
DiffTune: Optimizing CPU Simulator Parameters
with Learned Differentiable Surrogates

Alex Renda
MIT CSAIL

renda@csail.mit.edu

Yishen Chen
MIT CSAIL

ychen306@mit.edu

Charith Mendis
MIT CSAIL

charithm@mit.edu

Michael Carbin
MIT CSAIL

mcarbin@csail.mit.edu

Abstract—CPU simulators are useful tools for modeling CPU
execution behavior. However, they suffer from inaccuracies due to
the cost and complexity of setting their fine-grained parameters,
such as the latencies of individual instructions. This complexity
arises from the expertise required to design benchmarks and
measurement frameworks that can precisely measure the values
of parameters at such fine granularity. In some cases, these
parameters do not necessarily have a physical realization and are
therefore fundamentally approximate, or even unmeasurable.
In this paper we present DiffTune, a system for learning the

parameters of x86 basic block CPU simulators from coarse-
grained end-to-end measurements. Given a simulator, DiffTune
learns its parameters by first replacing the original simulator with
a differentiable surrogate, another function that approximates
the original function; by making the surrogate differentiable,
DiffTune is then able to apply gradient-based optimization
techniques even when the original function is non-differentiable,
such as is the case with CPU simulators. With this differentiable
surrogate, DiffTune then applies gradient-based optimization to
produce values of the simulator’s parameters that minimize
the simulator’s error on a dataset of ground truth end-to-end
performance measurements. Finally, the learned parameters are
plugged back into the original simulator.
DiffTune is able to automatically learn the entire set of

microarchitecture-specific parameters within the Intel x86 sim-
ulation model of llvm-mca, a basic block CPU simulator based
on LLVM’s instruction scheduling model. DiffTune’s learned pa-
rameters lead llvm-mca to an average error that not only matches
but lowers that of its original, expert-provided parameter values.

I. Introduction

Simulators are widely used for architecture research to

model the interactions of architectural components of a sys-

tem [1, 2, 3, 4, 5, 6]. For example, CPU simulators, such llvm-
mca [2], and llvm_sim [7], model the execution of a processor

at various levels of detail, potentially including abstract models

of common processor design concepts such as dispatch,

execute, and retire stages [8]. CPU simulators can operate at

different granularities, from analyzing just basic blocks, straight-
line sequences of assembly code instructions, to analyzing

whole programs. Such simulators allow performance engineers

to reason about the execution behavior and bottlenecks of

programs run on a given processor.

However, precisely simulating a modern CPU is challenging:

not only are modern processors large and complex, but many

of their implementation details are proprietary, undocumented,

or only loosely specified even given the thousands of pages

of vendor-provided documentation that describe any given

processor. As a result, CPU simulators are often composed

of coarse abstract models of a subset of processor design

concepts. Moreover, each constituent model typically relies

on a number of approximate design parameters, such as the

number of cycles it takes for an instruction to pass through

the processor’s execute stage. Choosing an appropriate level

of model detail for simulation, as well as setting simulation

parameters, requires significant expertise. In this paper, we

consider the challenge of setting the parameters of a CPU

simulator given a fixed level of model detail.

Measurement. One methodology for setting the parameters of
such a CPU simulator is to gather fine-grained measurements

of each individual parameter’s realization in the physical

machine [9, 10] and then set the parameters to their measured

values [11, 12]. When the semantics of the simulator and the

semantics of the measurement methodology coincide, then

these measurements can serve as effective parameter values.

However, if there is a mismatch between the simulator and

the measurement methodology, then measurements may not

provide effective parameter settings [13, Section 5.2]. Moreover,

some parameters may not correspond to measurable values.

Optimizing simulator parameters. An alternative to de-

veloping detailed measurement methodologies for individual

parameters is to infer the parameters from coarse-grained

end-to-end measurements of the performance of the physical

machine [13]. Specifically, given a dataset of benchmarks,

each labeled with their true behavior on a given CPU (e.g.,

with their execution time or with microarchitectural events,

such as cache misses), identify a set of parameters that

minimize the error between the simulator’s predictions and

the machine’s true behavior. This is generally a discrete, non-

convex optimization problem for which classic strategies, such

as random search [14], are intractable because of the size of

the parameter space (approximately 1019336 possible parameter

settings in one simulator, llvm-mca).

Our approach: DiffTune. In this paper, we present DiffTune,
an optimization algorithm and implementation for learning

the parameters of programs. We use DiffTune to learn the

parameters of x86 basic block CPU simulators.

DiffTune’s algorithm takes as input a program, a description

of the program’s parameters, and a dataset of input-output

442

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00045

examples describing the program’s desired output, then pro-

duces a setting of the program’s parameters that minimizes

the discrepancy between the program’s actual and desired

output. The learned parameters are then plugged back into

the original program.

The algorithm solves this optimization problem via a

differentiable surrogate for the program [15, 16, 17, 18, 19].

A surrogate is an approximation of the function from the

program’s parameters to the program’s output. By requiring

the surrogate to be differentiable, it is then possible to

compute the surrogate’s gradient and apply gradient-based

optimization [20, 21] to identify a setting of the program’s

parameters that minimize the error between the program’s

output (as predicted by the surrogate) and the desired output.

To apply this to basic block CPU simulators, we instantiate

DiffTune’s surrogate with a neural network that can mimic the

behavior of a simulator. This neural network takes the original

simulator input (e.g., a sequence of assembly instructions) and

a set of proposed simulator parameters (e.g., dispatch width

or instruction latency) as input, and produces the output that

the simulator would produce if it were instantiated with the

given simulator’s parameters. We derive the neural network

architecture of our surrogate from that of Ithemal [22], a basic

block throughput estimation neural network.

Results. Using DiffTune, we are able to learn the entire set
of 11265 microarchitecture-specific parameters in the Intel

x86 simulation model of llvm-mca [2]. llvm-mca is a CPU

simulator that predicts the execution time of basic blocks. llvm-

mca models instruction dispatch, register renaming, out-of-order

execution with a reorder buffer, instruction scheduling based on

use-def latencies, execution by dispatching to ports, a load/store

unit ensuring memory consistency, and a retire control unit.1

We evaluate DiffTune on four different x86 microarchi-

tectures, including both Intel and AMD chips. Using only

end-to-end supervision of the execution time measured per-

microarchitecture of a large dataset of basic blocks from Chen

et al. [23], we are able to learn parameters from scratch

that lead llvm-mca to have an average error of 24.6%, down
from an average error of 30.0% with llvm-mca’s expert-

provided parameters. In contrast, black-box global optimization

with OpenTuner [14] is unable to identify parameters with

less than 100% error.

Contributions. We present the following contributions:
• We present DiffTune, an algorithm for learning ordinal

parameters of programs from input-output examples.

• We present an implementation of DiffTune for x86 basic

block CPU simulators that uses a variant of the Ithemal

model as a differentiable surrogate.

• We evaluate DiffTune on llvm-mca and demonstrate that

DiffTune can learn the entire set of microarchitectual

parameters in llvm-mca’s Intel x86 simulation model.

1We note that llvm-mca does not model the memory hierarchy.

• We present case studies of specific parameters learned

by DiffTune. Our analysis demonstrates cases in which

DiffTune learns semantically correct parameters that enable

llvm-mca to make more accurate predictions. Our analysis

also demonstrates cases in which DiffTune learns parame-

ters that lead to higher accuracy but do not correspond to

reasonable physical values on the CPU.

DiffTune demonstrates that future systems can effectively

leverage coarse-grained measurements to automatically learn

the parameters of detailed performance models.

II. Background: Simulators

Simulators comprise a large set of tools for modeling the

execution behavior of computing systems, at all different levels

of abstraction: from cycle-accurate simulators to high-level cost

models. These simulators are used for a variety of applications:

• gem5 [1] is a detailed, extensible full system simulator

that is frequently used for computer architecture research,

to model the interaction of new or modified components

with the rest of a CPU and memory system.

