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Abstract

Modern microprocessors are equipped with single instruction multiple data (SIMD)
or vector instruction sets which allow compilers to exploit fine-grained data level
parallelism. To exploit this parallelism, compilers employ auto-vectorization
techniques to automatically convert scalar code into vector code. Larsen & Amaras-
inghe (2000) first introduced superword level parallelism (SLP) based vectorization,
which is a form of vectorization popularly used by compilers. Current compilers
employ hand-crafted heuristics and typically only follow one SLP vectorization
strategy which can be suboptimal. Recently, Mendis & Amarasinghe (2018) for-
mulated the instruction packing problem of SLP vectorization by leveraging an
integer linear programming (ILP) solver, achieving superior runtime performance.
In this work, we explore whether it is feasible to imitate optimal decisions made by
their ILP solution by fitting a graph neural network policy. We show that the learnt
policy, Vemal, produces a vectorization scheme that is better than the well-tuned
heuristics used by the LLVM compiler. More specifically, the learnt agent produces
a vectorization strategy that has a 22.6% higher average reduction in cost compared
to the LLVM compiler when measured using its own cost model, and matches the
runtime performance of the ILP based solution in 5 out of 7 applications in the
NAS benchmark suite.

1 Introduction
Modern microprocessors have introduced single instruction multiple data (SIMD) or vector units (e.g.
Intel x86 AVX extensions1) to accelerate execution of performance critical applications by performing
computations on multiple data items in parallel. In order to use these vector units, programmers
must either code using platform specific vector assembly instructions (Figure 1(c)), which is tedious,
error-prone and results in non-portable code or use existing compiler auto-vectorization techniques
to automatically discover data parallel portions of programs and to transform scalar instructions
(Figure 1(a)) in such regions into vector instructions (Figure 1(b),(c)).

Larsen & Amarasinghe (2000) first showed how to perform compiler auto-vectorization using fine
grained parallelism available in programs at the instruction level (superword level parallelism)
targeting fixed-width vector instructions available in modern microprocessors. Superword level
parallelism (SLP) based vectorization provided a more general alternative to loop vectorization
techniques proposed earlier (Allen & Kennedy, 1987; Sreraman & Govindarajan, 2000).

In order to exploit SLP for vectorization, compilers need to select a set of scalar instructions which
can be executed in parallel and merge them into a single vector instruction. It is shown that this
process reduces to the optimal subset selection problem, which is known to be NP-hard. Therefore,
many existing SLP vectorization schemes are driven by hand-crafted heuristics (Liu et al., 2012;

1https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



 a[0] = b[0] + c[0]
 a[1] = b[1] + c[1]  {a[0],a[1]} = {b[0],b[1]} + {c[0],c[1]}

movdqa xmm0, c
paddq  xmm0, b
movdqa a, xmm0

(a) (b) (c) 

Figure 1: (a) scalar code storing result of adding elements loaded from array b,c into array a (b)
compiler auto-vectorized code; expressions inside {.} are executed in parallel. (c) manually written
vector assembly instructions / executable code generated by the compiler for auto-vectorized code (b)

Shin et al., 2003, 2005, 2002), which can be suboptimal. Recently, goSLP (Mendis & Amarasinghe,
2018) introduced a SLP vectorization strategy with certain optimality guarantees guided by an Integer
Linear Programming (ILP) solver. It has shown superior vectorization schemes compared to heuristics
guided solutions, achieving end-to-end speedups on well-known compiler benchmark suites.

In this work, we propose a technique to learn how to vectorize by imitating the solution presented
in goSLP (Mendis & Amarasinghe, 2018). Specifically, we formulate the decision procedure as a
Markov Decision Process (MDP) and then use the DAGGER algorithm (Ross et al., 2011) to collect
traces on how the ILP solver solves the SLP vectorization problem. We use these trace aggregates
as supervision to train a parametrized policy modeled by a Gated Graph Neural Network (Li et al.,
2015; Allamanis et al., 2017).

