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ABSTRACT

Accurate hardware performance models are critical to efficient code generation. They can be used by compilers
to make heuristic decisions, by superoptimizers as a minimization objective, or by autotuners to find an optimal
configuration for a specific program. However, they are difficult to develop because contemporary processors
are complex, and the recent proliferation of deep learning accelerators has increased the development burden.
We demonstrate a method of learning performance models from a corpus of tensor computation graph programs
for Tensor Processing Unit (TPU) instances. We show that our learned model outperforms a heavily-optimized
analytical performance model on two tasks—tile-size selection and operator fusion—and that it helps an autotuner
discover faster programs in a setting where access to TPUs is limited or expensive.

1 INTRODUCTION

Compilers often rely on performance models for solving
optimization problems because collecting performance mea-
surements from a real machine can be expensive, limited by
hardware availability, or infeasible (such as during ahead-
of-time compilation). For example, LLVM’s loop vectorizer
uses a performance model to compute the optimal vectoriza-
tion and unroll factors (LLVM), and GCC uses a model to
decide when to apply loop-peeling, loop-versioning, outer-
loop vectorization, and intra-iteration vectorization (GCC,
2019). In addition, a performance model can be used by
a compiler autotuner to evaluate candidate configurations
in a search space (Chen et al., 2018; Adams et al., 2019;
Narayanan et al., 2019; Jia et al., 2020).

Developing an accurate analytical model of program per-
formance on a modern processor is challenging and can
take months of engineering effort. Program performance is
tightly coupled with the underlying processor architecture
as well as the optimization decisions that are made during
compilation (Berry et al., 2006). Developers of analytical
models are often unaware of detailed features of the pro-
cessor or effects from all compiler passes. Furthermore,
architectural features and the underlying compiler code gen-
eration interact in extremely complex ways; manually im-
plementing these interactions and their effects on program
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performance is tedious and error-prone. The recent prolif-
eration of deep learning accelerators has only exacerbated
this problem by demanding rapid, repeated development of
performance models targeting new accelerators.

This paper addresses these problems by applying ma-
chine learning techniques to produce a performance model.
In particular, we are interested in learning a model for
predicting execution time of tensor programs on TPUs,
which are widely-used accelerators for deep learning work-
loads (Jouppi et al., 2017; 2020). We aim to develop a
learned approach to performance modeling that satisfies
the following key criteria for the ease of development and
deployment. First, the approach must be general enough
to handle non-trivial constructs in tensor programs (e.g.,
multi-level loop nests common in programs involving high-
dimensional tensors). Second, it must generalize across
programs of different application domains as well as to pro-
grams unseen at training time. Third, it should not rely on
well-crafted features that require significant domain exper-
tise and effort to develop and tune. Finally, the approach
should be retargetable to different optimization tasks with
minimal effort.

While there has been some prior work (Adams et al.,
2019; Chen et al., 2018; Mendis et al., 2019a) proposing
learned approaches to performance modeling, to the best
of our knowledge, none of them satisfy the four criteria
stated above. For instance, Ithemal (Mendis et al., 2019a)
does not handle complex multi-level loop nests. While
Halide’s learned performance model can handle tensor pro-
grams (Adams et al., 2019), it requires heavy feature en-
gineering. Although AutoTVM'’s models do not rely en-
tirely on manually-engineered features (Chen et al., 2018),
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Figure 1. A compiler autotuner typically relies on real hardware to evaluate the
performance of generated code. We propose a learned performance model as a

cheaper alternative to obtain reward signals.

it shows limited ability to generalize across kernels.

Like prior work, we formulate the runtime estimation prob-
lem as a regression task. However, we make specific archi-
tectural choices to satisfy the desiderata. First, our approach
represents tensor programs as data flow graphs with nodes
that represent operations and edges that represent tensor
flows between nodes. Second, we use a graph-based neu-
ral network optionally coupled with a sequence model; the
graph model ensures generalizability across different pro-
grams, while the sequence model is used to capture long
range dependencies within a graph. Third, we directly en-
code operation properties to generate a feature vector for a
node in the graph. While our approach does not require any
program analyses, adding manually engineered features as
additional features is trivial. Our approach is retargetable to
different tensor graph optimization tasks. We evaluate our
performance model on its ability to predict runtimes for two
tasks: tile-size selection and operator fusion. The model is
applied to evaluate program configurations generated by an
autotuner for the Accelerated Linear Algebra (XLA) com-
piler (TensorFlow) as depicted in Fig. 1.

In summary, we make the following contributions:

* We develop a learned performance model for tensor
programs that does not require feature engineering,
generalizes to unseen programs, and is retargetable for
different compiler optimization tasks.

¢ We show that our learned models achieve 96.3% and
95.5% accuracy with respect to true measurements; and
2.4% and 26.6% better accuracy than the best hand-
tuned model for tile-size and fusion tasks, respectively.

* We conduct a comprehensive set of ablation studies
over modeling choices.

* We integrate our learned performance model into an
XLA autotuner, and demonstrate that it helps in discov-
ering faster programs when access to real hardware is
limited or expensive, which is often true in practice.

Figure 2. An optimized tensor computation graph
consists of multiple kernels (gray blobs). Each ker-
nel in turn contains a graph of nodes corresponding
to primitive operations.

2 TARGET HARDWARE AND TASKS

Our approach to learning a performance model is applicable
to any target processor executing tensor programs. A tensor
program can be represented as a computation graph, which
is acyclic and directed. A node in a computation graph
represents a tensor operation, processing one or more input
tensors into a single output, and an edge connects an output
tensor from one node to an input tensor of another node.

To evaluate our method, we build a learned model to pre-
dict runtimes of XLA programs on a TPU. XLA is a ma-
chine learning compiler for multiple hardware targets, and
is used by various machine learning programming frame-
works. XLA first performs high-level optimizations at the
whole-program level. During this stage, some nodes (primi-
tive operations) in the original computation graph may be
merged into a fused node, called a kernel, as illustrated in
Fig. 2. After that, XL A lowers each kernel into a low-level
representation, which is then further optimized and com-
piled to machine code. In this paper, we evaluate on two
optimization tasks: tile-size selection (a kernel-level opti-
mization applied during lowering) and operator fusion (a
program-level optimization).

