments that mirror existing physical locations.

Prior work in simulating systems of mechanical objects (e.g.,

stress vectors within buildings, sound propagation) may further

improve realism.

VIII. CONCLUSIONS

We described challenges in implementing the Metaverse

application ecosystem as observed through the lens of IoT

research topics. These challenges will enable a world, where

the boundaries between cyber, physical, and social realms are

blurred, new immersive experiences are fed by billions of data

points from multitudes of human, AI-generated, and physical

sources, machine intelligence extracts value for a growing list

of novel applications, and novel social media platform con-

cepts seamlessly integrate humans, avatars, physical devices,

and digital twins, redefining what IoT looks like. This paper

invites IoT, machine learning, and Metaverse researchers to

a collaborative roadmap to generate tomorrow’s systems and

applications.
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