• IACA [3] is a static analysis tool released by Intel

that models the behavior of modern Intel processors,

including undocumented Intel CPU features, predicting

code performance. IACA is used by performance engi-

neers to diagnose and fix bottlenecks in hand-engineered

code snippets [24].

• LLVM [25] includes internal CPU simulators to predict the

performance of generated code [26, 27]. LLVM uses these

CPU simulators to search through the code optimization

space, to generate more optimal code.

Though these simulators are all simplifications of the true

execution behavior of physical systems, they are still highly

complex pieces of software.

A. llvm-mca
For example, consider llvm-mca [2], an out-of-order super-

scalar CPU simulator included in the LLVM [25] compiler

infrastructure. The main design goal of llvm-mca is to expose

LLVM’s instruction scheduling model for testing. llvm-mca

takes basic blocks as input, sequences of straight-line assembly
instructions with no branches, jumps, or loops. For a given input

basic block, llvm-mca predicts the timing of 100 repetitions

of that block, measured in cycles.

Design. llvm-mca is structured as a generic, target-independent
simulator parameterized on LLVM’s internal model of the target

hardware. llvm-mca makes two core modeling assumptions.

First, it assumes that the simulated program is not bottlenecked

by the processor frontend; in fact, llvm-mca ignores instruction

decoding entirely. Second, llvm-mca assumes that memory data

is always in the L1 cache, and ignores the memory hierarchy.

llvm-mca simulates a processor in four main stages: dispatch,
issue, execute, and retire. The dispatch stage reserves physical
resources (e.g., slots in the reorder buffer) for each instruction,

based on the number of micro-ops the instruction is composed

of. Once dispatched, instructions wait in the issue stage until

443

they are ready to be executed. The issue stage blocks an

instruction until its input operands are ready and until all of its

required execution ports are available. Once the instruction’s

operands and ports are available, the instruction enters the

execute stage. The execute stage reserves the instruction’s

execution ports and holds them for the durations specified

by the instruction’s port map assignment specification. Finally,

once an instruction has executed for its duration, it enters

the retire stage. In program order, the retire stage frees the

physical resources that were acquired for each instruction in

the dispatch stage.

Parameters. Each stage in llvm-mca’s model requires pa-

rameters. The NumMicroOps parameter for each instruction

specifies how many micro-ops the instruction is composed

of. The DispatchWidth parameter specifies how many micro-

ops can enter and exit the dispatch stage in each cycle. The

ReorderBufferSize parameter specifies how many micro-ops

can reside in the issue and execute stages at the same time. The

PortMap parameters for each instruction specify the number of
cycles for which the instruction occupies each execution port.

An additional WriteLatency parameter for each instruction
specifies the number of cycles before destination operands of

that instruction can be read from, while ReadAdvanceCycles
parameters for each instruction specify the number of cycles

by which to accelerate the WriteLatency of source operands
(representing forwarding paths).

In sum, the 837 instructions in our dataset (Section V-A) lead

to 11265 total parameters with 1019336 possible configurations

in llvm-mca’s Haswell microarchitecture simulation.2

B. Challenges
These parameter tables are currently manually written for

each microarchitecture, based on processor vendor documenta-

tion and manual timing of instructions. Specifically, many of

LLVM’s WriteLatency and PortMap parameters are drawn
from the Intel optimization manual [28, 29], Agner Fog’s

instruction tables [9, 11], and uops.info [10, 12], all of which

contain latencies and port mappings for assembly instructions

across different architectures and microarchitectures.

Measurability. However, these documented and measured

values do not directly correspond to parameters in llvm-

mca, because llvm-mca’s parameters, and abstract simulator

parameters more broadly, are not defined such that they have a

single measurable value. For instance, llvm-mca defines exactly

one WriteLatency parameter per instruction. However, Fog
[9] and Abel and Reineke [10] find that for instructions that

produce multiple results in different destinations, the results

might be available at different cycles. Further, the latency for

results to be available can depend on the actual value of the

input operands. Thus, there is no single measurable value that

corresponds to llvm-mca’s definition of WriteLatency.

2Based on llvm-mca’s default, expert-provided values for these parameters,
the 11265 parameters induce a parameter space of 1019336 valid configurations;
the actual values are only bounded by integer representation sizes.

Different choices for how to map from measured latencies

to WriteLatency values result in different overall errors (as
defined in Section V-A). For instance, when llvm-mca is

instantiated with Abel and Reineke [10]’s maximum observed

latency for each instruction, llvm-mca gets an error of 218%

when generating predictions for the Haswell microarchitecture;

the median observed latency results in an error of 150%; and

the minimum observed latency results in an error of 103%.

III. Approach

Tuning llvm-mca’s 11265 parameters among 1019336 valid

configurations2 by exhaustive search is impractical. Instead, we

present DiffTune, an algorithm for learning ordinal parameters

of arbitrary programs from labeled input and output examples.

DiffTune leverages learned differentiable surrogates to make

the optimization process more tractable.

Formal problem statement. Given a program f : Θ→X →

Y parameterized on parameters θ :Θ, that takes inputs x :X to

outputs y :Y, and given a dataset D :X×Y of true input-output

examples, find parameters θ ∈ Θ to minimize a cost function

(called the loss function, representing error) L : (Y ×Y)→R≥0

of the program on the dataset:

argmin
θ

1

|D|

∑
(x,y)∈D

L(f (θ, x), y) (1)

Algorithm. Figure 1 presents a diagram of our approach. We

first collect a dataset of input-output examples from the program

with varying values for θ; that is, we sample θ from some

distribution D, sample x from the original dataset D, then

generate a new value ŷ = f (θ, x) by passing θ and x into the

original program and recording its output. We collect these

examples (θ, x, ŷ) into a large simulated dataset:

D̂ = {(θ, x, ŷ) | θ ∼ D, x ∼ D, ŷ = f (θ, x)}

With this dataset, we optimize the surrogate f̂ : Θ→X →

Y to mimic the original program, i.e., ∀θ, x. f̂ (θ, x) ≈ f (θ, x).
Specifically, we optimize the surrogate to minimize the average

loss L over the simulated dataset D̂:

argmin
f̂

1��D̂��
∑

(θ,x,ŷ)∈D̂

L
(

f̂ (θ, x), ŷ
)

(2)

We then optimize the parameters θ of the program against

the true dataset D. Specifically, we find:

argmin
θ

1

|D|

∑
(x,y)∈D

L
(

f̂ (θ, x), y
)

(3)

Discussion. Note the similarity between Equation (1) and

Equation (3): the two equations only differ by the use of f
and f̂ , respectively. The close correspondence between forms
makes clear that f̂ stands in as a surrogate for the original

program, f . This is a general algorithmic approach [15] that is
desirable when it is possible to choose f̂ such that it is easier

or more efficient to optimize θ using f̂ than f .

444

True
BehaviorInput True

Output { } Parameters
Input Simulated

Output { }

Parameters

Input
Predicted

True
Output

1. Collect real dataset 2. Collect simulated dataset

Surrogate

Parameters

Input
Predicted
Simulated

Output

4. Train simulator parameters 3. Train surrogate

Backprop Backprop

Sampled
Parameters

Input Simulated
Output

Random sample

Program
Input True

Output

 Surrogate

Fig. 1: DiffTune block diagram.

TABLE I: Terms used in formalism in Section III.

Notation Definition
f Program that we are trying to optimize.
θ Parameters of the program that we are trying to optimize.
x Input to the program.
y Ideal output of the program (i.e., real world value) on an input x.
ŷ Output of the program when ran with a specific set of parameters θ on an input x.
D Dataset of real-world input-output examples to optimize against.

D̂ Dataset of simulated parameter-input-output examples to optimize the surrogate against.
D Distribution that parameters are sampled from for training the surrogate.
L Loss function describing the error of a proposed solution.

f̂ The surrogate, which is trained to model the original program: f̂ ≈ f .