2.1 Tensor Processing Unit

Tensor Processing Units (Jouppi et al., 2020) are fast,
energy-efficient machine learning accelerators. They
achieve high performance by employing systolic array-
based matrix multiplication units. The architecture incor-
porates a vector processing unit, a VLIW instruction set,
2D vector registers, and a transpose reduction permute unit.
Programs can access the High Bandwidth Memory (HBM)
or the faster but smaller on-chip scratchpad memory that is
software-managed. While a TPU has no out-of-order execu-
tion, it relies heavily on instruction-level parallelism—done
by the compiler backend across several passes including
critical path scheduling and register allocation—making it
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challenging for performance modeling. TPUs do not support
multi-threading; one kernel is executed at a time.

The design of a TPU allows us to compute the runtime of an
entire program by summing the runtimes of its kernel execu-
tions. We expect our approach to work best for targets where
the runtime of one kernel is independent of others (e.g., no
overlapping kernel executions and no inter-kernel caching).
For example, prior work has shown that this approach is
sufficiently accurate for autotuning graph rewrites (Jia et al.,
2019a) and parallelization configurations (Jia et al., 2019b;
Narayanan et al., 2019) on GPUs.

We evaluate our approach on TPUs v2 and v3 to demonstrate
its generalizability across different generations of hardware.
TPU v3 has higher memory bandwidth and twice as many
matrix multiplier units compared to TPU v2.

2.2 Optimization Tasks

Tile-Size Selection To generate efficient code, XLA uti-
lizes the fast scratchpad to store data. Because of the limited
scratchpad memory, a kernel cannot consume its whole in-
put or compute its entire output at once. Instead, it computes
one piece of its output at a time from one or more pieces
of its inputs. These pieces are called tiles. An output tile is
copied to the slower HBM before the next tile is computed.
The goal of tile-size selection is to choose a tile size that
minimizes kernel runtime.

Operator Fusion Operator fusion merges multiple opera-
tions into a single unit. Before this pass, a node in a compu-
tation graph is a primitive tensor operation (e.g., convolu-
tion, element-wise add, etc.). When producer and consumer
nodes are fused, intermediate data is stored in scratchpad
memory, without transferring it to/from HBM, thereby re-
ducing data communication. After the fusion pass, a node
in a computation graph is either a single primitive operation
or a fused operation with many primitive operations.

2.3 Existing Analytical Model

For tile-size selection, XLLA enumerates all possible tile
sizes and selects the best according to a heavily hand-tuned
analytical performance model. This model estimates the
kernel’s data transfer time and computation time, and takes
the maximum of the two. Tile-size selection happens prior
to the code generation, so the model relies on several heuris-
tics that may cause inaccuracy. While the model works well
in practice, the approach has the following demerits: (a) the
lack of some execution behaviors due to poorly understood
architectural characteristics implies missed opportunities;
(b) changes in the code generation result in a constant need
to update the heuristics; and (c) each new hardware genera-
tion requires not only tuning of existing heuristics but also
additional modeling. Details can be found in Appendix A.

Unlike tile-size selection, XLA does not use a precise per-
formance model for the fusion task. Instead, it relies on
estimates of whether including each node into a fused group
will save memory space and access time. It then prioritize
fusion decisions according to these estimates.

2.4 Autotuning

Instead of relying on the compiler’s heuristics and analytical
performance model, an XLA autotuner has been developed
to search for the fastest tile size for each kernel, and the
fastest fusion configuration of each XLA program. The
autotuner found up to 25% speedup over the compiler’s de-
fault on some production deep learning models. However,
the autotuning process involves exhaustively running each
kernel with all valid tile sizes (ranging from 2 to 500,000
options) and exploration in an exponentially large space of
up to 240-000 fysion configurations per each program. This
requires many evaluations, where each evaluation is slow
due to the time spent in compilation and execution. An ac-
curate performance model can provide a cheap and reliable
estimate of the runtime, and can significantly reduce the
time and resource requirements of the autotuning process.

3 MODEL DESIGN

Our approach decomposes an XLA program into smaller
computation subgraphs (kernels) whose runtimes are pre-
dicted with a neural network. The estimated program run-
time is the sum of its kernel runtimes. Predicting kernel
runtimes instead of the whole program’s runtime has multi-
ple benefits. First, this decomposition is general enough that
we can apply the neural network model to various tasks, in-
cluding both program- and kernel-level optimizations. Sec-
ond, predicting runtime at a low-level representation should
be more accurate as the model does not have to capture
what happens inside the high-level compiler. Additionally,
kernels are smaller than whole programs, simplifying the
model’s domain. The rest of this section focuses on the three
main components for predicting a kernel runtime: model
inputs, model architecture, and training objectives.

3.1 Model Inputs

A model input is a kernel represented as node features,
whole-kernel features, and an adjacency matrix (highlighted
yellow, red, and blue respectively in Fig. 3). Node features
include the integer-valued type of the operation (opcode),
as well as scalar features which further describe the node’s
behavior, such as output tensor shape, tensor layout, strid-
ing, padding, and when applicable, convolution filter size.'

ntegers are cast to reals. Features are independently scaled to
be in the range [0, 1] using the minimum and maximum observed
in the training set.
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Figure 3. Overview of our model. Model inputs are an adjacency
matrix representing graph structure (red), node information (blue),
and kernel information (yellow). Kernel features can be fed into
the model in two ways: (1) appending to the node features or (2)
appending to kernel embedding.

Kernel’s inputs are expressed by nodes with the parame-
ter opcode, and outputs are expressed via an extra feature
associated with the output nodes. Kernel features include
tile size (only for the tile-size selection task) and optional
static performance information. The adjacency matrix cap-
tures data-flow dependencies between nodes in the kernel,
as shown in Fig. 2.