We show that the learnt policy, Vemal, outperforms one of the well-tuned heuristics used in the LLVM
compiler (Lattner & Adve, 2004) both in terms of static metrics and dynamic runtime performance,
while matching the performance of goSLP in 5 out of 7 programs in the NAS benchmark suite held
out for testing.

Specifically, we make the following contributions:

• Formulation of the SLP vectorization problem as a Markov Decision Process (MDP), where
the vectorization strategy is constructed sequentially.

• Modeling of the agent policy that solves the MDP as a Gated Graph Neural Network
(GGNN) (Li et al., 2015; Allamanis et al., 2017) and using imitation learning to train the
policy network to mimic the optimal decisions made by the ILP solver.

• Evaluation of the learnt policy on representative compiler benchmark suites (SPEC2006fp
C/C++ (Henning, 2006), SPEC2017fp C/C++ (Bucek et al., 2018) and NAS benchmark
suites (Bailey et al., 1991)). Specifically, we show that the learnt policy has an average static
cost reduction which is 22.6% higher than LLVM as measured by LLVM’s own static cost
model. We also show that the learnt policy achieves a geometric mean runtime speedup
of 1.015× on the NAS benchmark suite (held out during training) compared to LLVM,
matching runtime speedups of goSLP in 5 out of 7 applications.

In summary, we have shown that it is possible to learn end-to-end compiler optimization policies
which surpass the performance of hand-crafted compiler heuristics by imitating an optimal solution.

2 The SLP Vectorization Problem
Superword Level Parallelism (SLP) is a type of fine-grained parallelism first introduced by Larsen &
Amarasinghe (2000) that is suitable for vector code generation. SLP is available in cases where two
or more scalar instructions are independent (the second instruction does not require the output of the
first instruction, and vice-versa) and are isomorphic (of the same instruction type, such as addition
or subtraction). For example, consider the code snippet from Figure 2(a). It computes intermediate
values A1 up to A3 by dividing values loaded from array L. Next, these intermediate values are used
in a series of subtraction operations and the results are stored in array S, which is disjoint from L.
Both the division and subtraction instruction groups, adjacent loads and stores are independent and
isomorphic. Hence, they are amenable to SLP vectorization.

Such scalar instructions can be executed in parallel and hence can be packed to form a single vector
instruction. We name a set of scalar instructions which are packed as a vector pack. For example
considering the code snippet shown in Figure 2(a), we can form a vector pack out of A1 and A2 and
perform the division in vector form as: {A1, A2} = {L[5], L[6]} / {L[2], L[3]}.
Forming vector instructions by packing multiple scalar instructions can lead to better runtime perfor-
mance. However, not all packing opportunities are profitable. For instance, if a set of instructions is
packed while their operands remain scalar, there will be an additional packing overhead to bring the

2



operands also into packed form. On the other hand, if the output of packed instructions is used by
other scalar instructions, there will be an unpacking overhead.

The task of the compiler is to find the most profitable set of vector packs to form among all available
packing opportunities. This combinatorial optimization task is not easy even in the case of pairwise
instruction packing (Mendis & Amarasinghe, 2018) and is NP-hard.

2.1 Motivating Example

(a) Code example (b) LLVM’s SLP algorithm (c) goSLP’s optimal algorithm

  A1   = L[5] / L[2]

  A2   = L[6] / L[3]

  A3   = L[7] / L[4]

  S[1] = L[1] - A2
  S[2] = L[2] - A3
  S[3] = L[3] - A1

{L[6],L[7]} {L[3],L[4]}

{A2,A3}

{S[1],S[2]}

{L[1],L[2]}

L[2]

L[3]

Vector instructions : 3
Overhead instructions: 3

Vector instructions : 5
Overhead instructions: 2

{S[2],S[3]}

{L[2],L[3]} {A3,A1}

{L[5],L[7]} {L[2],L[4]}

L[2]

Figure 2: Comparison of SLP vectorization strategies (a) code example; S and L are two disjoint
arrays, (b)-(c) show dependency graphs of packed instructions under each instruction packing strategy
(b) under LLVM’s SLP vectorization algorithm (c) optimal packing. Solid arrows show dependencies.
Groupings with solid circles show vector packs. Groupings with dotted circles show packs created
using overhead packing instructions and dotted lines show unpacking of values from vector packs.

