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Modern microprocessors are equipped with single instruction multiple data (SIMD) or vector instruction sets
which allow compilers to exploit superword level parallelism (SLP), a type of fine-grained parallelism [Larsen
and Amarasinghe 2000]. Current SLP auto-vectorization techniques use heuristics to discover vectorization
opportunities in high-level language code. These heuristics are fragile, local and typically only present one
vectorization strategy that is either accepted or rejected by a cost model. We present goSLP, a novel SLP auto-
vectorization framework which solves the statement packing problem in a pairwise optimal manner. Using an
integer linear programming (ILP) solver, goSLP searches the entire space of statement packing opportunities
for a whole function at a time, while limiting total compilation time to a few minutes. Furthermore, goSLP
optimally solves the vector permutation selection problem using dynamic programming. We implemented
goSLP in the LLVM compiler infrastructure, achieving a geometric mean speedup of 7.58% on SPEC2017{p,
2.42% on SPEC2006fp and 4.07% on NAS benchmarks compared to LLVM’s existing SLP auto-vectorizer.
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1 INTRODUCTION

Modern microprocessors have introduced SIMD or vector instruction sets to accelerate various
performance critical applications by performing computations on multiple data items in parallel.
Moreover, they have introduced multiple generations of vector instruction sets, each either increas-
ing vector width or introducing newer computational capabilities. Intel has introduced MMX (64
bit), SSE/SSE2/SSE3/SSE4 (128 bit), AVX/AVX2 (256 bit) and most recently AVX512 (512 bit) instruc-
tion sets [Intel 2017a]. Other examples include AMD’s 3DNow! [Oberman et al. 1999], and IBM’s
VMX/Altivec [IBM 2006]. In order to use these SIMD units, programmers must either hand-code
platform specific assembly (or use thin-wrapper compiler intrinsics) which is tedious, error-prone
and results in non-portable code or use existing compiler analysis to discover opportunities in mid-
or high-level languages.

Traditionally compilers supported loop based vectorization strategies aimed at exploiting coarse
grained parallelism that is available in large amounts [Allen and Kennedy 1987; Baghsorkhi et al.
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2016; Eichenberger et al. 2004; Nuzman et al. 2006; Nuzman and Zaks 2008; Sreraman and Govin-
darajan 2000]. However, Larsen and Amarasinghe [2000] introduced a new form of parallelism
known as superword level parallelism (SLP) which is available at a much finer granularity. It is
available statement-wise and can be exploited even when loop based parallelism is not abundantly
available making it suitable for vector code generation targeting fixed width vector instruction sets.

Current SLP based auto-vectorization strategies follow a recipe or algorithm to perform vector-
ization [Liu et al. 2012; Shin et al. 2003, 2002, 2005] and then accept or reject it based on a cost
model. These are either based on greedy decisions or local heuristics usually implemented at the
basic block level and hence only explore a limited space, if any, among all available vectorization
opportunities, leading to suboptimal solutions.

In this paper, we introduce goSLP, an SLP vectorizer that searches a large space of SLP vector-
ization opportunities in each function, rather than relying on a specific algorithm or heuristic to
make its vectorization decisions. goSLP packs statements by solving an ILP problem encoding
the costs and benefits of all possible choices using an off-the-shelf ILP solver. goSLP then assigns
statements to vector lanes using dynamic programming to search the space of assignments for the
one implementable with the fewest vector permutation instructions. goSLP focuses only on SLP
vectorization and any loop based vectorization strategies are orthogonal to our techniques.

goSLP improves throughput on SPEC2017fp rate by 5.2% compared to LLVM’s SLP auto-vectorizer
(using official SPEC reporting criteria for 24 copies). To put this in perspective, Intel’s reported
SPEC2006fp rate improved by about 20% from Ivy Bridge to Haswell and by about 12% from
Haswell to Broadwell'. By this measure, goSLP’s improvements are approximately 25 to 50 percent
of a microarchitecture revision. After examining many loops (Section 7.3), we find goSLP makes
consistent improvements across many diverse loops.

Even though an one-to-one comparison cannot be done with Intel’s commercial compiler ICC, due
to different scalar optimizations, pass orderings and inability to selectively turn on loop vectorizer
and SLP vectorizer in ICC, we analyze the vectorization impact of each compiler in Section 7.5.
We show that even when starting from a slower scalar baseline of LLVM, goSLP almost doubles
the amount of benchmarks which run faster than ICC vectorized code when compared to LLVM
SLP. ICC vectorization holds an edge over LLVM SLP in terms of geometric mean vectorization
impact over scalar code each compiler produces. However, we show that goSLP has more overall
geometric mean vectorization impact over scalar code when compared to both ICC and LLVM SLP.
Therefore, if goSLP is implemented in ICC, we believe it will have a net positive impact on runtime
performance.

This paper makes the following contributions:

e Pairwise optimal statement packing using a tractable ILP formulation: goSLP formulates
the problem as an ILP problem and use an ILP solver to find a pairwise optimal packing up
to the accuracy of the cost model within a reasonable compilation time. goSLP applies this
iteratively to find vectorization opportunities of higher vector widths.

e Whole function vectorization beyond basic blocks: goSLP is able to find SLP vectorization
strategies which take into account common vector subexpressions and avoids unnecessary
vector unpackings for vector reuses across basic blocks.

e Dynamic programming algorithm for vector permutation selection: once vector groupings
are finalized goSLP finds the optimal assignment of vector lanes which minimizes insertion
of explicit vector permutation instructions.

IData from https://www.spec.org/cpu2006/results/rfp2006.html. Ivy Bridge, Haswell and Broadwell processor models are
Intel Xeon E5-2697 v2, Intel Xeon E5-2690 v3 and Intel Xeon E5-2687W v4 respectively.
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e Implementation of goSLP in LLVM and end-to-end evaluation on standard benchmarks:
We evaluated goSLP on C/C++ programs of SPEC2006fp, SPEC2017fp and NAS parallel
benchmark suites. The geometric mean improvement of goSLP over LLVM SLP, running on a
single copy is 2.42%, 7.58%, 4.07% for SPEC2006fp, SPEC2017fp, and NAS parallel benchmarks
respectively.

e Despite trading off compilation time to achieve better runtime performance, goSLP keeps the
compilation overhead to a reasonable amount. Maximum compilation time for a benchmark
under goSLP is little over 8 minutes.

2 SUPERWORD LEVEL PARALLELISM

Superword level parallelism (SLP) is a type of fine-grained parallelism present in code that is
suitable for SIMD code generation. Larsen and Amarasinghe [2000] first exploited SLP to develop a
compiler auto-vectorization algorithm. The original algorithm packs together isomorphic scalar
statements (statements that perform the same operation) that are independent. We call these vector
packs because they correspond directly to a vector instruction, executing one statement in each
vector lane. The algorithm starts by forming vector packs of statements which access adjacent
memory locations. These packs are used as seeds to form additional vector packs following their
use-def and def-use chains. Once all profitable packs of size two are formed, it combines mergeable
vector packs to form packs of higher vector width until no more merging is possible. Finally, it
traverses the original basic block top-down scheduling vectorized statements in place of scalar
statements whenever a vector pack is found containing the scalar statement.

When the vector packs are used to generate vector instructions, their operands must be in vector
registers. If the statements producing the operands are not vectorizable, the operands are packed
into non-vector packs using explicit vector insertion instructions. Further, if there are non-vectorized
uses of vectors, they need to be unpacked into scalars using special vector extraction instructions.
Explicit packing and unpacking operations can sometimes outweigh the benefits of vectorization if
sub-optimal statement groupings are made.

2.1 SLP Vectorization Strategies

The quality of the generated vector code depends strongly on the vectorization strategy used by the
compiler and the use of greedy decisions or local heuristics may lead to suboptimal vectorization
decisions.

Consider the code listing in Figure 1 (a). Sets {S1, Sz, S3} and {S4, S5, S¢} contain independent
statements with isomorphic operations which are amenable to SLP based vectorization. Assume
statements Sr; up to Sp;7 load consecutive values from memory and the target vector width is
equal to twice the width of a loaded value. The main challenge in this example is to select the best
statement pair packing scheme such that we exploit SLP as much as possible. Figure 1(d) shows the
dependency graph of vector packs which exploits SLP in the most profitable manner.

Larsen’s algorithm. The original SLP vectorization algorithm initially forms vector packs for
each adjacent pair of loads {{Sr i), Sr(i+1)} : 1 < i < 6}. It then follows the def-use chains seeded
by these vector packs to form additional vector packs {S4, S5}, {S1,S2}, {S2, S3} and {Sg, S4} in that
order. Finally, during the scheduling phase, the vectorizer traverses each scalar statement starting
from the top of the basic block. If a given scalar statement is part of a vector pack, the vectorizer
replaces it with the first vector pack that contains it according to the order the packs were formed.
Following this greedy scheduling process, load statements S;; up to Sy are replaced by vector
loads {{Sr(i), Sr¢i+1)} : i € {1,3,5}} and vector packs {Si, 52}, {S4, S5} replace their constituent
scalar statements. Figure 1(b) shows the dependency graph of these vector packs.
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Fig. 1. Comparison of SLP auto-vectorization strategies (a) code example, (b)-(d) show dependency graphs of
vectorized statements under each vectorization strategy (b) under original SLP vectorization algorithm [Larsen
and Amarasinghe 2000] (c) under holistic SLP vectorization algorithm [Liu et al. 2012] (d) optimal statement
packing under goSLP. Solid arrows show dependencies. Groupings with solid circles show vectorized packs.
Groupings with dotted circles show non-vector packs which are packed explicitly using vector insertion
instructions and dotted lines show unpacking of values from vector packs. Scalar statements are shown when
an unpacked value is used by it. For example in (d), values loaded by Sy, and Sy 3 are extracted from packs
{SL1,SL2} and {Sr3,SL4} to be used in scalar statements S; and S respectively.