Optimization. In our approach, we choose f̂ to be a neural
network. Neural networks are typically built as compositions

of differentiable architectural components, such as embedding
lookup tables, which map discrete input elements to real-

valued vectors; LSTMs [30], which map input sequences of
vectors to a single output vector; and fully connected layers,
which are linear transformations on input vectors. By being

composed of differentiable components, neural networks are

end-to-end differentiable, so that they are able to be trained

using gradient-based optimization. Specifically, neural networks

are typically optimized with stochastic first-order optimizations

like stochastic gradient descent (SGD) [20], which repeatedly

calculates the network’s error on a small sample of the training

dataset and then updates the network’s parameters in the

opposite of the direction of the gradient to minimize the error.
By selecting a neural network as f̂ ’s representation, we are

able to leverage f̂ ’s differentiable nature not only to train f̂
(solving the optimization problem posed in Equation (2)) but

also to solve the optimization problem posed in Equation (3)

with gradient-based optimization. This stands in contrast to f
which is, generally, non-differentiable and therefore does not

permit the computation of its gradients.

Surrogate example. A visual example of this is presented in

Figure 2, which shows an example of the timing predicted by

llvm-mca (blue) and a trained surrogate of llvm-mca (orange).

The x-axis of Figure 2 is the value of the DispatchWidth
parameter, and the y-axis is the predicted timing of llvm-mca

with that DispatchWidth for the basic block consisting of

1 2 3 4 5 6 7 8 9 10
DispatchWidth

1

2

3

4

T
im

in
g

SHR64mi Timing

llvm-mca

Surrogate

Fig. 2: Example of timing predicted by llvm-mca (orange) and

a surrogate (blue), while varying DispatchWidth. By learning
the surrogate, we are able to optimize the parameter value with

gradient descent, rather than requiring combinatorial search.

the single instruction shrq $5, 16(%rsp). The blue points
represent the prediction of llvm-mca when instantiated with

different values for DispatchWidth. The naïve approach of
optimizing llvm-mca would be combinatorial search, since

without a continuous and smooth surface to optimize, it is

impossible to use standard first-order techniques. DiffTune

instead first learns a surrogate of llvm-mca, represented by

the orange line in Figure 2. This surrogate, though not exactly

the same as llvm-mca, is smooth, and therefore possible to

optimize with first-order techniques like gradient descent.

445

∅

LSTM

LSTM LSTM LSTM LSTM LSTM Throughput
Prediction

LSTM

LSTM∅

∅ LSTM LSTM LSTM LSTM LSTMLSTM LSTM

Token Embedding Lookup Table

×

Canonicalization

Concatenating
Parameters to

Instruction
Embedding

Fig. 3: Design of the surrogate, from Mendis et al. [22] with added parameter inputs. We use ‖ to denote concatenation of

parameters to the instruction embedding.

IV. Implementation

This section discusses our implementation of DiffTune,

available online at https://github.com/ithemal/DiffTune.

Parameters. We consider two types of parameters that we

optimize with DiffTune: per-instruction parameters, which
are a uniform length vector of parameters associated with

each individual instruction opcode (e.g. for llvm-mca, a vector

containing WriteLatency, NumMicroOps, etc.); and global
parameters, which are a vector of parameters that are associated
with the overall simulator behavior (e.g. for llvm-mca, a vector

containing the DispatchWidth and ReorderBufferSize).
We further support two types of constraints in our implemen-

tation: lower-bounded, specifying that parameter values cannot
be below a certain value (often 0 or 1), and integer-valued,
specifying that parameter values must be integers. During

optimization, all parameters are represented as floating-point.

Surrogate design. Figure 3 presents our surrogate design,

which is capable of learning parameters for x86 basic block

performance models such as llvm-mca.

We use a modified version of Ithemal [22], a learned

basic block performance model, as the surrogate. In the

standard implementation of Ithemal (without our modifications),

Ithemal first uses an embedding lookup table to map the

opcode and operands of each instruction into vectors. Next,

Ithemal processes the opcode and operand embeddings for each

instruction with an LSTM, producing a vector representing each

instruction. Then, Ithemal processes the sequence of instruction

vectors with another LSTM, producing a vector representing

the basic block. Finally, Ithemal uses a fully connected layer to

turn the basic block vector into a single number representing

Ithemal’s prediction for the timing of that basic block.

We modify Ithemal in two ways to act as the surrogate.

First, we replace each individual LSTM with a set of 4

stacked LSTMs, a common technique to increase representative

capacity [31], to give Ithemal the capacity to represent the

dependency of the prediction on the input parameters as well

as on the input basic block.3 Second, to provide the parameters

as input we concatenate the per-instruction parameters and the

global parameters to each instruction vector before processing

the instruction vectors with the instruction-level LSTM.

Solving the optimization problems. Training the surrogate
requires first defining sampling distributions for each parameter

(e.g., a bounded uniform distribution on integers). We then

generate a large simulated dataset by repeatedly sampling a

basic block from the ground-truth dataset, sampling a parameter

table from the defined sampling distributions, instantiating the

simulator with the parameter table, and generating a prediction

for the basic block. We train the surrogate using SGD against

this simulated dataset. During surrogate training, for parameters

constrained to be lower-bounded we subtract the lower bound

before passing them as input to the surrogate.

To train the parameter table, we first initialize it to a

random sample from the parameter sampling distribution. We

generate predictions using the parameter table plugged into the

trained surrogate, and train the parameter table by using SGD

against the ground-truth dataset. Importantly, when training the

parameter table, the weights of the surrogate are not updated.

During parameter table training, for parameters constrained to

be lower-bounded we take the absolute value of the parameters

before passing them as input to the surrogate.

Parameter extraction. Once we have trained the surrogate and
the parameter table using the optimization process described

in Section III, we extract the parameters from the parameter

table and use them in the original simulator. For parameters

with lower bounds, we take the absolute value of the parameter

in the learned parameter table, then add the lower bound. For

integer parameters, we round the learned parameter to the

nearest integer. We do not use any special technique to handle

unseen opcodes in the test set, just using the parameters for

that opcode from the randomly initialized parameter table.

3A stack of 4 LSTMs resulted in the best validation error for the surrogate.

446

TABLE II: Parameters learned for llvm-mca.

Parameter Count Constraint Description
DispatchWidth 1 global Integer, ≥ 1 How many micro-ops can be dispatched each cycle in the dispatch stage.

ReorderBufferSize 1 global Integer, ≥ 1 How many micro-ops can fit in the reorder buffer.
NumMicroOps 1 per-instruction Integer, ≥ 1 How many micro-ops each instruction contains.
WriteLatency 1 per-instruction Integer, ≥ 0 The number of cycles before destination operands of that instruction can be read from. A

latency value of 0 means that dependent instructions do not have to wait before being issued,
and can be issued in the same cycle.

ReadAdvanceCycles 3 per-instruction Integer, ≥ 0 How much to decrease the effective WriteLatency of source operands.
PortMap 10 per-instruction Integer, ≥ 0 The number of cycles the instruction occupies each execution port for. Represented as a

10-element vector per-instruction, where element i is the number of cycles for which the
instruction occupies port i.

V. Evaluation

In this section, we report and analyze the results of using

DiffTune to learn the parameters of llvm-mca across different

x86 microarchitectures. We first describe the methodological

details of our evaluation in Section V-A. We then analyze the

error of llvm-mca instantiated with the learned parameters,

finding the following:

• DiffTune is able to learn parameters that lead to lower

error than the default expert-tuned parameters across all

four tested microarchitectures. (Section V-B)

• Black-box global optimization with OpenTuner [14] cannot

find a full set of parameters for llvm-mca’s Intel x86

simulation model that match llvm-mca’s default error.

(Section V-C)

To show that our implementation of DiffTune is extensible

to CPU simulators other than llvm-mca, we evaluate DiffTune

on llvm_sim in Appendix A.