We compare LLVM’s greedy packing strategy with goSLP’s optimal packing strategy for the code
snippet shown in Figure 2(a) to illustrate how instruction packing affects the quality of vectorization.

Figure 2(b) shows the packing solution of LLVM’s SLP vectorization algorithm. LLVM’s greedy
algorithm chooses to vectorize adjacent stores S[2] and S[3] first. Next, it tries to pack the operands
of already packed values recursively. Using this procedure, operands of {S[2], S[3]} are packed next,
forming vector packs {L[2], L[3]} and {A1, A3}. However, operands of {A1, A3} cannot be packed,
since they access non-adjacent memory locations, forcing LLVM to emit two overhead packing
instructions. Further, L[2] needs to be unpacked before it can be repacked with L[4]. Altogether,
LLVM’s strategy yields 3 vector instructions while incurring a cost of 3 overhead instructions.

Figure 2(c) shows the optimal packing solution found by goSLP using an ILP solver. The optimal
strategy creates vector pack {S[1], S[2]} instead of {S[2], S[3]}, which proves to be globally optimal.
Altogether, this strategy yields 5 vector instructions and requires only 2 overhead instructions.

In this paper, we evaluate whether it is possible to learn a policy that imitates goSLP’s ILP solution
for the pairwise instruction packing problem. Note that, we are not aiming to learn a general purpose
ILP solver, but to imitate the ILP solution for this problem domain. We will now formalize the
pairwise instruction packing problem.

2.2 The Pairwise Instruction Packing Problem

Let I = {I1, I2, ..., In−1, In, Iε} be the set of n + 1 instructions, where Iε is an artificial empty
Instruction. A valid instruction packing P̄ = {P1 . . . Pm} is a collection of pairs:

Pi ∈ I × I ,
⋃
i

Pi = I

that satisfies two kinds of packing constraints: CI (within pairs) and CII (between pairs).

Within Pair A legal pack P = (Ii, Ij) must satisfy the within pair constraint CI(P )

• Ii and Ij must be isomorphic: perform the same operation on same data types which results
in values of the same type.

• Ii and Ij must be independent: Ii and Ij cannot be directly or transitively dependent, where
they cannot be reachable by one another in the same data-dependency graph.
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• If Ii and Ij require reordering, it should be possible under the hardware memory model.
• If Ii and Ij access memory they must access adjacent memory locations.
• Ii ≺ Ij under some ordering of statements I1 ≺ · · · ≺ In ≺ Iε

Between Pairs packs Pi and Pj can both be created iff they satisfy the between pairs constraint
CII(Pi, Pj):

• Pi and Pj are schedulable: there shouldn’t be any circular dependencies between the two
packs. For example, if Ii,1, Ii,2 ∈ Pi and Ij,1, Ij,2 ∈ Pj , it shouldn’t be the case that
Ii,1 δ Ij,1 and Ij,2 δ Ii,2, where δ denotes dependency.

• Pi and Pj are not overlapping: ∀Ii ∈ Pi =⇒ Ii /∈ Pj . That is, a single statement can only
belong to one pack.

We write CII(Pi, Pj), if the packs satisfy the between pairs constraint.

Static Cost. We evaluate the efficacy of the packing strategies using LLVM’s static cost model. The
static cost model assigns costs for each vector and scalar instruction. The total cost of a block of code
is calculated as the addition of these per instruction costs.

Objective. Let F be the performance (measured using static cost) of executing the block of code with
vectorized instructions formed by a packing. The goal of any SLP vectorization scheme is to find a
packing strategy P that minimizes the cost (argminP̄ F (P̄ )) subject to constraints CI and CII.

3 Learnt Solution - Vemal
Our learnt vectorization policy, Vemal, imitates goSLP’s (Mendis & Amarasinghe, 2018) ILP solution
to perform SLP vectorization. We cast the pairwise instruction packing problem as a Markov Decision
Process (MDP), which we solve by a neural-network policy that imitates the ILP solution via imitation
learning using the DAGGER algorithm (Ross et al., 2011).