Larsen’s algorithm misses more profitable vectorization schemes due to two main reasons. First,
it forms packs of vectorized loads irrespective of whether there are any vectorized uses of them
and packs with no vectorized uses (excluding vector packs of stores) are not removed from the
final scheduling. For instance, it forms the vectorized load {Sr3, Sr4}, even though it is not used by
any subsequent vectorized pack. Next, the scheduling phase chooses to vectorize the first vector
pack associated with a given scalar statement without looking forward to see whether vectorizing
it would be beneficial for the code sequence as a whole. If other statements in the vector pack
have more profitable alternative packing opportunities they are missed. For instance, vectorizing
{S2, S35} is more beneficial compared to {S;, S,} since it can be directly used in {Ss, Ss}. These
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scalar | vector | packing | unpacking | total

No vectorization 13 13
Larsen’s algorithm 3 5 2 5 15
Liu’s algorithm 5 4 1 2 12
goSLP 3 5 0 2 10

Fig. 2. Instruction breakdown under each vectorization strategy for the code listing in Figure 1(a). Note
that unpacking of a value is only needed once, even though it may be used multiple times in subsequent
statements.

greedy decisions lead to additional packing and unpacking overhead (Table 2) compared to the
vectorization strategy shown in Figure 1(d) and yields an unprofitable vectorization scheme.

Liu’s algorithm. Holistic SLP vectorization algorithm [Liu et al. 2012] enumerates all statement
packing opportunities available in a given basic block and greedily selects the best using a local
heuristic. This generates final vector packs shown in Figure 1(c) which can be realized using 12
instructions (Table 2). For the code listing in Figure 1(a), vectorizable statement pairs include
adjacent pairs of load statements and all feasible statement pairs of divisions and subtractions,
concretely, {S1, S2}, {52, S5}, {S1,S3}, {S4, S5}, {S5, S¢ } and {S4, Sg}. The holistic SLP vectorization
algorithm prioritizes vectorizing vector packs which can be used by multiple other vector packs. In
this example the pack {Sy2, Sr3} has the potential to be used by two vector packs ({S1, Sz}, {Ss, S¢})
and is vectorized first. The algorithm runs until all profitable vectorizable opportunities are ex-
hausted.

Holistic SLP vectorization [Liu et al. 2012] does not look forward along def-use chains to see if
the current selection is profitable at the global level and hence can miss vectorization opportunities
with longer vectorized chains. For instance, it is beneficial to vectorize {Sr3,Sr4} compared to
{S12,S13} as it leads to a longer vector sequence even though the latter can be used in two vector
packs. This shows that even when we enumerate all packing possibilities, it is not trivial to select
the best possible packing strategy using local greedy heuristics. The greedy selection of vector
packs at a local level searches only a limited subspace of all available combinations, leading to
suboptimal packing decisions.

goSLP. Our formulation reduces the statement packing problem into an ILP problem, uses an
ILP solver to search more statement packing combinations and produces the optimal groupings as
shown in Figure 1(d) which can be realized using 10 instructions (Table 2). By encoding pairwise
local constraints, goSLP keeps the ILP problem to a tractable size, but an ILP solution yields a
pairwise optimal statement packing. Finally, our dynamic programming formulation searches
through all profitable statement orderings to come up with the optimal ordering for each pack
which minimizes insertion of vector permutation instructions between them.

3 GOSLP OVERVIEW

Figure 3 shows the high level overview of the goSLP vectorization framework. Preprocessing passes
such as loop unrolling, loop invariant code motion are executed first to expose more opportunities
to exploit SLP. Our framework does SLP vectorization in three main stages. First it decides which
scalar statements should be merged to form vector packs disregarding the order of instructions
in each SIMD lane (statement packing). Then, it selects which SIMD lanes are used by which
scalar statements by finding a suitable permutation of the statements within each vector pack
(vector permutation selection). Finally, it schedules the newly formed vector packs according to
dependency and other scheduling constraints (vector scheduling).
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Fig. 3. goSLP auto-vectorization framework

During the statement packing stage, it starts by finding candidate pairs of statements which can
be merged into vector packs. More precise set of constraints are discussed in Section 3.1. Next, it
formulates an ILP problem encoding the benefits of forming vector instructions for each such pair
together with any associated costs of vectorization (Section 4.2). The solution to this optimization
problem is a set of pairs which should be vectorized. goSLP framework performs statement packing
iteratively on the newly formed pairs to build vector packs of higher vector width, until the vector
width of vector registers in the machine is exhausted or until no more feasible vector packs can be
formed.

Once, the packs are formed, vector permutation selection stage decides the optimal permutation
for the scalar statements within each vector pack. goSLP uses a dynamic programming algorithm
to decide upon the proper permutation. The algorithm first performs a forward and a backward
traversal along data-dependency graphs of vector packs to determine the feasible set of permutations
for statement ordering in each pack and then finds the best permutation among them which
minimizes insertion of explicit vector permutation instructions using dynamic programming
(Section 5). Finally, goSLP uses the vector scheduling algorithm from the existing LLVM compiler
framework [LLVM 2017] to schedule the ordered vector packs which are translated into executable
vector instructions at the compiler code generation backend.

3.1 The Statement Packing Problem

At this stage, goSLP decides which statements are packed together into vector packs. Two statements
S; and S; in the same basic block can be packed together into a vector pack if the following conditions
are met.

¢ 5; and S; must be isomorphic: perform the same operation on same data types which results
in values of the same type.

e 5; and S; must be independent: S; and S; cannot be directly or transitively dependent, where
they cannot be reachable by one another in the same data-dependency graph. Dependencies
can be formed through intermediate values or through memory accesses.

¢ 5; and S; must be schedulable into a pack: This is especially important when forming packs
of memory access statements, where reordering may be restricted due to the presence of
aliased reads and writes and other memory reordering constraints.

e If S; and S; access memory they must access adjacent memory locations.

Not all legal vector packs can exist simultaneously. Consider two legal packs P; and P; formed
according to the statement packing rules presented above. P; and P; can coexist if the following
conditions are met.

e P; and P; are schedulable: there shouldn’t be any circular dependencies between the two
packs, for example if S; 1, S; 2 € P; and S; 1,5 2 € Pj, it shouldn’t be the case that S; ;1 5 S 1
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and S;» 6 S; . Further, all dependencies between statements in the two packs should be
preservable in a valid scheduling of packs.

e P; and P; are not overlapping: VS; € P; = S; ¢ P;. That is, a single statement can only
belong to one pack.

Within these validity conditions, a given statement has many opportunities to be packed to-
gether with other statements and many valid vector packs can coexist with each other. Every SLP
auto-vectorization algorithm has to either explicitly (where all opportunities are enumerated) or
implicitly (where only a subset of opportunities are explored; other opportunities are by definition
not vectorized) decide what subset of vector packs to create out of all valid statement packing
opportunities such that some objective such as performance of the program is optimized.

Complexity. If there are n instructions in a basic block and if vector packs of size k are formed,
asymptotically there are O((})) packing decisions to be made. Say that we are selecting m packs out

of all valid packing opportunities, then there are O(((,gq))) options and naively searching through the
entire space is not tractable. In essence, we are selecting an optimal subset of vector packs from all le-
gal vector packing opportunities, which is shown to be NP-hard in the general case [Muthukrishnan
2005].

Approach. By encoding the statement packing problem as an ILP problem, goSLP exploits the
search capabilities of modern ILP solvers to search the space of all pairwise packings in a reasonable
time. goSLP keeps the ILP problem to a tractable size by encoding only local costs and benefits,
but the resulting solution yields a globally pairwise optimal packing because the solver considers
all constraints simultaneously. To utilize the machine’s full vector width, goSLP applies pairwise
statement packing iteratively.

3.2 The Vector Permutation Selection Problem

Once vector packs are formed, goSLP decides which statements are computed by which vector
lanes by finding a suitable permutation of statement orderings within a vector pack.

Complexity. If there are n statements in a vector pack, there are n! amount of feasible permutations
of statement orderings for each vector pack. If N such vector packs are connected with each other
in one data-dependency graph, there are (n!)" total combined permutations, out of which we need
to select the most profitable.

Approach. We introduce a dynamic programming based solution to optimally select the best
statement ordering for each vector pack. Our formulation only searches the profitable subspace of
permutations, which is considerably small compared to the total (n!)¥ combinations, exploiting
the optimal substructure of the problem.