Optional Static Performance Features The XLA com-
piler has static analyses that determine high-level perfor-
mance metrics of a given kernel. In addition to the features
extracted directly from the program representation, we con-
sider providing information from these analyses as addi-
tional inputs to the model. These features are optional, but
may improve the model’s accuracy. We consider four such
kernel features: (1) number of floating point operations,
(2) amount of data read in bytes, (3) amount of data being
written in bytes, and (4) number of instructions executing
on a special functional unit. These are estimates because
the static analyses do not precisely model the compiler’s
backend code generation. The static performance features
of the same kernel with different tile-sizes are the same.

Variable-Sized Features Many node and kernel features
are naturally interpreted as variable-length lists of numbers.
This is because tensors are n-dimensional arrays and some
features describe individual tensor dimensions. For example,
tile size is encoded as a vector of length n, in which each
component corresponds to a tensor dimension. We encode
these features as fixed-size sub-vectors, padded or truncated
as necessary. Additionally, we include the sum and product

of all the values. Including the product is critical as it
usually represents the volume of a tensor, and can be more
predictive in cases where the sub-feature has been truncated
and so the product could not be recovered by the model.

3.2 Model Architecture

Figure 3 depicts the architecture of our model. We apply
a Graph Neural Network (GNN) to capture local structural
information and then apply a reduction over node embed-
dings to generate a kernel embedding, which is in turn used
to predict the final runtime. We explore different choices
for the reduction, including sequence and attention models
that can capture global graph information.

Node and Kernel Features The opcode z{ of an oper-
ation is categorical, so we follow best practices and map
it to a vector of parameters called an opcode embedding.
Opcode embeddings are concatenated with node features
before being passed, along with the adjacency matrix, to a
GNN. Kernel features are duplicated and concatenated with
node feature vectors (‘option 1’ in Fig. 3).

Node Embedding We use a GNN to combine information
from the node and its neighbors to generate a node repre-
sentation. We use a GNN because (i) a tensor computation
kernel is naturally represented as a graph, and (ii) learning
node representations conditioned only on their own features
and local neighborhoods has shown to improve generaliza-
tion in other settings. We believe that local neighborhoods
capture information that is important for estimating runtime.
For a example, node features include an output tensor shape
but not input tensors’ shape because operations can have
variable numbers of inputs. With a GNN, the model can
receive input shape information from node’s neighbors.

Our model builds on the GraphSAGE architecture (Hamilton
et al., 2017). We selected GraphSAGE since it is one of the
simpler GNN formulations that has been used successfully
in inductive tasks. The GraphSAGE embedding of node ¢
considering k-hop neighbors can be computed as follows:

eh =1, (féC (concat (ef‘l, Z fé“(sf_l)))
(@)

j€Eneighbors
for all k > 0, and € = f,(X;) otherwise. Here: f§ 5
denote feedforward layers specific to depth k. [ denotes
L2 normalization. neighbors(i) is the set of immediate
neighbors of node 4. > is a reduction chosen during hyper-
parameter search.

Kernel Embedding & Prediction We combine the node
embeddings £* to create the embedding « of the kernel. We
treat the exact method of calculating « as a hyperparameter,
choosing from the following methods, including:
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1. a fully deterministic concatenation of one or more of
column-wise maximum, mean, and/or sum reduction
over € (column-wise option),

2. the final state of an LSTM (Hochreiter & Schmidhuber,
1997) on topologically sorted node embeddings, and

3. the application of a Transformer encoder (Vaswani
et al., 2017) to the node embeddings.

In each of these cases, the resulting kernel embedding will
be linearly transformed into to scalar output by a feedfor-
ward layer without activation. Additionally, we evaluate
per-node predictions, which are the scalar outputs of a feed-
forward layer applied to each node embedding ¥, and then
we compute the sum of per-node predictions to get the ker-
nel prediction (per-node option).

The LSTM and Transformer reduction models are able
to capture global and long-range dependency information,
while the column-wise and per-node methods are not.

3.3 Training Objectives

Tile-Size Selection Task In this task, we are interested in
the relative speed between different tile sizes within each
kernel. Therefore, the performance model does not need
to predict absolute runtime, but instead should be able to
rank tile sizes by relative speed within each kernel. With
this intuition, we train the model with a pairwise rank loss
(Burges et al., 2005):

o~ P; — ;) - pos(yi — yj)
S T L LT

where n is the number of samples in each batch; pos(z)
is 1 if z > 0, or 0 otherwise; ¢(z) is either the hinge
function (1 — z), or logistic function log(1 + e~#), tuned
via hyperparameter search.

i=1j=1

Operator Fusion Task In this task, we would like the
model to predict absolute kernel runtimes which can be used
to compute total program runtime. Thus we minimize the
model’s squared error loss (y; — y;)? with log-transformed
targets. We apply log transformation because targets are
right-skewed and range from a nanosecond to a second.

4 DATA

Our dataset consists of 104 XLA programs used in produc-
tion or commonly in research. In order to test the ability
of our approach to generalize to unseen programs, the pro-
grams were split into training, validation, and test sets in
two ways: (a) using the random split method, in which pro-
grams were partitioned randomly into sets, and (b) using
the manual split method, in which the test set was chosen
by hand to minimize the subjective similarity of programs
between the training and other two sets. For each of the

train, validation, and test sets, programs were expanded into
individual kernels. Table 1 shows the number of programs
and kernels in the training, validation, and test sets using
both splitting methods. The number of nodes per kernel is
41 on average across all programs, and ranges from 1 to
1,000. We measured the kernel runtimes on both TPUs v2
and v3. Our experiments use TPU v2 measurements unless
mentioned otherwise.

Tile-Size Dataset For the tile size dataset, we compiled
each XLA program using the compiler’s default fusion
heuristics, obtaining an optimized computation graph that
we decompose into kernels. For each kernel, we queried the
compiler for a list of valid tile sizes. The runtime target for
each sample is the minimum runtime from three runs. A
kernel may have as many as 500,000 valid tile sizes, so we
measured runtimes for as many as possible for each kernel
within 30 minutes across 50 hosts, each with an accelerator.
This process generated the total of 25 million samples.