A. Methodology
Following Chen et al. [23], we use llvm-mca version

8.0.1 (commit hash 19a71f6). We specifically focus on llvm-
mca’s Intel x86 simulation model: llvm-mca supports behavior

beyond that described in Section II (e.g., optimizing zero

idioms, constraining the number of physical registers available,

etc.) but this behavior is disabled by default in the Intel

microarchitectures evaluated in this paper. We do not enable

or learn any behavior not present in llvm-mca’s default Intel

x86 simulation model, including when evaluating on AMD.

llvm-mca parameters. For each microarchitecture, we learn
the parameters specified in Table II. Following the default value

in llvm-mca for Haswell, we assume that there are 10 execution

ports available for dispatch for all microarchitectures. llvm-mca

supports simulation of instructions that can be dispatched to

multiple different ports in the PortMap parameter. However,
the simulation of port group parameters in the PortMap does
not correspond to standard definitions of port groups [9, 13, 32].

We therefore set all port group parameters in the PortMap to
zero, removing that component of the simulation.

Dataset. We use the BHive dataset from Chen et al. [23],

which contains basic blocks sampled from a diverse set of

applications (e.g., OpenBLAS, Redis, LLVM, etc.) along with

TABLE III: Dataset summary statistics.

Statistic Value
Blocks

Train 230111
Validation 28764

Test 28764
Total 287639

Block Length
Min 1

Median 3
Mean 4.93
Max 256

Median Block Timing
Ivy Bridge 132
Haswell 123
Skylake 120
Zen 2 114

Unique Opcodes
Train 814
Val 610
Test 580
Total 837

the measured execution times of these basic blocks unrolled in

a loop. These measurements are designed to conform to the

same modeling assumptions made by llvm-mca.

We use the latest available version of the released timings

on Github.4 We evaluate on the datasets released with BHive

for the Intel x86 microarchitectures Ivy Bridge, Haswell, and

Skylake. We also evaluate on AMD Zen 2, which was not

included in the BHive dataset. The Zen 2 measurements were

gathered by running a version of BHive modified to time basic

blocks using AMD performance counters on an AMD EPYC

7402P, using the same methodology as Chen et al.. Following

Chen et al., we remove all basic blocks potentially affected by

virtual page aliasing.

We randomly split off 80% of the measurements into a

training set, 10% into a validation set for development, and

10% into the test set reported in this paper. We use the same

train, validation, and test set split for all microarchitectures.

The training and test sets are block-wise disjoint: there are

no identical basic blocks between the training and test set.

Summary statistics of the dataset are presented in Table III.

4https://github.com/ithemal/bhive/tree/5878a18/benchmark/throughput

447

Objective. We use the same definition of timing as Chen et al.
[23]: the number of cycles it takes to execute 100 iterations of

the given basic block, divided by 100. Following Chen et al.’s

definition of error, we optimize llvm-mca to minimize the mean

absolute percentage error (MAPE) against a dataset:

Error �
1

|D|

∑
(x,y)∈D

| f (x)− y |

y

We note that an error of above 100% is possible when f (x) is
much larger than y.

Training methodolgy. We use Pytorch-1.2.0 on an NVIDIA
Tesla V100 to train the surrogate and parameters.

We train the surrogate and the parameter table using

Adam [21], a stochastic first-order optimization technique, with

a batch size of 256. We use a learning rate of 0.001 to train the
surrogate and a learning rate of 0.05 to train the parameter table.

To train the surrogate, we generate a simulated dataset of

2301110 blocks (10× the length of the original training set).

For each basic block in the simulated dataset, we sample a

random parameter table, with each WriteLatency a uniformly
random integer between 0 and 5 (inclusive), each value in

the PortMap uniform between 0 and 2 cycles to between

0 and 2 randomly selected ports for each instruction, each

ReadAdvanceCycles between 0 and 5, each NumMicroOps
between 1 and 10, the DispatchWidth uniform between 1 and

10, and the ReorderBufferSize uniform between 50 and 250.

A random parameter table sampled from this distribution has

error 171.4%±95.7%. See Section VII for more discussion of
these sampling distributions.

We loop over this simulated dataset 6 times when training

the surrogate, totaling an equivalent of 60 epochs over the

original training set. To train the parameter table, we initialize

it to a random sample from the parameter training distribution,

then train it for 1 epoch against the original training set.

B. Error of Learned Parameters
Table IV presents the average error and correlation of llvm-

mca with the default parameters (labeled default), llvm-mca

with the learned parameters (labeled DiffTune). As baselines,

Table IV also presents Ithemal’s error, as the most accurate

predictor evaluated by Chen et al., IACA’s error, as the most

accurate analytical model evaluated by Chen et al., and llvm-

mca with parameters learned by OpenTuner (which we discuss

further in Section V-C). Because IACA is written by Intel to

analyze Intel microarchitectures, it does not generate predictions

for Zen 2. We report mean absolute percentage error, as defined

in Section V-A, and Kendall’s Tau rank correlation coefficient,

measuring the fraction of pairs of timing predictions in the test

set that are ordered correctly. For the learned parameters, we

report the mean and standard deviation of error and Kendall’s

Tau across three independent runs of DiffTune.

Across all microarchitectures, the parameter set learned by

DiffTune achieves equivalent or better error than the default

parameter set. These results demonstrate that DiffTune can learn

TABLE IV: Error of llvm-mca with the default and learned

parameters, compared against baselines.

Architecture Predictor Error Kendall’s Tau
Ivy Bridge Default 33.5% 0.788

DiffTune 25.4%±0.5% 0.735±0.012

Ithemal 9.4% 0.858
IACA 15.7% 0.810

OpenTuner 102.0% 0.515

Haswell Default 25.0% 0.783
DiffTune 23.7%±1.5% 0.745±0.009

Ithemal 9.2% 0.854
IACA 17.1% 0.800

OpenTuner 105.4% 0.522

Skylake Default 26.7% 0.776
DiffTune 23.0%±1.4% 0.748±0.008

Ithemal 9.3% 0.859
IACA 14.3% 0.811

OpenTuner 113.0% 0.516

Zen 2 Default 34.9%5 0.794
DiffTune 26.1%±1.0% 0.689±0.007

Ithemal 9.4% 0.873
IACA N/A N/A

OpenTuner 131.3% 0.494

TABLE V: Error of llvm-mca with default and learned parame-

ters on Haswell, grouped by BHive applications and categories.

Block Type # Blocks Default Learned
Error Error

OpenBLAS 1478 28.8% 29.0%
Redis 839 41.2% 22.5%
SQLite 764 32.8% 21.6%
GZip 182 40.6% 20.6%
TensorFlow 6399 33.5% 22.1%
Clang/LLVM 18781 22.0% 21.0%
Eigen 387 44.3% 23.8%
Embree 1067 34.1% 21.3%
FFmpeg 1516 30.9% 21.2%

Scalar (Scalar ALU operations) 7952 17.2% 18.9%
Vec (Purely vector instructions) 104 35.3% 39.6%
Scalar/Vec

614 53.6% 37.5%
(Scalar and vector arithmetic)
Ld (Mostly loads) 10850 27.2% 24.4%
St (Mostly stores) 4490 24.7% 08.7%
Ld/St (Mix of loads and stores) 4754 27.9% 30.3%

all of llvm-mca’s microarchitecture-specific parameters, from

scratch, to equivalent accuracy as the hand-written parameters.

We also analyze the error of llvm-mca on the Haswell

microarchitecture using the evaluation metrics from Chen et al.

[23], designed to validate x86 basic block performance models.

Chen et al. present three forms of error analysis: overall error,

per-application error, and per-category error. Overall error is

the error reported in Table IV. Per-application error is the

average error of basic blocks grouped by the source application

of the basic block (e.g., TensorFlow, SQLite, etc.; blocks can

have multiple different source applications). Per-category error

5llvm-8.0.1 does not support Zen 2. This default error we report for Zen 2
uses the znver1 target in llvm-8.0.1, targeting Zen 1. The Zen 2 target in
llvm-10.0.1 has a higher error of 39.8%.