4 STATEMENT PACKING

goSLP encodes the statement packing problem as an optimization problem solved using integer
linear programming. At high level, it encodes the benefits and costs of forming all feasible vector
packs and the objective of the optimization problem is to find a subset of packs such that the total
cost of vectorization is minimized. goSLP uses LLVM’s existing cost model to query various types
of costs discussed during this section (see Section 6). We use the code snippet in Figure 4 as a
running example and any numbered statements referred in this section refer to statements in it.
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Sq: Aq = load(X)
Sy: Ay = load(X + N)
S3: By =load(Y)
Syt By =load(Y + 1)
Sg: Cq1=Aq +By
Sg: Cr=Ay+ By
S7: C3=A, + By

Fig. 4. Example code snippet; assume loads S3,54 are contiguous whereas S1,52 are not

4.1 Candidate Pair Collection

goSLP first finds all feasible pairs of statements which can form vector packs according to the
constraints listed in Section 3.1, treating a whole function as a vectorization unit. For each statement
S in a function, goSLP collects the set of statements fs that can be paired with it to form vector packs.
For example, for the code snippet shown in Figure 4, fs, : {}, fs, : {}, fs, : {Sa}. fs, = {Ss}. fs, -
{56’57}’f56 : {55, 57}’ f57 : {55’56}

Since, we consider whole functions as vectorization units, goSLP captures common subexpression
usages among vector packs residing in different basic blocks. This allows goSLP to avoid unpacking
vector packs unnecessarily when all of their uses are vectorized, but reside in different basic blocks.
In contrast, if goSLP limited its vectorization unit to a single basic block, all vector packs where
the values are not dead at the end of a basic block need to be unpacked, since it does not know
whether all of their uses are vectorized and would require an additional live variable analysis.

Even though vectorized def-use chains can span across multiple basic blocks, note that only
statements within the same basic block can be considered for pairing.

4.2 ILP Formulation Overview

During ILP formulation, goSLP first creates decision variables for all pairwise packing opportunities
found during candidate pair collection. Next, it encodes vector cost savings, packing costs, unpacking
costs and scheduling constraints for each of those packs, using a tractable, local encoding, which
preserves global optimality for pairwise statement packing during the actual ILP solving phase.
Finally, to select the optimal subset of packs to be formed from the set of packing opportunities,
goSLP uses an ILP solver to minimize the sum of all the aforementioned costs for the subset
while respecting the scheduling constraints. goSLP uses the ILP formulation iteratively to explore
packing opportunities at higher vector widths by treating already formed vector packs as individual
vectorized statements until all packing opportunities are exhausted or maximum vector width of
the machine is reached.

4.3 Decision Variable Creation

This stage takes as input the feasible set of statements fs found for each statement S and creates
boolean decision variables for each unique vector packing opportunity. Let D = {{S,,Sq} : S, €
fs, N Sq € fs,} be the set of all candidate vector packs. Note that we do not consider the ordering
within a pair where {S,,S,} and {S4, S, } are considered the same when forming D. For the code
snippet shown in Figure 4, D = {{Ss, S4}, {S5,Ss}, {S5, S7}, {S6> S7}}-

Then the set of decision variables are formed as V = {Vs, 5.} : {Sp, Sq} € D}. The output of the
ILP problem is whether each of these boolean variables are set or not, deciding on which vector

packs should be formed.
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Also, at this stage, goSLP populates two map structures. For each candidate vector pack P € D, it
goes through operand pairs of its constituent statements in order, to check if they are vectorizable.
If any such operand pair O is € D, it records P as a vectorizable use for the vector pack O in a map
structure (VecVecUses) which maps from a candidate vector pack to the set of all vectorizable uses
of that pack. If O ¢ D, the operand pair is not vectorizable and must be packed if P is vectorized.
goSLP keeps track of such non-vector pack uses in another map structure (NonVecVecUses) which
maps from a non-vector pack to the set of all vectorizable uses of that pack.

VecVecUses and NonVecVecUses maps for code listing in Figure 4 are as follows.

VecVecUses = {{S3,Ss} — {{S5,S6}, {Ss,S7}}}
NonVecVecUses = {{S1,S,} — {{Ss,S7},{Ss,S6}},
{82, 82} = {{S6, S7}},
{85, 83} — {{S5,S7}}}

4.4 Encoding Vector Cost Savings

Executing a single vector instruction is cheaper in general when compared to executing its con-
stituent scalar statements individually. Consider a vector pack P with statements {Si, ..., Sy}, then
we define the cost savings of vectorizing P,

N
vec_savings(P) = vec_cost(P) — Z scalar_cost(S;)
i=1
Note that vec_savings(.) is negative when the vector instruction is cheaper than the total cost
of the scalar instructions. Vector cost savings for all vector packs in D are encoded as follows.

VS = Z vec_savings(P) x Vp
PeD
For example, cost savings for vector pack {Ss, S4} is encoded as vec_savings({Ss, S4}) X Vis, s,}-

4.5 Encoding Packing Costs

Packing costs for vector packs are handled differently from non-vector packs.

Statement pairs which are already in D need to be explicitly packed using insertion instruc-
tions only if they are not vectorized and at least one of its vectorizable uses are vectorized. If
pack_cost(.) returns the packing cost for an individual pack (queried from LLVM), goSLP en-
codes packing cost of vector packs for the entire function as follows.

PCpec = Z Vp X ( VQ) x pack_cost(P)
PeD QeVecVecUses(P)

Note that we only need to pack once, and if there are multiple vector uses they can reuse the same
pack. Therefore, our formulation properly handles cases where common vector subexpressions are
used across multiple basic blocks post-dominating its definition. For example, consider vector pack
{83, S4} which has multiple potential vector uses, where VecVecUses({Ss, S4}) = {{Ss, S}, {S6, S7} }.
goSLP encodes vector packing cost for it as Vis, 5,3 X (Vis, 5.1 V Vis,,s,1) X pack_cost({Ss, S4})

If non-vectorizable pairs are used by vector packs that are vectorized, then we have to add
packing costs for those pairs. This is in contrast to the former where we added packing costs only
if the vector pack itself was not vectorized, but in this case by definition non-vector packs are not
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vectorized. Packing costs for non-vector packs are encoded as follows. Let NV be the set of all
potential non-vector packs that may be used by potential vector packs.

PCronvec = VQ) X pack_cost(NP)

NPeNV (Q eNonVecVecUses (NP)

Consider the vector packs {Ss, S7} and {Ss, S}, they need S; and S, to be explicitly packed into
a vector even though the statements are not vectorizable. goSLP encodes the packing cost for this
as (Vis,s,1 V Viss.s6)) X pack_cost({S1, S2})

4.6 Encoding Unpacking Costs

Unpacking costs are relevant for vector packs with non-vectorizable uses. Statement S; of a vector
pack P = {S;, S;} need to be extracted if any of:

e S; has uses outside the function.
e 5; has more uses than S; (then not all uses of S; can be vectorized).
e some of S;’s vectorized uses cannot form mutually exclusive vector packs with uses of S;.

Let unpack_cost(P, i) return the extraction cost of lane i from pack P. Since, we do not know
which lane each statement is going to be in the vector pack, we make a conservative guess of cost
of extracting one lane as up = max(unpack_cost(P,0),unpack_cost(P,1)).

First two conditions for unpacking S; can be encoded trivially. To encode unpacking cost for the
third condition, goSLP first goes through the uses of S;. For each use of S;, goSLP searches the uses
in S; and collects the set of uses which can result in legitimate vector packs in D. goSLP records
this information in a map (VecUses) which maps from a use U of S; to the set of potential vector
packs U can form with uses of S;. For S; to be not extracted, all of its uses should be vectorized. We
can encode the unpacking cost for statement S; of pack P as follows.

up X Vp if hasOutsideUses(S;)
unpack(P, S;) = qup X Vp else if #uses(S;) > #uses(S;)
up X Vp X V1 else

where the boolean variable V,;; is defined as follows.

VU = (]5
for U € uses(S;) do
VU + = \/ VQ
QeVecUses(U)

Vi = (VU < #uses(S;))

Note that for a given use U, only one pack out of VecUses(U) may be vectorized. This constraint
as well as other scheduling constraints that limits the search space of the ILP problem is discussed
in Section 4.7. Similar to S;, goSLP encodes unpacking cost for S; as well. As an example, consider
the vector pack P = {Ss3,Ss,}. Statement Ss is used by statements S5 and S;, whereas Statement
S4 is used by statement Sg. Since #uses(S3) > #uses(Sy), unpack(P, S;) = up X Vp. Unpacking for
statement Sy falls under the third condition. unpack(P, S4) = up X Vp X (Vis, 561 V Vs, 5,3 < 1).

Final unpacking cost for the entire function is encoded as follows.

UC = Z Z unpack(P, S)

PeD SeP
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4.7 Scheduling Constraints

As noted in section 3.1, not all packs can coexist with each other. These rules are added as constraints
to the ILP problem.

Overlapping Packs. A given statement can only be part of at most one vector pack. This is encoded
as a set of constraints OC as follows.

oc = ¢
for S € F do > Function F
packs = ¢
for P € D do
if S € P then
packs + = Vp
0CU = (packs <=1)

For example, we can only vectorize either pack {Ss, S¢} or {Ss, S;} when we consider statement
Ss. Therefore, goSLP inserts a scheduling constraint Vig, s, + Vs, 5,1 <= 1 into the set OC.