Fusion Dataset For the fusion dataset, we ran the fusion
autotuner with a random search strategy to generate, for
each computation graph, 50,000 fusion configurations or un-
til timeout (4 hours using 50 machines). Graphs were then
decomposed into kernels, yielding 208 million samples after
duplicate elimination. Approximately half of the resulting
kernels have runtimes below 5Sus. These contribute negli-
gibly to total program runtimes, so we emphasize larger
kernels in our analysis.

Imbalances Our data are imbalanced in two ways. First,
programs are not wholly independent. For example, there
are many variations of ResNet models, but just one AlexNet
model and one DLRM (recommendation) model. Second,
the number of kernels and tile sizes vary widely across dif-
ferent models. In the fusion dataset, ResNet variant models
have 300x more samples than AlexNet variants, and in the
tile-size dataset, models using Inception have 400x more
kernels than auto-completion models. To account for these
imbalances, we draw examples evenly from each model
type during training.

5 MODEL ACCURACY EVALUATION

We trained our models on a single NVidia V100 instance
with 96GB of RAM and 10 CPU cores . For all the learned
models, we did a hyperparameter search (presented in Ap-
pendix B) and selected the best-performing model for each
task on the validation set.

5.1 Tile-Size Task

Metrics For this task, we are interested in relative run-
times between different tile sizes within each kernel. Thus,
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Table 1. The number of unique programs and kernels in the fusion and tile-size datasets. M = million.

Random Split Method Manual Split Method

Programs Kernels Programs Kernels
Set Tile-Size  Fusion Tile-Size Fusion Tile-Size Fusion Tile-Size Fusion
Train 93 78 21.8M  157.5M 93 78 229M  190.2M
Validation 8 8 1.6M 30.1M 8 8 1.4M 11.2M
Test 8 8 1.4M 20.3M 6 6 0.5M 6.6M

Table 2. The main evaluation metrics for both tasks on the randomly split test set, grouped by test application, comparing our best learned
performance models against the analytical baseline. Geometric mean and median statistics are over application-level metrics. Fusion
experiment statistics are evaluated over kernels with >5us true runtimes, which account for the majority of total runtime in our programs.

Tile-Size Fusion

Tile-Size APE Kendall’s 7 MAPE Kendall’s 7

Learned Analytical Learned Analytical Learned Analytical Learned Analytical
ConvDRAW 9.7 3.9 0.75 0.79 17.5 21.6 0.80 0.77
WaveRNN 1.5 2.8 0.75 0.65 29 3229 0.97 0.70
NMT Model 3.1 13.1 0.86 0.81 9.8 26.3 0.94 0.91
SSD 39 7.3 0.82 0.77 11.4 55.9 0.88 0.76
RNN 8.0 10.2 0.64 0.55 1.9 20.5 0.97 0.86
ResNet v1 2.8 4.6 0.85 0.73 3.1 11.5 0.95 0.88
ResNet v2 2.7 5.4 0.87 0.73 2.4 13.3 0.96 0.86
Translate 34 7.1 0.93 0.92 2.1 272 0.92 0.74
Median 33 6.2 0.84 0.75 3.0 24.0 0.95 0.82
Mean 3.7 6.1 0.80 0.74 4.5 31.1 0.92 0.80

for each kernel, we find the tile size with the best predicted
runtime and the one with the best true runtime, and find
the difference between their true runtimes. This is distinct
from measuring differences between predicted runtimes and
true runtimes. The ‘Tile-Size APE’ (listed in Table 2) is
computed by summing the differences across all program
kernels and dividing the sum by the runtime of the pro-
gram as if it had chosen the best tile size for every kernel.
More precisely, the Tile-Size APE of a program with kernels
k € K and set of tile size configurations CY, is:

" D okek |t§;€ — mincec, |

100 2
ZkeK mincec, tlg @

where t¥ is the true runtime of tile size configuration c for
kernel k, and ¢}, is the predicted-best configuration. This
is a good measure of efficacy for the setting, in which we
use the performance model to select the top candidates and
verify their actual runtimes using real hardware. Tile-Size
APE shows how far we are from the fastest program. We
also measure the Kendall rank correlation between targets
and predictions of tile-size runtimes within each kernel, and
compute the average over all kernels in each program.

Results Table 2 shows results for the randomly split
dataset. The baseline is XLLA’s mature analytical perfor-
mance model designed for this task, as described in Sec-
tion 2.3. Our learned performance model (3.7% mean error
and 0.8 mean correlation) performs slightly better than the

analytical model (6.1% mean error and 0.74 mean correla-
tion). Our learned model is consistently better than the ana-
Iytical model on all benchmarks except ConvDraw, which
differs more (subjectively) from the programs in our training
set than any other test program. TPU v3 results are similar;
the learned performance model has 3.8% mean error with a
slightly lower mean correlation of 0.65.

On the manually split dataset, the learned model (6.3% mean
error) performs slightly worse than the analytical model
(2.3% mean error). It is expected that the test error of the
learned model on this test set will be higher than that of the
randomly split test set, as these test programs were chosen
for their dissimilarity to the training set. See Table 8 in the
appendix for more detail.

5.2 Fusion Task

Metric In this task, we use mean absolute percentage
error (MAPE) as we wish to estimate the absolute runtime
of the kernels in order to predict the total program runtime.

Baseline The existing analytical performance model in
XLA is built for selecting the fastest tile size given a kernel,
so performance estimates for different kernel types (e.g.,
fused kernels with and without convolutions) are in different
scales. Hence, we scale the analytical model’s output with
a coefficient associated with the kernel’s type to get an
estimated absolute runtime. Coefficients are determined by
executing each program in the test set with a default fusion
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configuration, and dividing the actual total runtime for all
kernels of each type by the estimate in its original scale. The
analytical model does not support kernels without tile-size
options, which account for 1% of kernels in the dataset. We
ignore these kernels in our comparisons in this section.

Results Table 2 reports MAPEs of kernels with runtimes
>5ps. Our best learned model (4.5 MAPE and 0.92 mean
correlation) substantially outperforms the analytical model
(31.1 MAPE and 0.8 mean correlation). Similar to the tile-
size dataset, our model consistently performs better than the
analytical model on all benchmarks. On kernels with <5us
runtimes, results follow the same trend; our model and the
analytical model have MAPEs of 5.0 and 22.7; and mean
Kendall’s 7 coefficients of .89 and .7 respectively. For the
kernels with runtimes >5us on TPU v3, the learned perfor-
mance model has 4.9 MAPE and 0.92 mean correlation.