3.1 MDP formulation

We formulate the pairwise instruction packing problem as a MDP by iteratively forming one vector
pack at a time following a particular instruction traversal policy:

• Bottom-up Traversal. The learnt policy starts making packing decisions traversing the
function in reverse, starting from the final instruction with valid packing candidates. At
the end of each iteration i, we choose a predecessor of Ii with valid packing candidates to
consider for packing next.

• Top-down Traversal. The learnt policy starts making packing decisions traversing down-
wards from the first instruction with valid packing candidates. At the end of each iteration i,
we choose a successor of Ii with valid packing candidates to consider for packing next.

The instruction traversal policy selects a specific instruction Ii in each iteration to be considered for
packing next. The learnt vectorization policy decides which valid packing candidate instruction Ij
should Ii be packed with. We define the components of our MDP as follows:

State (Si), A state S in our MDP is a tuple, S = (Ii, PB). Here, Ii represents the instruction
selected by the fixed traversal order; PB = {P1 . . . Pk} represents a set of formed packs.

Start State (S1), S1 = (I1, {}). The current instruction to consider for packing is I1 and there are
no vector packs formed yet. The traversal policy decides I1.

Action (A), On a given state S = (Ii, PB), the set of legal 2 actions A[S] is given as follows:
A[(Ii, PB)] = {Ij such that Pi = {Ii, Ij}, CI(Pi) and ∀Pj ∈ PB, CII(Pi, Pj)}

Transition (T ), On a given state (Ii, PB) and action A = I , the transition function T simply adds
the newly formed pack to PB: T [(Ii, PB), I] = (Ii+1, PB ∪ {Ii, I}). The traversal policy decides
on Ii+1. If there are no instructions with valid packing opportunities Ii+1 = Iε.

Reward (R), We define the reward function as follows:

R((Ii, PB)) =

{
0 if Ii 6= Iε
F (PB) if Ii = Iε

2satisfies CI and CII
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  I1 : A1   = C1  / L[1]
  I2 : A2   = C2  / L[2]
  I3 : A3   = L[4] / L[2]

  

L[1] L[2] PC

A1 A2 A3F UP

L[1] L[2]C

A1 A2F

P

A3 UP

(a) (b) (c)

Focus Edge Depedency Edge (position 1) Depedency Edge (position 2)
Pack Edge Possible Pack Edge

Figure 3: Graph formulation of MDP states for the code snippet shown in (a) under the forward
traversal policy. Nodes: C-Constant, F-Focus, P-Pack, UP-Unpack and all other nodes are instruction
nodes. Edges: different types are shown in the figure. Edges with arrows are directed. Figure (a)
shows the initial state and Figure (b) shows the state after packing instruction nodes {L[1], L[2]}.

3.2 Graph Formulation of the MDP State

We use a Gated Graph Neural Network (GGNN) (Li et al., 2015) as part of the policy network
modeling to make packing decisions for each state. To leverage the GGNN, we formulate the state of
our MDP as a graph as follows:

Nodes. We consider 5 types of nodes to encode the graph features of a state Si:
• Instruction Node: correspond to each instruction with at least one valid packing opportunity

or instructions which are already packed.
• Pack Node: common node representing overhead packing instructions.
• Unpack Node: common node representing overhead unpacking instructions.
• Constant Node: common node representing any constant value used by instructions.
• Focus Node: special node that is connected to the instruction that is considered for packing

in this iteration (Ii).

Edges. Following are the 4 types of edges connecting the above nodes:
• Dependency Edge: encodes if an instruction must be executed after another one in sequen-

tial order. More over, depending on the position of the arguments the instruction depends
on, a different dependency edge type is created for a maximal of 5, with further additional
arguments collapsed to the same dependency edge type 6. If a vector pack is formed and it
requires overhead packing instructions a suitable dependency edge is added between the
pack node and the two instruction nodes which form the vector pack. Similarly, if a vector
pack needs to be used by a scalar a suitable dependency edge is added between the relevant
instruction node and the unpack node. Note that, all dependency edges are directed.