Circular Dependencies. Two packs P; and P, cannot have circular dependencies. These can be
either through direct or through transitive dependencies following the def-use chains of the function.
goSLP constraints forming such conflicting packs by enforcing Vp, + Vp, <= 1. Let the set of such
constraints for the entire function be CC.

4.8 Complete ILP Formulation

After all costs, benefits and constraints of performing statement packing on pairs of statements are
encoded in terms of boolean variables in V, goSLP formulates the final ILP problem as follows.

mVin VS + PCphec + PCronvec + UC
subjectto OC, CC

The complete ILP formulation for the example code snippet in Figure 4 is shown in Figure 5. Note
that vec_savings(.), pack_cost(.), unpack_cost(.) and up are all integer scalar values which
should be queried from a suitable cost model. goSLP uses LLVM’s cost model in its implementation.
Solution to this ILP problem is the set of vector packs that should be vectorized.

4.9 Multiple Iterations

So far, we have formulated the ILP problem for pairs of statements, but it may be profitable to
vectorize more to use the full data width of vector operations supported by the hardware. To achieve
this, we consider the newly formed vector packs resulting from the solution to the ILP problem as
individual vector statements and redo the ILP formulation on them. goSLP does this iteratively
until no new vectorization opportunities are available, either because it exhausted the vector width
supported by the processor, or the current packs cannot be merged to form vector packs of higher
width.

Also, note that versions of pack_cost, unpack_cost and vec_savings that reflect costs of
forming packs of higher width from smaller vector packs must be used. Explicit packing of two vector
packs together needs vector shuffle instructions, compared to using vector insertion instructions
when two scalar values are packed. For example if vector packs P; = {S;1, Si2} and P; = {S;1, Sj2}
are packed together to form {P;, P;}, we need to use shuffle instructions. Unpacking of a vector
pack which is formed from two other vector packs may also need shuffles, instead of individual
lane extracting instructions. Also as an added complexity, shuffle instruction costs vary based on
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Vector packs
D = {{537 S4}7 {557 SG}? {557 57}7 {567 S7}}
V = {Vis,.501> Viss,561> V(5,571 V{6,571 }

Non-vector packs
NV = {51, 52},{53,S3}, {52, S2}

ILP encoding

VS =vec_savings({S53,54}) x Vig, 5,3+
vec_savings({Ss,56}) X Vs, 551+
vec_savings({Ss, S7}) % Vig, 5,3+
vec_savings({Ss, 57}) X Vg, 503

PCronvee =(Viss,561 V Viss,5}) X pack_cost({S1,S2})+
Viss,5,1 X pack_cost({Ss, S3})+
Vise,871 % pack_cost({Sz2,S2})
PC,.. :V{S3,S4} X (V{Ss,se} \ ‘/{SS~S7})X
pack_cost({S3, S4})

UC =up x Vig, 5,3 X (Viss.56) V Vise.s,) < 1)+
up X Vis, 5.}

OC ={Vis,, 551 + Viss,s01 <= 1, Viss 561 + Vise,s0r <= 1,
V{55757} + V{561S7} <= 1}
CC={}

min VS + Pc'ue(: + Pcn,on'ue(: +UC
ILP: v
subject to OC, CC

Fig. 5. Final ILP formulation for code snippet in Figure 4

the kind of shuffle you want to perform. For example, the cost of broadcasting a single vector across
a vector of higher width is different from the cost of inserting a subvector into a vector of higher
width. goSLP takes these differences into account and uses the proper form of cost based on the
type of the vector pack and the type of the shuffle that needs to be performed, up to the support
given by the compiler cost model (goSLP uses LLVM’s cost model). goSLP also uses the target
information given out by the cost model to penalize excessive use of shuffle instructions in close
proximity to minimize execution port contention for shuffles.

4.10 Discussion

Optimality. By reducing the pairwise statement packing problem into an ILP problem, goSLP
optimally selects the most cost effective pairs for vectorization. This is fundamentally different
to other techniques which employ local greedy heuristics to build up a particular vectorization
strategy without searching the available space. For any given set of statements, goSLP can pack
those statements pairwise optimally up to the accuracy of the static cost model and program
structure’. Dynamic information such as memory access patterns, latencies and branch information

2For example, goSLP does not perform loop transformations, but enabling transformations such as in [Kong et al. 2013]
could be used before goSLP.
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can be used to improve the accuracy of the static cost model used by goSLP and can potentially
lead to better packing decisions. However, incorporating runtime feedback is beyond the scope of
this paper. When using multiple iterations, goSLP is pairwise optimal within each iteration, but the
end result may be suboptimal because the algorithm does not have optimal substructure.

Tractability. goSLP creates ILP problems of size O(n?) for functions with n statements. Packing
and unpacking costs for each pack are encoded using constant space, as the costs are only affected
by their operands and their immediate users. Hence, our encoding of vector cost savings, packing
and unpacking costs is of the size of total number of feasible vector packs, which is of the size O(n?)
for pairwise packing. Even though, the ILP solver on the worst case can be exponential in terms of
the expression size, we found that the state-of-the-art ILP solvers are able to solve expressions of
this magnitude in a reasonable amount of time (Section 7.4). Packing more than two statements
at a time however makes the problem intractable for current solvers and hence we fall back to
iteratively using ILP formulations to discover packing opportunities of higher widths as discussed in
Section 4.9. Moreover, goSLP can be used to perform targeted optimization of performance-critical
functions if increase in compilation time is not acceptable for certain applications.

Flexibility. goSLP explicitly limits architecture dependence to the cost model, with no implicit
assumptions about profitability and as such it can accommodate different cost models to come
up with different vectorization strategies. The user has the freedom to optimize any aspect of the
program, whether it is the amount of static instructions during compilation, power consumption of
the program, instruction specific static costs etc. This makes goSLP more flexible and can leverage
advances made in developing compiler cost models to produce better code.

Extensibility. goSLP can be extended to include hardware specific constraints to drive code
optimization for specialized hardware. This includes modeling register pressure, execution port
contention, or other scheduling constraints. For example, register pressure can be modeled by
adding constraints to limit the amount of live vector packs at each statement.

5 VECTOR PERMUTATION SELECTION

The vector permutation selection stage selects the most cost-effective ordering (permutation) of
scalar statements for each vector pack created during the statement packing stage. First, it builds a
dependency graph following the use-def chains of the vector packs. Then it propagates feasible
sets of permutations for each node in the graph by performing a forward and a backward traversal,
from which the best permutation is selected using a dynamic programming algorithm.

5.1 Vectorization Graph Building

goSLP builds a dependency graph of all vectorized statements following the use-def information of
each vector pack. First, it goes through all vector packs formed during the statement packing stage
and checks for packs with no vectorized uses. They act as the root nodes of the graph. Next, starting
from the roots, it builds a dependency graph following the use-def chains, which we term as the
vectorization graph. Note that if there are common vector subexpression uses, the vectorization
graph in general is a directed acyclic graph (DAG) and each root can have its own unconnected
DAG.

5.2 Permutation Mask Propagation

Vector packs with memory operations have strict statement ordering (e.g., scalar loads in a vector
pack should be ordered such that they access contiguous memory). We term such nodes with
a pre-determined statement ordering as constrained nodes. At this stage, the goal of goSLP is to
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determine the minimum set of candidate statement orderings (permutations) it should consider for
each of the non-constrained free nodes, out of which it selects the best which minimizes explicit
insertion of vector permutation instructions in between vector packs.

To minimize insertion of permutation instructions, a node’s permutation should be one of the
permutations of its neighboring nodes. This allows at least one path of values to flow along the graph
unchanged. Therefore, it is sufficient to propagate permutations for each free node by traversing
the vectorization graph once in either direction, constrained by the permutations of the constrained
nodes. Permutations of the parents as well as its children are propagated to each node in this way.

Forward traversal starts from the roots of the vectorization graph and propagates sets of per-
mutations towards the leaves. Child nodes with multiple parents union the set of all permutation
masks propagated from their parents to determine the final set of permutations. These nodes occur
when the same vector pack is used by more than one other vector pack. Let PC be the final set
of feasible permutation masks propagated to node V during forward traversal. goSLP maintains
separate sets of permutations in each direction for each node.

Backward traversal starts from the leaves of the vectorization graph and propagates the set of
feasible permutations to their parents. Parent nodes with multiple children union all incoming sets
from their children to determine the final set of feasible permutations. Permutations are propagated
until all nodes of the graph are reached. Let P"j be the final set of feasible permutation masks
propagated to node V during backward traversal.

Finally, for each node V, goSLP unions the permutation sets under both directions to come up

with the final set of candidate permutations FPy = PI]; U P‘Ij.

5.3 Dynamic Programming Formulation

We define the cost of selecting a particular permutation Py for a node V given permutations Ps for
each of its successor nodes S using the following recursive formulation. succ and pred functions
return the set of successor and predecessor nodes for a given node respectively.

cost(Py,V) = Z cost(Ps, S) + perm_cost(Ps, Py)
Sesucc(V)

In essence, cost(Py, V) records the cumulative cost of using a series of permutations from the
leaves of the graph until the current node V is reached when traversing the vectorization graph
backwards. The objective is to find the set of permutations which minimize the cost at the roots of
the graph.