On the harder manual split, the learned model still outper-
forms the analytical model significantly (see Table 8 in the
appendix). On kernels with runtimes >5pus, our model and
the analytical model have MAPEs of 6.2 and 18.1 respec-
tively.

6 MODEL ABLATION STUDIES

We ran a comprehensive set of ablation experiments to
study the effects of design decisions underlying the best-
performing model presented in Section 5, including the
objectives used, the presence of static performance features,
and the model architecture. Experiments in this section use
the randomly split datasets and the same evaluation metrics
as in the previous section: Tile-Size APE for the tile-size
task and MAPE for the fusion task. Each ablation (row in
Table 3) is a single change to the ‘vanilla’ configuration.

6.1 Graph Features and Loss Function

To determine what input features are important and the suit-
able training loss function to use, we used the same neural
network model across all the experiments in Section 6.1. In
particular, we used GraphSAGE with the simple per-node
reduction, which is quick to train, and one of our best-
performing hyperparameter configurations. Each model
configuration was trained for 3 million steps.

Edge Direction First, we considered a model variant that,
unlike the ‘vanilla’ model, applied the same feedforward net-
work to node representations from incoming and outgoing
edges (see ‘Undirected’ in Table 3). The results suggest that
edge direction is important for the fusion task—reducing
the mean error by 3.8%—but irrelevant to the tile-size task.

Static Performance Features The ‘With static perf. (as
node features)’ row of Table 3 shows the result when we

Table 3. The table reports Tile-Size APE for the tile-size dataset,
and MAPE for the fusion dataset, on test programs for a variety of
model variants. All models are trained for 3 million steps.  The
model configuration used in Section 5.

Tile-Size Fusion

Median Mean Median Mean
Vanilla 6.2 6.8 9.5 10.2
Undirected 7.2 6.8 11.0 14.0
With static perf. § 6.5 6.3 4.0 5.2
(as node features)
With static perf. 6.1 5.9 5.7 6.0
(in kernel embedding)
Move tile-size (node 10.2 94 N/A N/A
feats. to kernel emb.)
MSE loss (not rank) 16.7 17.7 N/A N/A

add four static performance features—as explained in Sec-
tion 3.1—to the ‘vanilla’ model, which uses only features
that are extracted directly from the XLLA program representa-
tion. Similar to edge directions, these features significantly
improve model accuracy for the fusion task—reducing the
mean error by 5%—but less so for the tile-size task.

The finding that edge direction and static performance infor-
mation help only the fusion task is somewhat unexpected
but not entirely surprising. In the tile size selection task,
we predict the relative runtimes of different tile sizes of
the same kernel, but never compare runtimes of different
kernels. Thus, the static performance features and the kernel
graph are constant across different tile sizes, and the only
changing input features are the tile size features. However,
these constant features may still help determine the relative
runtimes of different tile sizes more accurately, as we can
see that the static performance features slightly improve the
tile size runtime prediction accuracy. Hence, adding more
input features may not help significantly if they are constant
across kernels that will be compared against each other.

Kernel Features Encoding Two ways to encode kernel
information are shown in Fig. 3, labeled ‘kernel features
(option 1)” and ‘(option 2)’. In Table 3, the ‘vanilla’ model
uses option 1, whereas the ‘Move tile-size (node feats. to
kernel emb.)’ uses option 2. Encoding tile-size with node
features outperforms encoding it with the kernel embedding
(2.6% lower mean error). We believe this is because tile size
can be important for estimating runtime for an individual
operation before aggregation. When the tile-size informa-
tion is available at the node level, the model still has all
the information about the node, such as its input and output
shapes. On the other hand, encoding static performance
information as node features or kernel features makes little
difference because these features are not very important for
estimating the runtime for an individual node.
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Table 4. Model ablation study results. The table reports Tile-Size APE for the tile-size dataset, and MAPE for the fusion dataset, on test
programs. Standard deviations of the errors across test applications are in parentheses. Reductions (rows) are defined in Section 3. Bold
indicates the selected models used in Section 5. All models are trained until 5 million steps.

Tile-Size Fusion
Reduction \ Graph  No GNN  GraphSAGE GAT No GNN  GraphSAGE GAT
per-node 10.7 (5.3) 6.0(3.8) 9.2(6.4) 16.6(132.7) 7.3 (34.6) 15.1 (4.0)
column-wise 9.3(3.3) 6.93.00 8442 6.6 (9.1) 5.1(3.6) 8.5(3.8)
LSTM 7.1 (3.7) 3728) 7742 3.9(.5) 5.04.3) 7.4 (4.5)
Transformer 10.8 (7.4) 46(26) 8.2(3.8) 7.3 (10.1) 45(58) 14.6(11.3)

MSE vs. Rank Loss  For the tile-size dataset, we compare
using MSE and rank loss as the training objective. The
‘vanilla’ model is trained using rank loss, while the ‘MSE
loss (not rank)’ in Table 3 uses MSE loss. The effect is
significant, using rank loss is 10.9% more accurate. This
result confirms our intuition that training a model to predict
relative speeds is easier than absolute runtimes.

6.2 Neural Network Model

Once we determined the best set of graph features to in-
clude and the suitable loss function for each task from the
experiment in Section 6.1, we performed a comprehensive
comparison between different modeling choices to answer:

1. Does a GNN outperform models that treat programs as
sequences?

2. Do we need an additional model to capture long-range
dependencies in a kernel beyond a GNN?

3. How does GraphSAGE compare to a more sophisti-
cated GNN: Graph Attention Network (GAT)?

To answer these questions, we explore different combi-
nations of modeling choices for a GNN (GraphSAGE,
GAT, and no GNN) and node reduction methods (per-node,
column-wise, LSTM, and Transformer).

For all the models in this experiment, we train to five mil-
lion steps and use the best settings from Section 6.1: distin-
guishing edge direction, and including static performance
information (and tile-size) as node features.