• Possible Pack Edge: encodes whether two instructions can be packed together.
• Packed Edge: encodes instructions that are already packed together.
• Focus Edge: the focus edge connects the focus node to the instruction node that is consid-

ered for packing. This marks the node that we are making decisions on.
We illustrate our graph formulation for the code snippet shown in Figure 3(a) assuming a forward
traversal policy. Figure 3(b) shows the initial state with focus edge directed at L[1]. Further, it shows
edges for dependencies for each operand position, possible packs ({A1, A2}, {A2, A3}, {A1, A3}
and {L[1], L[2]}) as well as mandatory packing of non-adjacent load L[4] which is used by A3.
Figure 3(c) shows the next state assuming pack {L[1], L[2]} is formed. Notice the packed edge
between L[1] and L[2] and the update of the focus edge to A1, which is considered for packing next.

3.3 Neural Network Architecture

We use a GGNN to encode the aforementioned graph representation of the MDP state. GGNNs
have shown promise in the field of code modeling (Brockschmidt et al., 2018), being able to capture
intricate graph structures present in code sequences. GGNN maintains a hidden state vector for each
node. During forward simulation, it passes some fixed round of messages between nodes through
their connecting edges. The hidden state of a node is updated on each message passing iteration by
first aggregating the messages passed from adjacent nodes and next by running the aggregate through
a Gated Recurrent Unit (Cho et al., 2014) cell. Once message passing completes, we pass the hidden
states of neighbors connected through possible pack edges of the node selected for packing through
a multi-layer perceptron. Finally, we feed its output through a softmax layer to produce the action
probabilities indicating how likely the selected node will be packed with its neighbors.
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3.4 Imitation Learning

Vemal uses both supervised pre-training and imitation learning using the DAGGER algorithm (Ross
et al., 2011) to imitate the packing decisions made by the ILP solver.

Supervised Pre-training. We first precompute optimal packing decisions using the ILP solver for
the functions in our training set. We then pick a particular instruction traversal policy and create
optimal trajectories of state-action pairs using the packing decisions made by the ILP solver, whilst
updating the focus edge according to the traversal policy for each function. Here, the action is the
selection of a node for packing among all valid packing candidates. The MDP state serves as the
input to the GGNN based policy. We use cross entropy loss to train the policy by encoding the target
action as a 1-hot vector. We perform supervised pre-training for a designated amount of batches.

Imitation learning with DAGGER. In the imitation learning phase, we sample a specific roll-out
of the GGNN policy using the chosen instruction traversal policy for a randomly sampled batch of
functions. For every MDP state visited by the GGNN policy, we encode the packing decisions already
made into the ILP formulation, and use the ILP solver to provide optimal packings for the remaining
instructions. We use this to find the optimal action for every state visited by the GGNN policy. The
DAGGER algorithm augments the current dataset to include these state-action pairs. We then train on
this augmented dataset similar to supervised pre-training. At each epoch, we continue to augment the
dataset using the aforementioned strategy. This allows the GGNN policy to learn how to rectify its
policy in cases where it falls out of the optimal trajectory.

3.5 Function Partitioning

Graph neural networks suffer from over-smoothing and scaling problems specially when the graph’s
diameter is large (Zhou et al., 2018). Real world functions can be arbitrarily sized, in some cases
reaching more than 190000 instructions in our dataset. To alleviate scaling problems in our formula-
tion, we partition functions based on their instruction counts and learn vectorization for each partition
separately considering them as full functions using the formulation mentioned in Sections 3.1 to 3.4.
Note that, we solve ILP problems considering each partition individually and use their solutions to
train our agent. During inference time, we take separate rollouts using our agent for each partition of
the function and finally merge all the decisions to form the final vectorization scheme.