CoMPUTEMINANDSELECTBEST routine (Algorithm 1) solves this recursive formulation optimally
using dynamic programming to come up with the best set of permutations for the case when the
vectorization graph is a tree. Lines 4-12 show how minimum permutation costs are computed for
each node. Starting from the leaves backwards, it visits each node and calculates the minimum
cost of permutation for each of its candidate permutations (line 9) by going through each of its
successor nodes and finding the permutation that results in the lowest cost. perm_cost(Py, Ps)
returns the cost of inserting vector permutation instructions when Py # Ps. It also remembers
which permutation of a node’s successors resulted in the lowest cost in the structure arg (line 10).

Lines 13-21 show how the final permutation masks are selected for all the nodes in the graph. It
starts from the roots and finds the permutation which results in the lowest cost (lines 13-15) and
then visits successor nodes recursively to find the best permutations using the stored arg structure
(lines 16-20). selected structure holds the final selected permutation for each node.

However for vectorization graphs which are not trees, but DAGs, some nodes may not have
a unique predecessor and hence we cannot query the arg structure to determine the selected
permutation uniquely (line 19). In that case, we create multi-nodes by coalescing groups of nodes
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which have common successors, up to a certain node limit, to transform the DAG into a tree with
multi-nodes. The candidate permutation set of a multi-node is the cartesian product of the candidate
permutation sets of its constituent nodes. If multiple multi-nodes are created, this results in an
exponential increase in the candidates the algorithm need to consider, but in general the amount of
candidate permutations per node is low, making the problem tractable. In practice, we found we
are able to optimally solve all problems for our benchmark suite using a multi-node size limit of 5
nodes each having a maximum of up to 4 permutation candidates.

Algorithm 1 Dynamic programming algorithm for vector pack permutation selection

1: procedure COMPUTEMINANDSELECTBEST

2: Inputs: graph G, candidate permutations FPy for each node V € G
3. W = leaves(G)

4:  while 'W.empty() do

5.V =W.deque()

6 for Py € FPy do

7 costmin(Py,V) =0

8 for S € succ(V) do

9 costmin(PV,V)+:Pmin costmin(Ps, S)+perm_cost(Ps, Py)

s €FPg
10: arg(Py,V,S) = argmin cost,;;,(Ps, S) + perm_cost(Ps, Py)
PseFPs
11:  W.enque(pred(V))
122 W= ¢

13: for R € roots(G) do

14:  selected(R) = argmin cost,i,(Pr,R)
PreFPg

15 W.enque(succ(R))

16: while !'W.empty() do

17 R =W.deque()

18: P =pred(R)

19:  selected(R) = arg(selected(P),P,R)

20:  W.enque(succ(R))

5.4 Illustrative Example

Figure 6 shows a detailed example of how vector permutation selection stage computes statement
ordering for the vector packs extracted for code snippets in Figure 6(I)-(Il). Each code snippet
performs a division on data loaded from array L and stores it back into an array S, but with different
operand orderings. Vector packs identified by the statement packing stage for each code snippet
are identical. For brevity and clarity, vector packs of vectorized values and operations are used in
this example instead of statements which yield those values and operations. They are the loads
{L[1], L[2]} and {L[3], L[4]}, the vectorized division operation and the the store {S[0], S[1]}.
Permutation mask propagation phase is shown in Figure 6(A). Note that the permutation masks
shown in the diagram depict the permutation that should be applied to the pack to achieve the
operand ordering shown in the dependency graph. For example, to form pack {L[2],L[1]} in
Figure 6(I)(A) in that order, we need to reverse the loaded values {L[1], L[2]} and hence it has
a permutation mask of {1, 0}. This phase updates the candidate permutations for the only free
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Code listing
(0] (I (D)

S[0] = L[1] / L[3] S[0] = L[2] / L[3] S[0] = L[2] / L[4]
S[] = L[2]/L[4] S[]=L[1]/L[4] S[] = L[1]/L[3]

A : Permutation Mask Propagation

FPy = {{0,1}} FPy = {{0,1}} FPy = {{1,0}} FPy = {{0,1}} FPy={{1,0}} FPy={{1,0}}
EIEINEI [var Jun ] [uer Jua | EIRIREIE]
v Vy v, Vv, Vi Va

W) P =0 Py = (0.1} JUPE = (0. P = ({0} {1 0h v PY = {01}, Py = {{1.03}
FPy={{0,1}} e FPy = {{0,1},{1,0}} 3 FPy = {{0,1},{1,0}}
FPy={{0,1}} FPy={{0,1}} FPy={{0,1}}
S[o] | S[1] S[o] | s[1] S[o] | S[1]
v, A v,
B : Computing minimum costs
costy=0 costy=0 costy=0 costy=0 costy=0 costy=0
[wn [uar ] [ue Jus | [ Jun | [ Jua | ElIEINEIEL
v, Vo vy V2 v,
P(V,) | PV,) | P v
1 YL PV TPy [Py [ costy U (0(\’13)) “(V(;; (;Vf)) 0°°Tf1 [P [PV [PUp [ costy
Vs ©1 | 01| 0] o s : el ©1) | (.01 | (1.0} Jor2=2
1,0 | (1,01 | 01 [o+1=1
(.0 | (101 | (1.0} [o+0=0
S0} | si1) Slol | s
v Va i Va A
v Y v
P(V,) | PV,) Joost, P(V,) | P(Vg) | costy PV, [ PWVy) [ cost,
on @) o 1) @) [1+0=1 oy L2 [2+0=2
(1.0} [141=2 ' 041=1
C : Final Permutation Selection
{0,1} {0,1} {1,0} {o,1} {1,0} {1,0}
EIEIREI EIEINEIE] [va Jun ]  [ua ua ]
Vi V2 Vi o V2 Vi

Vg Vs
{perm(i0)!
{0.1}[ sy [ s {01} s [sn {0.1)] st [t |
A vy Vs

Fig. 6. Vector permutation selection process for the code listings (I)-(111). For brevity and clarity, all dependency
graphs presented from (A)-(C) have vector values and vector operations as nodes (Vi —Vy) instead of statements
that yield them. (A) shows the propagated permutation masks for each node. Note that loads and stores
are constrained nodes with fixed statement orderings. For example, even though {L[2], L[1]} is needed for
computation in (Il) in that operand order, it can only be loaded as {L[1], L[2]} yielding a permutation mask
of FP; = {{1,0}} as shown in the diagram. (B) shows how our dynamic programming formulation is applied
to find the optimal statement ordering of the vectorized division (V3), which is the only free node. Assume
that perm_cost(Ps, Py) = 1 when Ps # Py. Final statement orderings decided by our algorithm are shown
in (C). Explicit permutation instructions are emitted between nodes where needed. perm(1,0) instruction
reverses statement ordering of a given pack.

node V. Forward traversal starts from node V4, which has the same permutation mask for all code
listings, hence only one permutation candidate is propagated to node V3 during forward traversal

(P3f = {{0, 1}}). Backward traversal starts from the leaves of the graph (V; and V;). Loaded values
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{L[1], L[2]} and {L[3], L[4]} have the proper operand ordering for the computation in listing 6(I),
where as for listings 6(II),(II) some loads are not in proper order, resulting in different sets of
candidate permutations (P3b )- FP; holds the final set of candidate permutations for node Vs.

Figure 6(B) shows the final cost values for each candidate permutation mask for each node after
applying Algorithm 1. We assume that perm_cost(Ps, Py) = 1 when Ps # Py and 0 otherwise.
Dynamic programming algorithm chooses the chain of permutations which result in the minimum
total cost at the root node (Vy). Final permutation selections are listed in Figure 6(C). We can
perform the computation with the insertion of at most one permutation instruction across all code
listings. For listing (II), it is beneficial to immediately permute the loaded values {L[1], L[2]} before
computing the division, whereas for listing (III), it is beneficial to compute the division using the
loaded values and permute the result before it is stored back into memory. Neither ordering works
in all cases and the decision is only arrived after calculating the total cost at the root (Vy).

6 IMPLEMENTATION

Development. We implemented goSLP as a LLVM IR-level compiler pass in the LLVM compiler
infrastructure [LLVM 2017]. goSLP makes vectorization decisions for statement packing and vector
permutation selection, then uses the existing vectorization routines in LLVM to perform the actual
LLVM IR-level transformations according to these decisions. These vectorization routines are also
used by the existing LLVM SLP auto-vectorizer to perform the final transformations. We use LLVM
trunk version (commit d5413e8a) for development and Clang 6.0 (commit eea8887a) as the C/C++
frontend for compiling benchmarks.

We integrated the ILP solver in IBM ILOG CPLEX Optimization Studio 12.7.1 [IBM 2017] to
LLVM to solve the statement packing ILP problem. The solver handles large ILP problems in a
reasonable amount of time (Section 7.4).