448

is the average error of basic blocks grouped into clusters based

on the hardware resources used by each basic block.

The per-application and per-category errors are presented in

Table V. The learned parameters outperform the defaults across

most source applications, with the exception of OpenBLAS

where the learned parameters result in 0.2% higher error. The

learned parameters perform similarly to the default across

most categories, with the primary exceptions of the Scalar/Vec

category and the St category, in which the learned parameters

perform significantly better than the default parameters.

C. Black-box global optimization with OpenTuner
In this section, we describe the methodology and perfor-

mance of using black-box global optimization with Open-

Tuner [14] to find parameters for llvm-mca. We find that

OpenTuner is not able to find parameters that lead to equivalent

error as DiffTune in llvm-mca’s Intel x86 simulation model.

Background. We use OpenTuner as a representative example
of a black-box global optimization technique. OpenTuner is

primarily a system for tuning parameters of programs to

decrease run-time (e.g., tuning compiler flags, etc.), but has

also been validated on other optimization problems, such as

finding the series of button presses in a video game simulator

that makes the most progress in the game.

OpenTuner is an iterative algorithm that uses a multi-armed

bandit to pick the most promising search technique among an

ensemble of search techniques that span both convex and non-

convex optimization. On each iteration, the bandit evaluates the

current set of parameters. Using the results of that evaluation,

the bandit then selects a search technique that then proposes a

new set of parameters.

Methodology. For computational budget parity with Diff-

Tune, we permit OpenTuner to evaluate the same num-

ber of basic blocks as used end-to-end in our learning

approach. We initialize OpenTuner with a sample from

DiffTune’s parameter table sampling distribution. We con-

strain OpenTuner to search per-instruction (NumMicroOps,
WriteLatency, ReadAdvanceCycles, PortMap) parameter
values between 0 and 5, DispatchWidth between 1 and 10,
and ReorderBufferSize between 50 and 250; these ranges
contain the majority of the parameter values observed in the

default and learned parameter sets.6 We evaluate the accuracy

of llvm-mca with the resulting set of parameters using the

same methodology as in Section V-B.

Results. Table IV presents the error of llvm-mca when param-

eterized with OpenTuner’s discovered parameters. OpenTuner

performs worse than DiffTune, resulting in error above 100%

across all microarchitectures. Thus, DiffTune requires substan-

tially fewer examples to optimize llvm-mca than OpenTuner

requires.

6Widening the search space beyond this range resulted in a significantly
higher error for OpenTuner.

TABLE VI: Default and learned global parameters.

Architecture Parameters DispatchWidth ReorderBufferSize

Haswell Default 4 192
Learned 4 144

VI. Analysis

In this section, we analyze the parameters learned by Diff-

Tune on llvm-mca, answering the following research questions:

• How similar are the learned parameters to the default

parameters in llvm-mca? (Section VI-A)

• How optimal are the learned parameters? (Section VI-B)

• How semantically meaningful are the learned parameters?

(Section VI-C)

A. Comparison of Learned Parameters to Defaults
This section compares the default parameters to the learned

parameters (from a single run of DiffTune) in Haswell.

Distributional similarities. To determine the distribu-

tional similarity of the learned parameters to the de-

fault parameters, Figure 4 shows histograms of the val-

ues of the default and learned per-instruction parame-

ters (NumMicroOps, WriteLatency, ReadAdvanceCycles,
PortMap). The primary distinctions between the distributions
are in WriteLatency and ReadAdvanceCycles; the learned
parameters otherwise follow similar distributions to the defaults.

The distributions of default and learned WriteLatency
values in Figure 4b primarily differ in that only 1 out of the 837

opcodes in the default Haswell parameters has WriteLatency
0 (VZEROUPPER), whereas 251 out of the 837 opcodes in the
learned parameters have WriteLatency 0. As discussed in

Table II, a WriteLatency value of 0 means that dependent
instructions do not have to wait before being issued, and can be

issued in the same cycle; instructions may still be bottlenecked

elsewhere in the simulation pipeline (e.g., in the execute stage).

The distributions of default and learned

ReadAdvanceCycles are presented in Figure 4c. The

default ReadAdvanceCycles are mostly 0, with a small

population having values 5 and 7; in contrast, the learned

ReadAdvanceCycles are fairly evenly distributed, with

a plurality being 0. Given that a significant fraction of

learned WriteLatency values are 0, it is likely that many

ReadAdvanceCycles values have little to no effect.7

Global parameters. Table VI shows the default

and learned global parameters (DispatchWidth and

ReorderBufferSize). The learned DispatchWidth
parameter is close to the default DispatchWidth parameter,
while the learned ReorderBufferSize parameter differs

significantly from the default. By analyzing llvm-

mca’s sensitivity to values of DispatchWidth and

7As noted in Section II, llvm-mca subtracts ReadAdvanceCycles from
WriteLatency to compute a dependency chain’s latency. The result of this
subtraction is clipped to be no less than zero.

449

1 2 3 4 5 6 7 8 9 10

NumMicroOps Value

0

100

200

300

400

C
ou

n
t

NumMicroOps Distribution

Default

Learned

(a) Distribution of default and learned NumMicroOps values.

0 1 2 3 4 5 6 7 8 9 10

WriteLatency Value

0

50

100

150

200

250

C
ou

n
t

WriteLatency Distribution

Default

Learned

(b) Distribution of default and learned WriteLatency values.

0 1 2 3 4 5 6 7 8 9 10

ReadAdvanceCycles Value

0

200

400

600

800

1000

C
ou

n
t

ReadAdvanceCycles Distribution

Default

Learned

(c) Distribution of default and learned ReadAdvanceCycles values.

0 1 2 3 4 5 6 7 8 9 10

PortMap Entry Value

101

102

103

104

C
ou

n
t
(l
og

sc
al
e)

PortMap Entry Distribution

Default

Learned

(d) Distribution of default and learned PortMap values.

Fig. 4: Distributions of default and learned parameter values on Haswell.

1 2 3 4 5 6 7 8 9 10
DispatchWidth

50%

100%

150%

200%

E
rr
or

Default

Learned

0 50 100 150 200 250 300 350 400

ReorderBufferSize

25%

50%

75%

100%

E
rr
or

Default

Learned

Fig. 5: llvm-mca’s sensitivity to values of DispatchWidth
(Top) and ReorderBufferSize (Bottom) within the default
(Blue) and learned (Orange) parameters.

ReorderBufferSize within the default and learned

parameters in Figure 5, we find that although the learned

global parameters do not match the default values exactly, they

approximately minimize llvm-mca’s error because there is a

wide range of values that result in approximately the same

error. While llvm-mca is sensitive to small perturbations in

the value of the DispatchWidth parameter (with the default
parameters, a DispatchWidth of 3 has error 33.5%, 4 has

error 25.0%, and 5 has error 26.8%), it is relatively insensitive
to perturbations of the ReorderBufferSize (with the default
parameters, all ReorderBufferSize values above 70 have

error 25.0%). This is primarily because one of llvm-mca’s core
modeling assumptions, that memory accesses always resolve in

the L1 cache, means that most instructions spend few cycles in

the issue, execute, and retire phases; the ReorderBufferSize
is therefore rarely a bottleneck in llvm-mca’s modeling of

the BHive dataset.

B. Optimality

This section shows that while the parameters learned by

DiffTune match the error of the default parameters, the learned

values are not optimal: by using DiffTune to optimize just a

subset of llvm-mca’s parameters, and keeping the rest as their

expert-tuned default values, we are able to find parameters with

lower error than when learning the entire set of parameters.

450

Experiment. We learn only each instruction’s WriteLatency
in llvm-mca. We keep all other parameters as their default

values. The dataset and objective used in this task are otherwise

the same as presented in Section V-A.