4 Dataset
We use the same set of benchmark programs from goSLP (Mendis & Amarasinghe, 2018) to train
and evaluate our imitation learning approach. Our dataset is composed of all individual functions
collected out of the benchmark programs listed in Table 1. The benchmark programs represent
floating-point C/C++ programs from SPEC2006 (Henning, 2006), SPEC2017 (Bucek et al., 2018)
and NAS (Bailey et al., 1991) benchmark suites, which are well known benchmark suites used for
evaluating compiler optimizations.

Benchmark Suite Benchmark Programs
SPEC2006 433.milc, 444.namd, 447.dealII, 450.soplex, 453.povray, 470.lbm, 482.sphinx3
SPEC2017 508.namd_r, 510.parest_r, 511.povray_r, 519.lbm_r, 538.imagick_r, 544.nab_r
NAS BT, SP, LU, MG, FT, CG, EP

Table 1: Benchmark programs used for training and testing our learnt agent

4.1 Collection

We first compiled each source file to LLVM’s intermediate representation (IR) just before LLVM’s
existing SLP vectorizer runs. By this way, we obtain the same IR that would have been seen by the
vectorizer during an end-to-end compilation. Each source file has a number of functions and goSLP
builds ILP problems considering a single function as the vectorization unit. Hence, we collected both
the compiled LLVM IR (just before SLP vectorization) as well as the corresponding pairwise packing
opportunities for each function for all programs in our benchmark suite.

4.2 Preparation

Using the methodology outlined in Section 4.1, we collected 35635 functions in total. However, only
3981 (11.17%) functions are vectorized by goSLP. If we use all collected functions during training, it
induces a natural bias towards not vectorizing due to the imbalance in our dataset, even for functions
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with abundant vectorizable opportunities. The goal of our learnt agent is to mimic goSLP as closely
as possible when there are vectorizable opportunities. In cases where our learnt agent suggests an
unprofitable scheme, it can be eliminated by a cost model similar to the current LLVM SLP vectorizer.

This asymmetric learning objective and the imbalance in our collected functions motivated us to
create the final dataset that is biased towards functions which are vectorized by goSLP. We select all
functions which are vectorized by goSLP as well as a random subset of non-vectorized functions
such that, 80% (3981) of our dataset has functions with profitable vectorization schemes and 20%
(995) do not. Finally, we split the dataset into a training set (80%) and a test set (20%) such that the
proportionality of the vectorized and non-vectorized functions remains the same for both. There are
3169 and 812 vectorized functions in our training and test respectively. Our training set does not
include any functions from the NAS benchmark suite which we use for evaluating the end-to-end
runtimes of our learnt policy.

We evaluate 2 partitioning sizes, namely partitioning each function at 100 and 200 instruction counts.
For each such partition, we create a new function with only the instructions from that partition and
solve an ILP problem (goSLP’s formulation) to retrieve the set of optimal actions for the partition.
We report the final training and test set compositions for each partitioning scheme in Table 2.

Scheme Name Partition Size Train set (partitioned functions) Test set (partitioned functions)
vectorized non-vectorized vectorized non-vectorized

p100 100 7203 1802 1776 446
p200 200 5378 1346 1357 341

Table 2: Partitioned dataset statistics

5 Training and Testing

We now explain how we train Vemal’s GGNN policy (Section 5.1) and use it in inference (Section 5.2)
for making final vectorization decisions.

5.1 Training Setup

We learn the GGNN policy using the training set for each partition size for both backward and forward
instruction traversal policies. Initially, there are 144944 and 163618 optimal state-action pairs for
partition sizes 100 and 200 respectively under forward traversal policy. Under backward traversal the
respective numbers are 144026 and 163448.

We pre-train each network using 3000 randomly sampled batches. At the beginning of each epoch,
we randomly sample 400 of partitioned functions and augment our dataset using rollouts obtained for
those functions. We use a mixed student-teacher policy similar to that used by the original DAGGER
algorithm (Ross et al., 2011) to take rollouts, with the probability of choosing the teacher agent (ILP
solver) exponentially decayed by β = 0.9 at the beginning of each epoch. Finally, we use goSLP’s
ILP solution to compute the optimal actions for each state we encounter during rollouts.