Cost Model. goSLP is flexible and can accommodate any user defined cost model. For evalua-
tion, we used LLVM’s TargetTransformationInfo interface to query costs of each statement,
which returns platform dependent costs of actual executable instructions for a given computer
architecture (e.g., x86 Haswell). This is used to retrieve values for vec_cost(.), scalar_cost(.),
pack_cost(.) and unpack_cost(.) specialized to each pack of statements when formulating the
ILP problem for statement packing. All platform dependencies are captured by the cost model
and our ILP formulation is applicable everywhere. For example the fact that vectorizing fdiv
instructions is more beneficial compared to vectorizing fadd instructions in x86 Haswell machines
is captured by the cost model.

7 EVALUATION

Section 7.1 gives the common experimental setup used for evaluation. Section 7.2 presents two
case studies on vectorization strategies discovered by goSLP. Sections 7.3 and 7.4 present detailed
results of dynamic performance and compile time statistics of goSLP. Finally, Section 7.5 analyzes
the vectorization impact of goSLP compared to ICC.

7.1 Experimental Setup

We evaluated goSLP on 7 benchmarks from the C translation of the NAS benchmark suite [NASA
Advanced Supercomputing 2014], on all 7 C/C++ floating point benchmarks from the SPEC2006
benchmark suite [Henning 2006] and on 6 C/C++ floating point benchmarks from the SPEC2017
benchmark suite [SPEC 2017]. We omit 526.blender_r of SPEC2017{p since it failed to compile
under the clang version we used. We use LLVM’s implementation of the SLP auto-vectorization
pass for main comparison. It does inter basic-block vectorization forming vector chains up to a
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maximum depth. Further, it handles reductions and supports horizontal vector instructions which
goSLP’s implementation does not model currently.

All experiments were done on a Intel(R) Xeon(R) CPU E5-2680 v3 Haswell machine which
supports AVX2 vector instructions running at 2.50GHz with 2 sockets, 12 physical cores per each
socket, 32 kB of L1 cache, 256 kB of L2 cache and 30 MB of L3 cache.

7.2 Case Studies

We present two case studies from our benchmark suite, where goSLP discovers a diverse set of
vectorization strategies.

7.2.1  Namd. Figure 7(1)(a) shows a simplified code snippet presented in C like pseudocode ex-
tracted from the calc_pair_energy_fullelect function from SPEC2006’s 444.namd benchmark.
Figures 7(1)(b) and 7(1)(c) show the LLVM SLP and goSLP vectorized versions respectively.

LLVM SLP and goSLP both vectorize {A, B}. LLVM SLP’s vectorization strategy reuses this pack
in creating values V1 and V4, but this requires explicit packing of {ai, bi} and {a[1], b[1]} and later
unpacking of V1(line 4) and V4(line 11) to compute al and a4 respectively. Computation of {a3, a2}
is done in a vectorized fashion. In contrast, goSLP keeps computation of al and a2 in scalar form,
where it uses unpacked values of A and B. Note that we only need to unpack once even though A
and B are used in both al and a2. It vectorizes computation of {a4, a3}.

LLVM SLP’s greedy decision to reuse {A, B} costs it more packing and unpacking overhead. It
requires 2 additional packing and 2 additional unpacking instructions to realize its vectorization
strategy compared to goSLP.

7.2.2  BT. Figure 7(2)(a) shows a simplified code snippet presented in C like pseudocode extracted
from one of the inner loops in the BT benchmark’s 1hsx function. goSLP finds a vectorization
strategy shown in Figure 7(2)(b) which achieves a speedup of 3.72% for the loop when compared to
LLVM’s SLP auto-vectorizer. LLVM SLP is unable to find a profitable vectorization of this code.

goSLP finds vector packs as well as non-vector packs that are reused multiple times. For example,
vector pack V4 is used by values V7(line 7), V9(line 17), V10(line 18) and the store at line 31. Non-
vector pack V2 is used by V5(line 5), V9(line 17), V11(line 19) and the store at line 31.

Further, goSLP gives priority to costly operations such as divisions when forming non-vector
packs, which can outweigh the costs of additional packing and follow-up unpacking instructions.
For example, doing the costly division in line 5 in vectorized form outweighs the packing costs of
V1 and V2 and unpacking cost of V5 for Haswell architecture. Greedy and fixed decisions taken by
LLVM’s SLP algorithm prevents LLVM from considering this.

Note that most of the computations are done in vectorized form in Figure 7(2)(b) and the results
are extracted at the end with extracted values being reused multiple times (e.g., both f[11[0] and
fL[4]1[@] use extracted values of V7 and V8). This enables goSLP to achieve higher throughput.

7.3 Dynamic Performance

Runtime Performance. We ran a single copy of the benchmarks described in Section 7.1 to measure
goSLP’s impact on runtime performance. Figure 8 reports the end-to-end speedup for each bench-
mark under goSLP when compared to LLVM’s SLP auto-vectorizing compiler. All benchmarks were
compiled with base commandline arguments clang/clang++ -03 -march=native enabling all
other standard scalar and vector optimizations. We ran the ref input for SPEC2006fp / SPEC2017fp
C/C++ benchmarks taking the reported median (standard reporting for SPEC) runtime across 3
runs. We use class A workloads for all NAS benchmarks in our evaluation taking median of 3 runs
to match that of SPEC’s reporting. We programmed a 1-minute timeout to stop ILP solving and use
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(1) 444.namd - calc_pair_energy_fullelect

1 A=scx*ij[1] 1 {A,B} = {sc,sc} x {ij[1],ij[2]} 1 {A,B}Y = {sc,sc} * {ij[1]1,ij[2]1}
2 B =scx ij[2] 2 2
3 3V = {A,B} * {ai,bi} 3 al =A*ail -B *bi
4 al =Axai-Bx*bi 4 al = Vi[e] - Vi[1] 4 a2 = A * a[3] - B * [3]
5 a2 =A*a[3] -B*b[3] 5 5
6 a3 =Ax*a[2] - B * b[2] 6 V2 = {A,A} * {a[2],a[3]} 6 Vi = {A,A} * {a[1],a[2]}
7 a4 =Axall]l-Bx*b[1] 7 V3 = {B,B} * {b[2],b[3]} 7 V2 = {B,B} * {b[1]1,b[2]}
8 {a3,a2} = V2 - V3 8 {a4,a3}y = V1 - V2
9
10 V4 = {A,B} * {a[11,b[11}
11 a4 = Vv4[e] - v4[1]
(a) Scalar code (b) LLVM SLP code (b) goSLP code
(2) BT - Ihsx
1 t1 =1.0 / ul0] 1 V1 = {1.0,ul1]}
2 t2 = t1 * t1 2 V2 = {uf0],ul0]}
3 t3 = ul1] * ul1] + ul2] * ul2] + ul3] * ul3] 3 V3 = {c2,c2}
4 t4 = ul1] * t1 4 V4 = {u[2]1,ul31}
5 5 V5 = V1/V2
6 fL1100] = c2 * 0.50 * t3 * t2 6 V6 = {V5[01,V5[01}
7 f[1101]1 = (2.0 - c2 ) = Cul1] / ul0] ) 7 V7 = V4 * V4
8 fL1102] = - c2 * (ul2] * t1 ) 8 V8 = V6 x V6
9 fL1103] = - ¢2 * (ul3] * t1 ) 9
10 10 t2 = V8[o]
n f{21[e] = - ( ul1Ixuf2] ) * t2 11 t3 = ul1] * u[1] + V7[0] + V7[1]
12 f[2101] = ul2] * t1 12
13 f[2102] = t4 13 fL[11[0] = c2 * 0.50 * t3 * t2
14 14 fL[1101] = (2.0 - c2) * V5[1]
15 f[31[0] = - ( u[1J%ul3] ) * t2 15 {F011021,fL1I0313 = -V3 * (V4 x V6)
16 f[3101] = ul3] * t1 16
17 f[31[3] = t4 17 V9 = - (V2 % V4 ) % V8
18 18 V10 = V4 % V6
19 f[41[0] = c2 * t3 x t2 19 V11 = V2 * V6
20 f[4102] = - ¢2 * ( ul2I*xu[1] )* t2 20 t4 = VI1[0]
21 f[4103] = - ¢2 * ( ul3J*xu[1] )* t2 21
22 f[2100] = vo[e]
23 fL2101] = vie[e]
24 f[21[2] = t4
25
26 fL310]1 = V9[1]
27 fL31011 = vie[1]
28 fL3103] = t4
29
30 f[41[0] = c2 * t3 * t2
31 {f[4102],f{41{3]} = - V3 % ( V4xV2 ) % V8
(@) Scalar code (b) goSLP code

Fig. 7. Vectorization examples from (1) 444.namd benchmark and (2) BT benchmark in C like pseudocode
(a) scalar code (1)(b) and (1)(c) show LLVM vectorized version and goSLP vectorized version for 444.namd
respectively (2)(b) shows goSLP vectorized version for BT; Vectorized code is shown in blue, non-vectorizable
code that is packed into vectors is shown in maroon and any unpackings of vectors are shown in dark green.
Unpackings are shown as indexing into the proper lane of the relevant vector value (e.g., V1[0] denotes
extracting the 0t lane from vector V1).

the current feasible solution in case the optimal solution is not found within this time. Section 7.4
gives statistics about how many ILP problems were solved optimally.

goSLP achieves a geometric mean end-to-end speedup of 4.07% on NAS benchmarks, 7.58% on
SPEC2017fp benchmarks and 2.42% on SPEC2006fp benchmarks. It achieves individual benchmark
speedups as much as 21.9% on BT, 15.6% on 539.1bm_r and 16.4% on 538.imagick_r. goSLP is 3%
slower in FT because goSLP currently does not model reductions. While 2.42% on SPEC2006fp may
not seem like a large number, compiler developers and researchers have been optimizing for this
benchmark for 10 years.
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Fig. 8. Speedup of single copy runs of SPEC2006fp, SPEC2017fp and NAS benchmarks under goSLP compared
to LLVM SLP

Next, we ran 24 copies of SPEC2017fp benchmarks to measure goSLP’s impact on throughput.
Table 9 shows end-to-end SPEC reported throughput values for each C/C++ SPEC2017fp benchmark
under goSLP and LLVM’s SLP. We achieve a geometric mean increase in throughput of 5.2%.