Methodology. Training hyperparameters are similar to those
presented in Section V-A, and are reiterated here with modifi-

cations made to learn just WriteLatency parameters. We train
both the surrogate and the parameter table using Adam [21]

with a batch size of 256. We use a learning rate of 0.001 to train
the surrogate and a learning rate of 0.05 to train the parameter
table. To train the surrogate, we generate a simulated dataset of

2301110 blocks. For each basic block in the simulated dataset,

we sample a random parameter table, with each WriteLatency
a uniformly random integer between 0 and 10 (inclusive). We

loop over this simulated dataset 3 times when training the

surrogate. To train the parameter table, we initialize it to a

random sample from the parameter training distribution, then

train it for 1 epoch against the original training set.

Results. On Haswell, this application of DiffTune results in
an error of 16.2% and a Kendall Tau correlation coefficient

of 0.823, compared to an error of 23.7% and a correlation of

0.745 when learning the full set of parameters with DiffTune.
These results demonstrate that DiffTune does not find a globally

optimal parameter set when learning llvm-mca’s full set of

parameters. This suboptimality is due in part to the non-convex

nature of the problem and the size of the parameter space.

C. Case Studies
This section presents case studies of basic blocks simulated

with the default and with the learned parameters, showing where

the learned parameters better reflect the ground truth data, and

where the learned parameters reflect degenerate cases of the

optimization algorithm. To simplify exposition, the results in

this section use just the learned WriteLatency values from
the experiment in Section VI-B.

PUSH64r. The default WriteLatency with the Haswell param-
eters for the PUSH64r opcode (push a 64-bit register onto the
stack, decrementing the stack pointer) is 2 cycles. In contrast,

the WriteLatency learned by DiffTune is 0 cycles. This leads
to significantly more accurate predictions for blocks that contain

PUSH64r opcodes, such as the following (in which the default
and learned latency for testl are both 1 cycle):

pushq %rbx
testl %r8d, %r8d

The true timing of this block as measured by Chen et al. [23] is

1.01 cycles. On this block, llvm-mca with the default Haswell

parameters predicts a timing of 2.03 cycles: The PUSH64r forms
a dependency chain with itself, so the default WriteLatency
before each PUSH64r can be dispatched is 2 cycles. In contrast,
llvm-mca with the learned Haswell values predicts that the

timing is 1.03 cycles, because the learned WriteLatency is 0
meaning that there is no delay before the following PUSH64r
can be issued, but the PortMap for PUSH64r still occupies

HWPort4 for a cycle before the instruction is retired; this 1-
cycle dependency chain results in a more accurate prediction.

In this case, DiffTune learns a WriteLatency that leads to
better accuracy for the PUSH64r opcode.

XOR32rr. The default WriteLatency in Haswell for the

XOR32rr opcode (xor two registers with each other) is 1 cycle.
The WriteLatency learned by DiffTune is again 0 cycles. This
is not always correct – however, a common use of XOR32rr
is as a zero idiom, an instruction that sets a register to zero.
For example, xor %rax, %rax performs an xor of %rax with
itself, effectively setting %rax to zero. Intel processors have a
fast path for zero idioms – rather than actually computing the

xor, they simply set the value to zero. Most of the instances
of XOR32rr in our dataset (4047 out of 4218) are zero idioms.
This leads to more accurate predictions in the general case, as

can be seen in the following example:

xorl %r13d, %r13d

The true timing of this block is 0.31 cycles. With the default

WriteLatency value of 1, the Intel x86 simulation model

of llvm-mca does not recognize this as a zero idiom and

predicts that this block has a timing of 1.03 cycles. With the

learned WriteLatency value of 0 and the fact that there are
no bottlenecks specified by the PortMap, llvm-mca executes
the xors as quickly as possible, bottlenecked only by the

NumMicroOps of 1 and the DispatchWidth of 4. With this

change, llvm-mca predicts that this block has a timing of 0.27

cycles, again closer to the ground truth.

ADD32mr. Unfortunately, it is impossible to distinguish between
semantically meaningful values that make the simulator more

correct, and degenerate values that improve the accuracy of the

simulator without adding interpretability. For instance, consider

ADD32mr, which adds a register to a value in memory and writes
the result back to memory:

addl %eax, 16(%rsp)

This block has a true timing of 5.97 cycles because it is

essentially a chained load, add, then store—with the L1

cache latency being 4 cycles. However, llvm-mca does not

recognize the dependency chain this instruction forms with

itself, so even with the default Haswell WriteLatency of 7
cycles for ADD32mr, llvm-mca predicts that this block has an
overall timing of 1.09 cycles. Our methodology recognizes the

need to predict a higher timing, but is fundamentally unable

to change a parameter in llvm-mca to enable llvm-mca to

recognize the dependency chain (because no such parameter

exists). Instead, our methodology learns a degenerately high

WriteLatency of 62 for this instruction, allowing llvm-mca
to predict an overall timing of 1.64 cycles, closer to the true

value. This degenerate value increases the accuracy of llvm-

mca without leading to semantically useful WriteLatency
parameters. This case study shows that the interpretability of

the learned parameters is only as good as the simulation fidelity;

when the simulation is a poor approximation to the physical

behavior of the CPU, the learned parameters do not correspond

to semantically meaningful values.

451

VII. Future Work

DiffTune is an effective technique to learn simulator pa-

rameters, as we demonstrate with llvm-mca (Section V) and

llvm_sim (Appendix A). However, there are several aspects of

DiffTune’s approach that are designed around the fact that llvm-

mca and llvm_sim are basic block simulators that are primarily

parameterized by ordinal parameters with few constraints

between the values of individual parameters. We believe that

DiffTune’s overall approach—differentiable surrogates—can be

extended to whole program and full system simulators that

have richer parameter spaces, such as gem5, by extending a

subset of DiffTune’s individual components.

Whole program and full system simulation. DiffTune

requires a differentiable surrogate that can learn the simulator’s

behavior to high accuracy. Ithemal [22]—the model we use for

the surrogate—operates on basic blocks with the assumption

that all data accesses resolve in the L1 cache, which is compati-

ble with our evaluation of llvm-mca and llvm_sim (which make

the same assumptions). While Ithemal could potentially model

whole programs (e.g., branching) and full systems (e.g., cache

behavior) with limited modifications, it may require significant

extensions to learn such more complex behavior [33, 34].

In addition to the design of the surrogate, training the

surrogate would require a new dataset that includes whole

programs, along with any other behavior modeled by the

simulator being optimized (e.g., memory). Acquiring such

a dataset would require extending timing methodologies like

BHive [23] to the full scope of target behavior.

Non-ordinal parameters. DiffTune only supports ordinal

parameters and does not support categorical or boolean param-

eters. DiffTune requires a relaxation of discrete parameters to

continuous values to perform optimization, along with a method

to extract the learned relaxation back into the discrete parameter

type (e.g., DiffTune relaxes integers to real numbers, and

extracts the learned parameters by rounding back to integers).

Supporting categorical and boolean parameters would require

designing and evaluating a scheme to represent and extract

such parameters within DiffTune. One candidate representation

is one-hot encoding, but has not been evaluated in DiffTune.

Dependent parameters. All integers in the range [1,∞)

are valid settings for llvm-mca’s parameters. However, other

simulators, such as gem5, have stricter conditions—expressed

as assertions in the simulator—on the relationship among

different parameters.8 DiffTune also does not apply when there

is a variable number of parameters: we are able to learn the

port mappings in a fixed-size PortMap, but do not learn the
number of ports in the PortMap, instead fixing it at 10 (the
default value for the Haswell microarchitecture). Extending

DiffTune to optimize simulators with rich, dynamic constrained

8For an example, see https://github.com/gem5/gem5/blob/v20.0.0.0/src/
cpu/o3/decode_impl.hh#L423, which is based on the interaction between
different parameters, defined at https://github.com/gem5/gem5/blob/v20.0.0.0/
src/cpu/o3/decode_impl.hh#L75.

relationships between parameters motivates new work in

efficient techniques to sample such sets of parameters [35].