Q1: Graphs vs. Sequences Prior work proposes
an LSTM-based performance model for x86 basic
blocks (Mendis et al., 2019a). To understand the effect
of representing program examples as graphs rather than se-
quences, we compare GraphSAGE with the simple column-
wise reduction to LSTM and Transformer (with no GNN).
LSTM and Transformer models are trained over topologi-
cally sorted sequences of nodes, whose embeddings are the
same per-node representations fed into GNNs.

According to Table 4, GraphSAGE with the column-wise
reduction is more accurate than using LSTM or Transformer
without a GNN on the tile-size dataset. On the fusion dataset,
LSTM is slightly better than GraphSAGE, but LSTM has a

higher error variance across test applications. Since we want
the performance model to be consistently accurate across
all programs, we conclude that GraphSAGE is a crucial
component to achieve that. Another interesting finding is
that Transformer alone is worse than the simple column-
wise reduction even without GraphSAGE.

Q2: Most Effective Global Reduction GNNs capture lo-
cal graph structural information but not the global structure.
To consider some global information and long-range depen-
dencies in a kernel, we apply a sequence model (LSTM) and
a global attention model (Transformer) to generate kernel
embeddings from node embeddings produced by a GNN.

As seen in Table 4, applying either LSTM or Transformer
on top of GraphSAGE improves the model accuracy over
GraphSAGE with a non-model-based reduction (per-node
or column-wise). This result suggests that in order to
achieve the best accuracy, the model indeed needs to cap-
ture more than local dependencies. GraphSAGE-LSTM
and GraphSAGE-Transformer perform equally well on
both tile-size and fusion datasets. However, GraphSAGE-
Transformer is much faster to train.

Nevertheless, GraphSAGE with the simple column-wise
reduction already works reasonably well. If one prefers a
model with fast inference time, we recommend such a com-
bination. While GraphSAGE with the per-node reduction
is slightly better than GraphSAGE with the column-wise
reduction on the tile-size task, it is significantly worse on
the fusion task with a high variance across applications.

Q3: Most Effective GNN We compared our choice of
GraphSAGE to GAT, which found state-of-the-art perfor-
mance on a number of benchmarks (Yun et al., 2019). We
use GAT with multiple attention heads per each layer. Ac-
cording to Table 4, GraphSAGE consistently exhibits better
test accuracy compared to GAT. We noticed that training
GATs was especially sensitive to hyperparameter choices.
For example, GraphSAGE was less sensitive to learning rate
changes than GATs. Therefore, we conclude that Graph-
SAGE with roughly the same number of learnable param-
eters compared to GAT generalizes better for our cost pre-
diction regression task. Additionally, we observed that GAT
with LSTM/Transformer is worse than LSTM/Transformer
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alone. We hypothesize that training a compounded complex
model further increases the training difficulty.

7 XLA TOOLCHAIN INTEGRATION

In this section, we integrated the learned model into the
XLA compiler and autotuner.

7.1 Tile-Size Compiler Integration

We integrated the model directly into the XLLA compiler,
replacing the analytical model. Fig. 4’s ‘Learned model
1’ shows the benchmark speedup over the default tile-size
configurations (the best tile-sizes according to the analytical
cost model). The first eight benchmarks are from the test
set, and the remaining four are benchmarks that gain most
speedup from exhaustive search.

On the test set benchmarks, the learned model is comparable
to the analytical model, except for ConvDraw. We observe
a few percent slowdown on NMT, SSD, and Translate even
though our model shows better accuracy on these bench-
marks in Table 2. This is likely because the dataset does not
contain all possible tile sizes for a kernel if the time limit is
reached during data generation.

On 3 out of 4 additional benchmarks, the learned cost model
is better than the analytical model. On Translate (3), replac-
ing the compiler’s analytical model with the learned model
would yield a 20% speedup. This demonstrates another
advantage of a learned performance model over a manually-
written model: it can be easily improved with more data. If
the learned model does not perform well on some bench-
marks, we can re-train or fine-tune the model on similar
benchmarks. In contrast, to fix the analytical model, engi-
neers must identify the problem and fix it in a way that does
not hurt other benchmarks, which is challenging in practice.

7.2 Tile-Size Autotuner Integration

Instead of using the learned model inside the compiler di-
rectly, we can use it in the tile-size autotuner. Fig. 4 reports
the end-to-end benchmark speedup found by the autotuner.
By default the autotuner enumerates all tile-sizes for each
kernel, and evaluates them on hardware (labeled ‘Exhaus-
tive’). Instead, we use the learned performance model (la-
beled ‘Learned model 10’) and the analytical model (labeled
‘Analytical 10°) to select the top 10 tile-sizes to be evaluated
on hardware as a way to reduce the search time. The figure
shows that the learned model is on par with the analytical
model across all benchmarks (within 1-3% of each other).

7.3 Fusion Autotuner Integration

We also integrate the best learned performance model from
Section 5.2 in the XLA fusion autotuner. The analytical
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Figure 4. Runtime speedup, compared to the default tile size con-
figurations, found by the tile-size autotuner using the learned model
(‘Learned model 10’) and analytical model (‘Analytical 10’) to
select the top 10 candidates per kernel to run on real hardware. A
speedup of 1 means performance matches the standard analytical
model. ‘Exhaustive’ reports the speedup found by an exhaustive
search. ‘Learned model 1’ shows speedup when replacing the
analytical model with the learned model directly in the compiler.

model is not used in this experiment as it cannot estimate
runtimes for kernels that lack tile-size options; kernels that
are not fusion, convolution, or data formatting operations.

Experimental Setup TPUs are in high demand, so we
wish to minimize their use during autotuning. CPUs are
more abundant and better support time-sharing, and, with
a performance model, can be used to more cheaply run
the autotuner. We compare the baseline autotuner (which
uses TPUs) with the learned autotuner (which uses both the
learned performance model and a TPU). In this experiment,
the autotuner searches via simulated annealing. The baseline
autotuner evaluates fusion configurations on real hardware
for 10 minutes. The learned autotuner first evaluates fusion
configurations on a CPU for an hour, then runs promising
fusion configurations on the real hardware for up to either 1
or 10 minutes, in the order ranked by the predicted costs.