Vectorization Analysis. In this section, we analyze the reasons for performance of each of the
benchmarks achieving more than 5% end-to-end speedup. We developed and ran a Dynamorio [Bru-
ening et al. 2012] based tool to get dynamic instruction counts of the top 15 most executed opcodes.
Next, we clustered the results into three categories, namely vector operations (ALU and memory
accesses), packing/unpacking instructions and other scalar instructions and normalized each bar to
the total. Figure 10 reports the percentage of instructions executed for each category for both LLVM
SLP (left bar) and goSLP (right bar). In all cases, binaries execute more vector instructions under
goSLP. After goSLP’s transformations, LLVM backend generates vectorized code which uses SSE
variants, AVX and AVX2 instructions. Packing/unpacking overhead is lower for 444.namd, BT, LU,
508.namd_r and 538.imagick_r benchmarks whereas packing/unpacking overhead for 453.povray,
511.povray_r and 519.]bm_r is higher. Packing/unpacking decisions are taken by the ILP solver
based on how profitable it is to perform the operation which uses those packs in vector form.
Further, goSLP achieves an average 4.79% reduction in dynamic instructions being executed.

Loop-level Analysis. We evaluate how goSLP performs at loop level for all benchmarks. We use
Intel VTune Performance Amplifier’s [Intel 2017b] HPC characterization pass to get statistics
about loops for all the benchmarks. Figure 11 shows a graph of percentage reduction in runtimes
over non-vectorized code for both goSLP and LLVM SLP for loops executed by benchmarks sorted
according to LLVM SLP’s values. We filter-out loops with total runtimes less than 0.1s to avoid noisy
results and the graph shows results for 122 total hot loops. While goSLP makes large improvements
on some loops, most of goSLP’s advantage comes from consistent improvements across many loops.
This displays the generality of missed vectorization opportunities found by goSLP. The performance
mainly comes from exploiting vector and non-vector pack reuses in inner loops and across basic
blocks and from vectorizing expensive operations even with packing/unpacking overhead when
the cumulative benefit is higher. There are loops with slightly higher runtimes than LLVM SLP,
mainly due to imperfections of the static cost model we used.
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Benchmark goSLP | LLVM SLP | Speedup
508.namd_r 78.73 | 70.04 1.124 X
510.parest_r 74.04 | 73.06 1.013 X
511.povray_r | 101.92 | 94.26 1.081 X
519.lbm_r 25.79 | 25.82 0.998 x
538.imagick_r | 104.84 | 93.29 1.124 X
544.nab_r 78.49 | 80.17 0.979 X
Geomean 70.81 | 67.33 1.052 X

Fig. 9. SPEC2017fp reported throughput rates under goSLP and LLVM’s SLP for a run with 24 copies
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Fig. 10. Breakdown of instructions (top 15 opcodes) executed for benchmarks with more than 5% speedup; for
each benchmark the left stacked bar chart shows breakdown for LLVM’s SLP and the right shows breakdown

for goSLP
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Fig. 11. Percentage reduction in runtime for hot loops (122) across all benchmarks under LLVM SLP and

goSLP compared to non-vectorized code.

7.4 Compile Time Statistics

We report detailed compilation statistics for benchmarks which achieved speedups of more than
5% in Table 12 and in Table 13. These benchmarks exhibit the highest compilation overhead. At
worst our compilation process takes little more than 8 minutes in total for a benchmark, which is
reasonable given that we are able to uncover more profitable SLP vectorization opportunities.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 110. Publication date: November 2018.



110:22 Charith Mendis and Saman Amarasinghe

goSLP solved in total 18243 ILP problems, out of which 18222 (99.88%) problems were solved
optimally within the allotted max time limit of 1-minute. Only 22 problems were not solved
optimally, but the ILP solver was able to find a feasible solution. Table 12 gives in all of them the
largest ILP problem solved by each benchmark in terms of binary variables encoded. We found that
goSLP solves a large number of easy ILP problems and a few hard ILP problems that dominate the
total compilation time. In particular, BT and LU benchmarks solve problems in the order of 500,000
binary variables and this is because the compiler inlines most of its functions to form a single large
function.

Even judging goSLP’s decisions by LLVM’s profitability metric goSLP almost always find a better
solution and hence reports a lower static costs (Table 13) for vectorization. This shows LLVM
usually misses the optimal solution under its own cost model. In BT, where LLVM’s static cost is
better, it’s due to double-counting of packing costs by LLVM’s profitability metric for non-vector
packs which are reused multiple times. Under goSLP, BT reuses 10.03% of the non-vector packs,
whereas under LLVM’s SLP only 5.8% of the non-vector packs are reused. Even though, compiler
cost models may not accurately predict the magnitude of speedup at runtime, these values can
be used to verify how successful we are at exploiting vectorization opportunities as seen by the
compiler at compile time.

Benchmark ILP size ILP solutions Compile Time(s)
optimal | feasible | goSLP | LLVM SLP
444 namd 61709 65 0 252.84 6.94
453.povray 207553 904 3 444.49 30.6
BT 412974 8 1 12591 2.23
LU 539138 3 1 129.08 1.54
508.namd_r 174500 108 2 499.74 20.8
511.povray_r 207782 925 4 453.81 34.65
519.lbm_r 109971 13 0 65.44 0.34
538.imagick_r | 318137 721 1 172.21 63.06

Fig. 12. ILP formulation statistics and compilation times for benchmarks with more than 5% speedup

Benchmark LLVM static cost vector packs
goSLP | LLVM SLP | % decrease | goSLP | LLVM SLP

444 namd -5867 -4817 21.80% 7424 5794
453.povray -11963 -7360 62.54% 11369 6083
BT -3125 -3427 -8.81% 2664 1026
LU -2802 -2521 11.15% 2485 765

508.namd_r -12467 -8686 43.53% 15967 11529
511.povray_r | -12028 -7385 62.87% 11462 6090
519.lbm_r -460 -192 139.58% 399 88

538.imagick_r | -9126 -4599 98.43% 12228 3156

Fig. 13. Static vectorization statistics for benchmarks with more than 5% speedup; negative static costs
indicate cost savings.
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7.5 Vectorization Impact

Figure 14 shows the absolute runtimes for scalar code produced by ICC and LLVM and the absolute
runtimes for vectorized code produced by ICC, LLVM SLP and goSLP for each benchmark. We report
the speedup LLVM SLP and goSLP has over non-vectorized code produced by LLVM in Figure 15.
We also report the speedup ICC (Intel’s commercial compiler V17.0.2) has over non-vectorized
code produced by ICC (with -no-vec flag) in the same figure. Note that, vectorization performance
comparison between LLVM and ICC is not a one-to-one comparison since the scalar code produced
by ICC and LLVM are different due to different scalar optimizations and pass orderings used by
the two compilers. This is evident by the different scalar runtimes noticed in Figure 14 under ICC
and LLVM. Nonetheless, this can be an interesting comparison to see how different compilers are
benefiting from vectorization. Also note that, ICC does not provide a way to selectively use either
loop vectorization or SLP vectorization. Therefore, the reported performance for vectorized code
involves both loop and SLP auto-vectorization.

ICC scalar M ICC vector  LLVM scalar M LLVM slp M goSLP
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Fig. 14. Absolute Runtimes of each benchmark under ICC without vectorization (ICC Scalar), ICC with
vectorization, LLVM without vectorization (LLVM scalar), LLVM SLP and goSLP.