We use 20 message passing iterations in our GGNN. We train the neural network using stochastic
gradient descent with momentum of 0.9, initial learning rate of 0.002 and with an exponentially
decaying learning rate schedule (decay of 0.95). We randomly sample 50 state-action pairs for each
batch and sample replay buffer

batch size number of batches for each epoch.

5.2 Evaluation Criteria

In order to evaluate whether our trained policy is better than LLVM’s SLP vectorization algorithm,
we use three different metrics in our experiments.

• Average cost reduction across all vectorized functions in the test set compared to scalar.
• Geometric mean speedup across all vectorized functions in the test set compared to scalar.
• Geometric mean speedup of actual runtimes for NAS benchmark suite over LLVM SLP.

For the first two metrics we use values reported by LLVM’s cost model. For the final metric we use
actual wall clock times. For each partition size and instruction traversal policy, we evaluate each
policy both when it uses the action with the highest probability (argmax policy) for each state as well
as when it uses the best trace among n-rollouts (multi-rollout policy).
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6 Experimental Results

We trained all four agents – partition sizes 100 and 200 and instruction traversal policies forward and
backward – for 40 epochs. We use LLVM SLP (clang-6.0), goSLP and a random packing agent as our
baselines for comparison. Note that, we restrict goSLP and our learnt agents to only perform pairwise
packing (vectorization factor = 2), where as for LLVM SLP we do not restrict its vectorization factor
and use its implementation without any change. Random packing agent is an agent which chooses
uniformly from alternative actions for a given MDP state.

6.1 Static Results

Table 3 shows the average cost reduction and geometric mean speedup for the functions in the test set
which are vectorized by goSLP (812). We include two additional comparison points, goSLP-p100
and goSLP-p200, which are policies that solve multiple ILP problems for partitioned functions using
goSLP’s formulation and merges the decisions to perform final vectorization.

Vectorization
Policy

Traversal
Policy # of rollouts Average Cost Reduction

(LLVM cost model)
Geo-mean Speedup
(LLVM cost model)

goSLP 23.6182 1.1226
goSLP-p100 19.4815 1.1148
goSLP-p200 21.2857 1.1193
LLVM SLP 12.1872 1.0873
random forward 1.0320 1.0150
random backward 1.0567 1.0126
p100 forward 1 13.3633 1.0833
p100 forward 10 14.9421 1.1018
p100 backward 1 9.2180 1.0685
p100 backward 10 11.3227 1.0911
p200 forward 1 13.5259 1.0829
p200 forward 10 14.7340 1.1020
p200 backward 1 9.5801 1.0693
p200 backward 10 11.5631 1.0912

Table 3: Average cost reduction and geometric mean speedups for vectorized functions in our test set
based on LLVM’s cost model under different vectorization policies

We notice that the agents using forward traversal learn a better vectorization policy than when using
backward traversal. Also, all learnt agents except agents using backward traversal surpass LLVM
SLP’s average cost reduction. This fact is magnified with more rollouts, showing the efficacy of our
learnt policy compared to LLVM SLP’s greedy algorithm. The best performing agent (p100 with 10
rollouts) has an average cost reduction compared to scalar which is 22.6% higher than that of LLVM.
This is in spite of the fact, LLVM is not restricted to pairwise packing.

Also, notice that partitioned versions of goSLP achieve a lower average cost reduction compared to
that of goSLP. This is because of the sub-optimality introduced by solving subproblems as opposed
to solving vectorization for the entire function. The maximum average cost reduction of learnt
agents p100 and p200 are capped at those of goSLP-p100 and goSLP-p200 respectively. We should
therefore, expect p200 to learn a better policy than p100. However, the learnt policies only have small
overall average cost reduction differences. This is because the GGNN is not as good at approximating
goSLP’s packing policy when it comes to larger graphs. This gives rise to a trade-off space between
sub-optimality of the solution and the learnability of a packing strategy at various partition sizes.