Sampling distributions. Extending DiffTune to other simula-
tors also requires defining appropriate sampling distributions for

each parameter. While the sampling distributions do not have

to directly lead to parameter settings that lead the simulator

to have low error (e.g., the sampling distributions defined in

Section V-A lead to an average error of llvm-mca on Haswell

of 171.4%±95.7%), they do need to contain values that the
parameter table estimate may take on during the parameter

table optimization phase (because neural networks like our

modification of Ithemal are not guaranteed to be able to

accurately extrapolate outside of their training distribution).

Other approaches to optimizing with learned differentiable

surrogates handle this by continuously re-optimizing the

surrogate in a region around the current parameter estimate [16],

a promising direction that could alleviate the need to hand-

specify proper sampling distributions.

VIII. Related Work

Simulators are widely used for architecture research to model

the interactions of architectural components of a system [1,

2, 4, 5, 6]. Configuring and validating CPU simulators to

accurately model systems of interest is a challenging task [23,

36, 37]. We review related techniques for setting CPU simulator

parameters in Section VIII-A, as well as related techniques to

DiffTune in Section VIII-B.

A. Setting CPU Simulator Parameters
In this section, we discuss related approaches for setting

CPU simulator parameters.

Measurement. One methodology for setting the parameters
of an abstract model is to gather fine-grained measurements

of each individual parameter’s realization in the physical

machine [9, 10] and then set the parameters to their measured

values [11, 12]. When the semantics of the simulator and the

semantics of the measurement methodology coincide, then

these measurements can serve as effective parameter values.

However, if there is a mismatch between the simulator and

measurement methodology, then measurements may not provide

effective parameter settings.

All fine-grained measurement frameworks rely on accurate

hardware performance counters to measure the parameters of

interest. Such performance counters do not always exist, such

as with per-port measurement performance counters on AMD

Zen [13]. When such performance counters are present, they

are not always reliable [38].

Optimizing CPU simulators. Another methodology for set-
ting parameters of an abstract model is to infer the parameters

from end-to-end measurements of the performance of the

physical machine. In the most related effort in this space,

Ritter and Hack [13] present a framework for inferring port

usage of instructions based on optimizing against a CPU model

452

that solves a linear program to predict the throughput of a

basic block. Their approach is specifically designed to infer

port mappings and it is not clear how the approach could

be extended to infer different parameters in a more complex

simulator, such as extending their simulation model to include

data dependencies, dispatch width, or reorder buffer size. To

the best of our knowledge, DiffTune is the first approach

designed to optimize an arbitrary simulator, provided that

the simulator and its parameters match DiffTune’s scope of

applicability (Section VII).

B. Differentiable surrogates and approximations
In this section, we survey techniques related to DiffTune

that facilitate optimization by using differentiable surrogates

or approximations.

Optimization with learned differentiable surrogates. Opti-
mization of black-box and non-differentiable functions with

learned differentiable surrogates is an emerging set of tech-

niques, with applications in physical sciences [16, 17], reinforce-

ment learning [18], and computer security [19]. Shirobokov

et al. [16] use learned differentiable surrogates to optimize

parameters for generative models of small physics simulators.

This technique, concurrently released on arXiv, is similar to an

iterative version of DiffTune that continuously re-optimizes the

surrogate around the current parameter table estimate. Louppe

and Cranmer [17] propose optimizing non-differentiable physics

simulators by formulating the joint optimization problem as

adversarial variational optimization. Louppe and Cranmer’s

technique is applicable in principle, though it has only been

evaluated in small settings with a single parameter to learn.

Grathwohl et al. [18] use learned differentiable surrogates

to approximate the gradient of black-box or non-differentiable

functions, in order to reduce the variance of gradient estimators

of random variables. While similar, Grathwohl et al.’s surrogate

optimization has a different objective: reducing the variance

of other gradient estimators [39], rather than necessarily

mimicking the black-box function. She et al. [19] use learned

differentiable surrogates to approximate the branching behavior

of real-world programs then find program inputs that trigger

bugs in the program. She et al.’s surrogate does not learn

the full input-output behavior of the program, only estimating

which edges in the program graph are or are not taken.

Neural CPU simulator surrogates. İpek et al. [40] use

neural networks to learn to predict the IPC of a cycle-

accurate simulator given a set of design space parameters,

to enable efficient design space exploration. İpek et al. do

not then optimize the parameters using the gradient of the

neural simulator surrogate.

Differentiating arbitrary programs. Chaudhuri and Solar-

Lezama [41] present a method to approximate numerical

programs by executing programs probabilistically, similar to

the idea of blurring an image. This approach lets Chaudhuri

and Solar-Lezama apply gradient descent to parameters of

arbitrary numerical programs. However, the semantics presented

by Chaudhuri and Solar-Lezama only apply to a limited set

of program constructs and do not easily extend to the set of

program constructs exhibited by large-scale CPU simulators.

IX. Conclusion

CPU simulators are complex software artifacts that require

significant measurement and manual tuning to set their param-

eters. We present DiffTune, a generic algorithm for learning

parameters within non-differentiable programs, using only end-

to-end supervision. Our results demonstrate that DiffTune is

able to learn the entire set of 11265 microarchitecture-specific

parameters from scratch in llvm-mca. DiffTune offers the

promise of a generic, scalable methodology to learn detailed

performance models with only end-to-end measurements,

potentially reducing many performance optimization tasks to

simply that of gathering data.

Acknowledgements

We would like to thank the members of the Programming

Systems Group as well as the anonymous reviewers for their

helpful comments and suggestions. This work was supported in

part by the National Science Foundation (NSF CCF-1918839,

CCF-1533753), the Defense Advanced Research Projects

Agency (DARPA Awards #HR001118C0059 and #FA8750-

17-2-0126), with cloud computing resources provided by the

MIT Quest for Intelligence and the MIT-IBM Watson AI Lab.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the funding agencies.

Appendix A

llvm_sim

To evaluate that our implementation of DiffTune (Section IV)

is extensible to simulators other than llvm-mca, we evaluate

our implementation on llvm_sim [7], learning all parameters

that llvm_sim reads from LLVM. llvm_sim is a simulator that

uses many of the same parameters (from LLVM’s backend) as

llvm-mca, but uses a different model of the CPU, modeling

the frontend and breaking up instructions into micro-ops and

simulating the micro-ops individually rather than simulating

instructions as a whole as llvm-mca does.

Behavior. llvm_sim [7] is also an out-of-order superscalar

simulator exposing LLVM’s instruction scheduling model.

llvm_sim is only implemented for the x86 Haswell microarchi-

tecture. Similar to llvm-mca, llvm_sim also predicts timings of

basic blocks, assuming that all data is in the L1 cache. llvm_sim

primarily differs from llvm-mca in two aspects: It models the

front-end, and it decodes instructions into micro-ops before

dispatch and execution. llvm_sim has the following pipeline:

• Instructions are fetched, parsed, and decoded into micro-

ops (unlike llvm-mca, llvm_sim does model the frontend)

• Registers are renamed, with an unlimited number of

physical registers

453

TABLE VII: Parameters learned for llvm_sim.

Parameter Count Constraint Description
WriteLatency 1 per-instruction Integer, ≥ 0 The number of cycles before destination operands of that instruction can be read from.
PortMap 10 per-instruction Integer, ≥ 0 The number of micro-ops dispatched to each port.

TABLE VIII: Learning all parameters: error of llvm_sim with

the default and learned parameters.