In this experiment, we compare the fusion autotuner on a set
of programs that gain significant speedup from autotuning.
The autotuner starts the search from a default configuration,
which is generated by the compiler’s fusion heuristic given
a specific program. Although some test programs (Trans-
former, Char2Feats, and ResNet-parallel) are in our training
set, most kernels seen during the evaluation are unlikely
included in the training set. This is because kernels in the
training set are generated using a random search as opposed
to the simulated annealing used during this evaluation; as
a result, different kernels are produced even for the same
program.

Results We run the autotuner on each program 10 times
and report the best speedup found over the default config-
uration in Fig. 5. Using the learned performance model
together with the hardware let us discover fusion configura-



A Learned Performance Model for Tensor Processing Units

10 . HW 10
mmm Cost model + HW 1
Cost model + HW 10
R 8 = Best known
Qo
=3
o
0)
L
Q
2]
v
£
b=
=
p=3
4

v \&3
TransfoMecpar2Feats,

sNet—para\\%hesNepvl ssD

Figure 5. Runtime speedup obtained by the fusion autotuner using
hardware alone (HW) or using the learned performance model
with hardware (Cost model + HW). Speedup is computed over the
default compiler-chosen configuration. The m in the label ‘HW
m’ indicates minutes using the hardware. We ran the experiment 3
times. Solid bars show the median best speedup; error bars range
from min to max.

tions that are on average 1.5% faster than using the hardware
alone. Additionally, they are on average only 1.5% slower
than the best known configurations found when running the
autotuner on hardware for 4 hours. When running simulated
annealing starting from a random configuration, the bene-
fit from the performance model is even more pronounced.
On average, using the performance model led to discover-
ing 10% faster configurations compared to not using the
performance model.

Furthermore, the learned performance model reduces time
spent using real target hardware for evaluation from 10
minutes to 1 minute without degrading performance. This
demonstrates that when access to a target hardware is lim-
ited, the autotuner can utilize the learned performance model
to discover faster code. This experiment shows that our ap-
proach can indeed be used to build a practical, accurate
performance model to guide a compiler optimization task.

8 RELATED WORK

Ithemal uses a hierarchical recurrent neural network to es-
timate throughputs of x86-64 basic blocks (Mendis et al.,
2019a). Basic blocks are short, loop-free sequences of in-
structions (6.06 instructions on average). In contrast, our
work addresses larger kernels with implicit nested loops
containing up to a thousand operators. Ithemal was eval-
uated on its ability to generalize to held-out basic blocks.
However, our method is tested for its ability to generalize to
novel tensor programs and targets a very different processor.

The code feature-based performance model (Dubach et al.,
2007), Halide’s performance model (Adams et al., 2019),
and work by Justus et al. (Justus et al., 2018) use simple neu-
ral networks to predict runtime from manually-engineered
features produced by a static analyzer that examines an op-

timized program. Since extracting these features from an
XLA graph is non-trivial, we train a more complex neural
net—using features that can be extracted directly from the
XLA graph and very minimal features produced by an al-
ready existing static analyzer—with sufficient capacity to
recover similarly powerful representations.

AutoTVM also uses a learned performance model to op-
timize tensor kernels, by ranking candidates (Chen et al.,
2018). However, AutoTVM’s model shows limited ability
to generalize between even very similar individual kernels
(e.g., different kinds of convolution). In contrast, we train a
performance model over entire tensor programs with many
kernels, and can generalize to novel tensor programs contain-
ing many kernels dissimilar to those seen during training.

Additionally, Neural Architecture Search (NAS) often em-
ploys a related idea: learning models to predict the error
of an deep learning model architecture (e.g, (Deng et al.,
2017, Istrate et al., 2018; Wen et al., 2019)). Others, such
as ReNAS (Xu et al., 2019), learn to rank candidate neural
architectures rather than predict runtimes in isolation.

Deep learning-based techniques have been proposed to find
better compiler optimizations (Cummins et al., 2017; Ahn
et al., 2020). More specifically, GNNs have been used
in the context of various compiler optimizations. Pro-
GraML (Cummins et al., 2020) uses GNNs to perform
compiler analyses. Vemal (Mendis et al., 2019b) proposes
imitation learning-based auto-vectorization based on gated
GNNs. Reinforcement learning- and evolutionary search-
based techniques using GNN-based policies have been pro-
posed for the device placement task (Paliwal et al., 2020;
Addanki et al., 2019; Zhou et al., 2020).

9 CONCLUSION

We have presented an approach for automatically learning
a performance model for tensor programs. We have found
that the learned model can generalize well to programs with
some similarity to our training set, usually matching or im-
proving upon the performance of the best known analytical
baseline for our target hardware. We also demonstrated
that the learned performance model can be employed by
autotuners to discover faster tensor programs than using
hardware targets alone when hardware access is limited.
In addition, we showed several advantages of the learned
approach over the manual one, beyond accuracy. First, we
have created, without manual feature engineering, a new
performance model for the XLA fusion task where none
existed before. Second, we can improve the learned model
by re-training or fine-tuning with more data.
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A TILE-SIZE ANALYTICAL MODEL

A key to achieving high performance is to use the fast
scratchpad memory effectively. Choosing an appropriate
tile size is essential to achieving this goal for a number of
reasons:

1. Tile selection determines the number of times data has
to be copied between the HBM and scratchpad memory.
A bad tile choice may result in a larger data movement.

2. Tile selection determines the quantity of data that gets
copied in a given iteration, and the amount of compute
performed in that iteration. A good balance between
the two is essential for achieving high performance
through the overlap of compute and data transfers.

3. Because tile size determines the data size copied, it
also controls the achieved bandwidth for data transfers.
Larger transfers are more efficient.