6.2 Runtime Results

We use our learnt GGNN policy for both partition sizes 100 and 200 to perform end-to-end vectoriza-
tion for the NAS benchmark suite. We use the agents learnt under forward traversal and use both
argmax and multi-rollout policy to evaluate the efficacy of the learnt policy on end-to-end runtimes.
All benchmark programs are run on a Haswell Intel(R) Xeon(R) CPU E5-2680 v3 machine running
at 2.50GHz with 32kB L1 and 256kB L2 cache sizes. We use Class-A workloads in our evaluation.

We run each benchmark program 3 times and report the median as is the common reporting method
for compiler benchmarks. Figure 4 shows the runtime speedups for each program under goSLP and
our learnt policies compared to LLVM SLP. The table shows the final geometric mean speedup for all
policies compared to LLVM SLP.
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Figure 4: Speedup of goSLP, p100 with 1 and 10 rollouts, p200 with 1 and 10 rollouts compared to
LLVM SLP for individual benchmarks in the NAS benchmark suite. The table shows the geometric
mean speedups for the entire benchmark suite.
The best performing learnt agent achieves 1.015× geometric mean speedup over all NAS benchmarks.
In fact, both p100 and p200 learnt agents were able to beat LLVM SLP’s performance with only 10
rollouts. This shows the efficacy of our learnt agents on end-to-end runtime performance.

More notably, all agents except p100 with 1 rollout beat or replicate the substantial runtime speedup
of goSLP on BT benchmark over LLVM SLP. This signifies that the agents have learned a non-trivial
vectorization policy not covered by LLVM SLP. Also, note that for SP and MG benchmarks all agents
consistently beat goSLP in terms of performance. Even though goSLP performs optimal packing
according to LLVM’s cost model, for these benchmarks there exist other vectorization strategies, as
uncovered by our learnt agents, which are better in terms of runtimes, but are suboptimal according
to LLVM’s cost model. This shows inaccuracies of the LLVM cost model. This provides evidence to
our hypothesis, that in future a reinforcement learning based policy with a better cost model has the
potential to learn an even better end-to-end vectorization policy than goSLP.

7 Related Work
Since the inception of vector machines, loop vectorization (Allen & Kennedy, 1987; Nuzman &
Zaks, 2008) has been introduced to speedup scientific computing kernels. Larsen & Amarasinghe
(2000) introduced superword level parallelism based vectorization targeting shorter SIMD width
machines. Subsequently many techniques have emerged suggesting better heuristics to perform SLP
vectorization (Porpodas & Jones, 2015; Porpodas et al., 2015; Liu et al., 2012; Shin et al., 2003, 2005,
2002). Recently, Mendis & Amarasinghe (2018) introduced a pairwise optimal packing algorithm
using an ILP solver for statement packing which outperforms previous greedy approaches.

There has been work to find better compiler heuristics using machine learning (Stephenson et al.,
2003; Cummins et al., 2017). More specifically, there has been previous attempts at identifying better
heurisitics or program orders for vectorization using machine learning (Stock et al., 2012). However,
it does not provide an end-to-end learnt solution for vectorization. Reinforcement Learning has been
used to perform compiler instruction scheduling (McGovern et al., 2002) prior to the era of deep
neural networks. In this work, we have shown how to imitate an ILP based solution using a graph
neural network based policy to come up with the first end-to-end learnt auto-vectorizer.

In our formulation, we solve a NP-hard packing problem. Previously, reinforcement learning has
been used to solve combinatorial optimization problems (Dai et al., 2017; Bello et al., 2016; Li et al.,
2018). Comparatively, we have stronger supervision through an oracle with optimal actions.

8 Conclusion
Compiler auto-vectorization allows compilers to harness fine-grained parallelism within programs.
Many greedy heuristic based solutions were proposed, and recently Mendis & Amarasinghe (2018)
introduced a tractable solution with optimality guarantees using an ILP solver. Our work shows the
feasibility of learning an end-to-end vectorization policy by imitating this optimal solution and we
show that it outperforms well-tuned compiler heuristics used by the LLVM compiler. This holds out
the promise that learnt compiler optimizations can be a better alternative to hand-written counterparts
in the near future.
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