Architecture Predictor Error Kendall’s Tau
Haswell Default 61.3% 0.7256

DiffTune 44.1% 0.718

Ithemal 9.2% 0.854
IACA 17.1% 0.800

OpenTuner 115.6% 0.507

• Micro-ops are dispatched out-of-order once dependencies

are available

• Micro-ops are executed on execution ports

• Instructions are retired once all micro-ops in an instruction

have been executed

Parameters. We learn the parameters specified in Table VII.
We again assume that there are 10 execution ports available to

dispatch for all microarchitectures and do not learn to dispatch

to port groups. All other hyperparameters are identical to those

described in Section V-A.

Results. Table VIII presents the average error and correlation
of llvm_sim with the default parameters, llvm_sim with

the learned parameters, Ithemal trained on the dataset as a

lower bound, and the OpenTuner [14] baseline. By learning

the parameters that llvm_sim reads from LLVM, we reduce

llvm_sim’s error from 61.3% to 44.1%.

References

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,

A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,

S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,

M. D. Hill, and D. A. Wood, “The gem5 simulator,”

SIGARCH Computer Architecture News, 2011.
[2] A. Di Biagio and M. Davis. (2018) llvm-mca. [Online].

Available: https://lists.llvm.org/pipermail/llvm-dev/2018-

March/121490.html

[3] Intel. (2017) Intel architecture code analyzer. [Online].

Available: https://software.intel.com/en-us/articles/intel-

architecture-code-analyzer

[4] M. T. Yourst, “PTLsim: A cycle accurate full system x86-

64 microarchitectural simulator,” in IEEE International
Symposium on Performance Analysis of Systems Software,
2007.

[5] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS:

A full system simulator for multicore x86 cpus,” in

ACM/EDAC/IEEE Design Automation Conference, 2011.

[6] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate

microarchitectural simulation of thousand-core systems,”

in SIGARCH Computer Architecture News, 2013.
[7] O. Sykora, C. Courbet, G. Chatelet, and N. Paglieri.

(2018) EXEgesis Project. [Online]. Available: https:

//github.com/google/EXEgesis

[8] D. A. Patterson and J. L. Hennessy, Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann

Publishers Inc., 1990.

[9] A. Fog, “Instruction tables: Lists of instruction latencies,

throughputs and micro-operation breakdowns for Intel,

AMD and VIA CPUs,” Technical University of Denmark,

Tech. Rep., 1996.

[10] A. Abel and J. Reineke, “uops.info: Characterizing

latency, throughput, and port usage of instructions on

Intel microarchitectures,” in International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2019.

[11] Q. Colombet. (2014) [patch][x86][haswell][schedmodel]

add exceptions for instructions that diverge

from the generic model. [Online]. Avail-

able: https://lists.llvm.org/pipermail/llvm-commits/Week-

of-Mon-20140811/230499.html

[12] C. Topper. (2014) [patch] d73844: [x86] update

the haswell and broadwell scheduler informa-

tion for gather instructions. [Online]. Avail-

able: https://lists.llvm.org/pipermail/llvm-commits/Week-

of-Mon-20200127/738394.html

[13] F. Ritter and S. Hack, “PMEvo: Portable inference of

port mappings for out-of-order processors by evolutionary

optimization,” in ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2020.

[14] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley,

J. Bosboom, U.-M. O’Reilly, and S. Amarasinghe, “Open-

Tuner: An extensible framework for program autotuning,”

in International Conference on Parallel Architectures and
Compilation Techniques, 2014.

[15] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel,

R. Vaidyanathan, and P. Kevin Tucker, “Surrogate-based

analysis and optimization,” Progress in Aerospace Sci-
ences, 2005.

[16] S. Shirobokov, V. Belavin, M. Kagan, A. Ustyuzhanin,

and A. G. Baydin, “Black-box optimization with local

generative surrogates,” in Workshop on Real World
Experiment Design and Active Learning at International
Conference on Machine Learning, 2020.

[17] G. Louppe and K. Cranmer, “Adversarial variational

optimization of non-differentiable simulators,” in Interna-
tional Conference on Artificial Intelligence and Statistics,

454

2019.

[18] W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Du-

venaud, “Backpropagation through the void: Optimizing

control variates for black-box gradient estimation,” in

International Conference on Learning Representations,
2018.

[19] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and

S. Jana, “NEUZZ: Efficient fuzzing with neural program

smoothing,” IEEE Symposium on Security and Privacy,
2019.

[20] H. Robbins and S. Monro, “A stochastic approximation

method,” Annals of Mathematical Statistics, 1951.
[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” in International Conference on Learning
Representations, 2015.

[22] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin,

“Ithemal: Accurate, portable and fast basic block through-

put estimation using deep neural networks,” in Interna-
tional Conference on Machine Learning, 2019.

[23] Y. Chen, A. Brahmakshatriya, C. Mendis, A. Renda,

E. Atkinson, O. Sykora, S. Amarasinghe, and M. Carbin,

“BHive: A benchmark suite and measurement framework

for validating x86-64 basic block performance models,”

in IEEE International Symposium on Workload Charac-
terization, 2019.

[24] J. Laukemann, J. Hammer, J. Hofmann, G. Hager, and

G. Wellein, “Automated instruction stream throughput

prediction for intel and amd microarchitectures,” in

IEEE/ACM International Workshop on Performance Mod-
eling, Benchmarking and Simulation of High Performance
Computer Systems, 2018.

[25] C. Lattner and V. Adve, “LLVM: A compilation frame-

work for lifelong program analysis & transformation,”

in International Symposium on Code Generation and
Optimization, 2004.

[26] A. Pohl, B. Cosenza, and B. Juurlink, “Vectorization

cost modeling for NEON, AVX and SVE,” Performance
Evaluation, 2020.

[27] C. Mendis and S. Amarasinghe, “GoSLP: Globally

optimized superword level parallelism framework,” ACM
International Conference on Object Oriented Program-
ming Systems Languages and Applications, 2018.

[28] “Intel 64 and IA-32 Architectures Software Developer’s

Manual,” https://software.intel.com/en-us/articles/intel-

sdm.

[29] C. Topper. (2018) Patch] d44644: [x86] use silvermont

cost model overrides for goldmont as well. [Online].

Available: http://lists.llvm.org/pipermail/llvm-commits/

Week-of-Mon-20180319/537000.html

[30] S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Computation, 1997.
[31] M. Hermans and B. Schrauwen, “Training and analysing

deep recurrent neural networks,” in Advances in Neural
Information Processing Systems, 2013.

[32] A. Di Biagio, “[llvm-dev] [llvm-mca] resource consump-

tion of procresgroups,” http://lists.llvm.org/pipermail/llvm-

dev/2020-May/141486.html, 2020.

[33] P. Vila, P. Ganty, M. Guarnieri, and B. Köpf, “Cachequery:

Learning replacement policies from hardware caches,” in

ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2020.

[34] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz,

J. Chang, C. Kozyrakis, and P. Ranganathan, “Learning

memory access patterns,” in International Conference on
Machine Learning, 2018.

[35] R. Dutra, K. Laeufer, J. Bachrach, and K. Sen, “Efficient

sampling of SAT solutions for testing,” in International
Conference on Software Engineering, 2018.

[36] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. N. Mudge,

C. Sudanthi, C. D. Emmons, M. Hayenga, and N. C.

Paver, “Sources of error in full-system simulation,” IEEE
International Symposium on Performance Analysis of
Systems and Software, 2014.

[37] A. Akram and L. Sawalha, “Validation of the gem5

simulator for x86 architectures,” in IEEE International
Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems, 2019.

[38] V. M. Weaver and S. A. McKee, “Can hardware per-

formance counters be trusted?” in IEEE International
Symposium on Workload Characterization, 2008.

[39] R. J. Williams, “Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning,” Machine
Learning, 1992.

[40] E. İpek, S. A. McKee, R. Caruana, B. R. de Supinski,

and M. Schulz, “Efficiently exploring architectural de-

sign spaces via predictive modeling,” in International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

[41] S. Chaudhuri and A. Solar-Lezama, “Smooth interpreta-

tion,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2010.

455