The analytical model estimates the kernel’s data transfer
time and computation time, taking the maximum of the two.
The compiler pipelines the code overlapping computation
of a given tile with the data copy-in (HBM to scratchpad) of
the next tile, and data copy-out (scratchpad to HBM) of the
previous tile. The performance model takes into account the
memory required by all the operations it contains. The com-
piler’s code generation scheme distributes operations among
the functional units while respecting data dependencies. To
estimate the computation cost, the model must estimate the
instruction schedule for each operation to determine the
critical path. Since different tiles may demand and execute
different amounts of data transfer and computation, the total
cost is determined on a per-iteration basis.

Since the tile-size selection happens prior to the code gener-
ation, it has to rely on several heuristics due to: (i) inability
to accurately estimate bi-directional data transfers, (ii) limi-
tations in modeling instruction scheduling, (iii) inability to
model the effect of register usage, and (iv) limitations in
capturing dynamic execution properties, such as issue stalls.
The heuristics are chosen by tuning the performance model
on a set of benchmark programs.

B HYPERPARAMETERS

Table 5 shows the fixed hyperparameters we used in all
experiments. These hyperparameters were tuned in prior
preliminary experiments. Table 6 and Table 7 reports the
hyperparameters of the best performing models in Table 4
for the tile-size and fusion datasets, respectively.

The model hyperparameters used to produce Table 3 are the
same as ‘GraphSAGE + per-node’ in Table 6 and Table 7.
The training hyperparameters are slightly different but in the
same range as we always tuned these parameters in every
experiment.
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Hyperparameter Applicable to Fixed value
Opcode embedding size All 256

Node neighbor size “ GNN 20

GNN layers GNN 3
GraphSAGE aggregator GNN mean

Node final layers ® All 3
Column-wise reduction type ~ Column-wise reduction  mean & max ©
Transformer attn. heads Transformer 4
Transformer reduction Transformer sum

Include per-layer biases All no

Table 5. Fixed model’s hyperparameters used in all experiments.

@ Node neighbor size is the maximum number of neighbors included per node. If a node has more neighbors, we truncate the neighbor list.
We experiment with sampling instead of truncation, but there is no difference.

® Node final layers is the number of feedforward layers applied to node embeddings before reduction.

¢ Concatenation of column-wise mean and column-wise max.

Model Hyperparameters Training Hyperparameters
Tile-size dataset Hidden = Module Module  Transformer GAT Learning Learning Grad. Dropout  Rank
dim. L2 norm layers layers head rate rate decay  clip loss
No GNN + per-node 512 False 3 N/A N/A 0.000802 1.0 none 0.1 hinge
No GNN + column-wise 1024 False 3 N/A N/A 0.000642 1.0 none 0.1 hinge
No GNN + LSTM 512 False 0 N/A N/A 0.000434 0.99 norm 0.1 hinge
No GNN + Transformer 1024 False 0 3 N/A 0.000424 0.99 norm 0.1 hinge
GraphSAGE + per-node 512 False 0 N/A N/A 0.001526 1.0 none 0.1 hinge
GraphSAGE + column-wise 1024 False 0 N/A N/A 0.000642 1.0 none 0.1 logistic
GraphSAGE + LSTM 1024 False 0 N/A N/A 0.000386 0.98 norm 0.1 hinge
GraphSAGE + Transformer 1024 False 0 1 N/A 0.000466 1.0 norm 0.1 hinge
GAT + per-node 512 False 0 N/A 2 0.00001 1.00 norm 0.1 hinge
GAT + column-wise 512 False 0 N/A 4 0.00001 1.00 norm 0.1 hinge
GAT + LSTM 512 False 0 N/A 4 0.00001 0.99 norm 0.1 hinge
GAT + Transformer 512 False 0 2 4 0.00001 1.00 norm 0.1 hinge

Table 6. Tuned hyperparameters used in the model ablation experiment on the tile-size dataset.

Model Hyperparameters Training Hyperparameters
Fusion dataset Hidden = Module Module  Transformer GAT Learning Learning Grad. Dropout
dim. L2 norm layers layers heads rate rate decay  clip

No GNN + per-node 512 False 3 N/A N/A 0.000214 0.95 none 0.2
No GNN + column-wise 512 False 3 N/A N/A 0.000102 1.0 none 0.25
No GNN + LSTM 512 False 0 N/A N/A 0.000144 1.0 none 0.25
No GNN + Transformer 512 True 0 1 N/A 0.000862 1.0 norm 0.25
GraphSAGE + per-node 512 False 0 N/A N/A 0.000664 0.9 none 0.2
GraphSAGE + column-wise 1024 False 0 N/A N/A 0.000469 0.9 none 0.2
GraphSAGE + LSTM 1024 False 0 N/A N/A 0.000962 0.9 none 0.2
GraphSAGE + Transformer 512 True 0 2 N/A 0.000768 1.0 none 0.2
GAT + per-node 1024 False 0 N/A 2 0.000002 0.90 none 0.25
GAT + column-wise 1024 False 0 N/A 2 0.000004 0.95 none 0.2
GAT + LSTM 1024 False 0 N/A 2 0.000006 0.95 none 0.25
GAT + Transformer 1024 False 0 2 2 0.000001 1.00 norm 0.2

Table 7. Tuned hyperparameters used in the model ablation experiment on the fusion dataset. MSE loss is used for this dataset.
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Table 8. Similar to Table 2 but on the manual split.

Tile-Size Fusion

Tile-Size APE Kendall’s 7 MAPE Kendall’s 7

Learned Analytical Learned Analytical Learned Analytical Learned Analytical
Ranking 9.5 1.4 0.81 0.71 10.8 10.7 0.72 0.81
Feats2Wave 16.9 1.2 0.71 0.83 9.6 724 0.59 0.72
ImageEmbed 5.7 5.6 0.81 0.75 114 14.6 0.90 0.90
SmartCompose 32 1.6 0.67 0.76 6.6 40.2 0.96 0.95
WaveRNN 1 7.0 2.6 0.66 0.81 2.7 8.8 0.97 0.95
WaveRNN 2 34 4.4 0.72 0.68 2.8 10.3 0.97 0.94
Median 6.3 2.1 0.71 0.75 8.1 12.6 0.93 0.92

Mean 6.4 23 0.73 0.75 6.2 18.1 0.84 0.88