Inspecting the absolute runtimes in Figure 14 reveals that LLVM scalar code is better than ICC
scalar code only in 4 out of the 20 benchmarks (447.dealll, 450.soplex, 470.lbm, CG) considered. In
summary, ICC produces scalar code which is 8.9% faster (geometric mean across all benchmarks)
than LLVM. LLVM’s existing SLP vectorizer produces faster running code only for 5 benchmarks
when compared with vectorized ICC code, mostly retaining the edge it had from the scalarized
version. However, with the introduction of goSLP, even when starting from a slower scalar baseline
of LLVM, we almost double the amount of benchmarks which run faster than ICC (9 out of 20)
in terms of absolute runtimes and brings the performance almost up to the same level in 2 more
benchmarks. Notable benchmarks include 508.namd_r, 538.imagick_r and BT where LLVM SLP
lagged behind ICC vectorized code by -3.58%, -12.88%, -7.73% respectively, but under goSLP they
outperform ICC vectorized code by +7.03%, +2.99% and +13.75% respectively. These percentages
were calculated using ICC runtimes as the baseline. This shows that if goSLP is implemented inside
ICC, it will have a net positive impact on ICC vectorization performance, with varying levels of
relative speedups. 453.povray and 511.povray_r are interesting benchmarks where vectorizing
actually decreased performance under all compilers. In LLVM, this is due to inaccuracies in the
cost model used, which cannot statically predict costs of irregular memory accesses.
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Fig. 15. Vectorization speedup achieved by ICC over scalar code produced by ICC and vectorization speedup
achieved by LLVM SLP and goSLP over scalar code produced by LLVM. Note that both loop and SLP vectorizers
are enabled in vectorized versions since ICC does not allow selectively using one over the other. *We inserted
loop unroll pragmas in SP and MG to expose more opportunities for SLP vectorization.

Analyzing further, it is evident from Figure 15, goSLP has a higher geometric mean impact
on vectorization performance over scalar code compared to ICC’s vectorization in SPEC2006fp,
SPEC2017fp and NAS benchmarks (+7.59% compared to +3.31% overall geometric mean impact). It
is more evident in SPEC2017fp. ICC’s loop vectorizer is better than LLVM’s loop vectorizer and
is able to vectorize more loops, specially in NAS benchmarks as noticed from the vectorization
reports. It is a main reason why ICC (+3.31% overall geometric mean impact) has a higher geomean
vectorization impact compared to LLVM SLP (+2.86% overall geometric mean impact). However,
goSLP captures better SLP vectorization opportunities and hence surpasses ICC’s cumulative impact
on vectorization. For SP and MG benchmarks, the loop unroller did not unroll certain loops in
LLVM, thus were not available to goSLP, but were vectorized by ICC. Since the unroller is beyond
the scope of this paper, we manually added pragmas to unroll these loops in the results shown in
Figure 15. However, the speedups shown in Figure 8 and runtimes shown in Figure 14 are with no
manual intervention. Our contribution in this paper is on improving SLP vectorization which is
orthogonal to loop vectorization and goSLP achieves higher overall impact. Further, we expect this
impact to grow with better loop unrolling support in LLVM.

8 RELATED WORK

Loop vectorization has been implemented in compilers since the era of vector machines [Allen
and Kennedy 1987] and subsequently many vectorization schemes have been proposed which use
loop dependency analysis [Sreraman and Govindarajan 2000]. Other loop vectorization techniques
explore vectorization under alignment constraints [Eichenberger et al. 2004], outer loop transfor-
mations [Nuzman and Zaks 2008], handling data interleavings in loops [Nuzman et al. 2006] and
exploiting mixed SIMD parallelism [Larsen et al. 2002; Zhou and Xue 2016]. Recent work introduce
techniques that can handle irregular loops with partial vectorization [Baghsorkhi et al. 2016] and
by exploiting newer architectural features [Linchuan et al. 2016]. Polyhedral model based loop
transformations are used to expose more vectorization opportunities [Kong et al. 2013; Trifunovic
et al. 2009].

Larsen and Amarasinghe [2000] introduced superword level parallelism, which can capture
vectorization opportunities that exist beyond loops at a much lower granularity. The original
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algorithm [Larsen and Amarasinghe 2000] propose a greedy statement packing and a scheduling
scheme which bundles isomorphic and independent statements starting from loads and stores
(Section 2). Liu et al. [2012] enumerate all feasible statement packs and then iteratively selects the
best groups to be vectorized using a greedy heuristic. We showed in Section 2.1 that this can yield
suboptimal vectorization decisions. Porpodas and Jones [2015] notice the need to search among
subgraphs of vectorization chains to find the most profitable cut of the graph, yet it selects roots of
these chains greedily from all vectorizable store instructions. Other techniques have been proposed
which improve certain aspects of SLP such as in the presence of control flow [Shin et al. 2005],
exploiting locality [Shin et al. 2003, 2002], handling non-isomorphic chains by inserting redundant
instructions [Porpodas et al. 2015].

Compared to all end-to-end SLP auto-vectorization techniques which employ either greedy
decisions or local heuristics, goSLP, powered by the ILP solver’s search capabilities performs a
more complete and holistic search of statement packing opportunities for whole functions and
finds the optimal statement ordering in a pack using its dynamic programming formulation.

ILP has been used for vectorization by Leupers [2000], but after statement packing decisions
have been made, to select the best set of actual vector instructions used in code generation and
therefore it can be used as a subsequent pass after goSLP. Larsen [2000] in his thesis proposes
a complete ILP solution and shows that it is not tractable. In contrast to his formulation, goSLP
uses a local encoding and does pairwise packing which allows it to form a tractable solution. Barik
et al. [2010] propose an algorithm for vector instruction selection using dynamic programming
which can result in suboptimal selections when data dependency graphs are not trees. Further,
their encoding adds duplicate packing and unpacking costs even when instructions are reused,
which our ILP formulation captures. Duplication not only increases the problem size, but also leads
to suboptimal statement packing decisions. This limits the tractability of their analysis to basic
blocks and hence may not fully leverage vector subexpression usages that exist across basic blocks.

ILP has been used successfully in solving other compiler optimization tasks such as register allo-
cation [Appel and George 2001; Barik et al. 2007; Chang et al. 1997; Nagarakatte and Govindarajan
2007], instruction selection and instruction scheduling [Chang et al. 1997]. In this paper, we present
the first tractable ILP based solution to the statement packing problem in SLP vectorization. More
recently, other techniques such as modeling register allocation as a puzzle solving problem [Quintao
Pereira and Palsberg 2008] and using constraint programming to jointly perform optimal register
allocation and instruction scheduling [Lozano et al. 2018] have been proposed. Our ILP formulation
achieves pairwise optimal packing and investigating whether it is beneficial to formulate SLP
vectorization using these techniques is orthogonal and beyond the scope of this paper.

Liu et al. [2012] propose a greedy strategy to find statement ordering in packs which can result in
suboptimal orderings, whereas Kudriavtsev and Kogge [2005] propose an ILP formulation to solve
the vector permutation selection problem which is more expensive than our dynamic programming
approach but preserves optimality. Ren et al. [2006] minimize the amount of vector permutations
needed in vectorized code which already explicitly have permutation instructions.

Karrenberg and Hack [2011] analyze whole functions by using predicated execution to reduce
functions to a single basic block, then applying basic-block-local techniques. goSLP natively operates
on whole functions, even functions containing control flow.

9 CONCLUSION AND FUTURE WORK

Current SLP auto-vectorization techniques use greedy statement packing schemes with local
heuristics. We introduce goSLP, an SLP auto-vectorization framework that performs statement
packing optimally for pairs of statements by reducing it to a tractable ILP problem which is solved
within a reasonable amount of time. goSLP finds better vectorization strategies with more vector
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and non-vector pack reuses. We also introduce a dynamic programming algorithm to optimally
select statement orderings of each vector pack formed. We show that goSLP achieves a geometric
mean speedup of 7.58% on SPEC2017fp, 2.42% on SPEC2006fp and 4.07% on NAS benchmarks
compared to LLVM’s existing SLP auto-vectorizer.

goSLP’s impact on runtime performance can potentially be increased by having a more accurate
static cost model. We noticed several inaccuracies in the hand written cost model used by LLVM. A
better approach would be to learn a cost model from data. An initial step towards this direction
was taken by Mendis et al. [2018], where they propose a data driven model to predict basic block
throughput for x86-64 instructions. A similar data driven model for LLVM IR instructions can be
used to improve goSLP’s statement packing decisions.

ACKNOWLEDGMENTS

We would like to thank Jeffrey Bosboom, Vladimir Kiriansky, and all reviewers for insightful
comments and suggestions. This research was supported by Toyota Research Institute, DoE Exascale
award #DE-5C0008923, DARPA D3M Award #FA8750-17-2-0126, Application Driving Architectures
(ADA) Research Center, a JUMP Center co-sponsored by SRC and DARPA.

REFERENCES

Randy Allen and Ken Kennedy. 1987. Automatic Translation of FORTRAN Programs to Vector Form. ACM Trans. Program.
Lang. Syst. 9, 4 (Oct. 1987), 491-542. https://doi.org/10.1145/29873.29875

Andrew W. Appel and Lal George. 2001. Optimal Spilling for CISC Machines with Few Registers. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language Design and Implementation (PLDI '01). ACM, New York, NY, USA,
243-253. https://doi.org/10.1145/378795.378854

Sara S. Baghsorkhi, Nalini Vasudevan, and Youfeng Wu. 2016. FlexVec: Auto-vectorization for Irregular Loops. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16). ACM, New York,
NY, USA, 697-710. https://doi.org/10.1145/2908080.2908111

Rajkishore Barik, Christian Grothoff, Rahul Gupta, Vinayaka Pandit, and Raghavendra Udupa. 2007. Optimal Bitwise
Register Allocation Using Integer Linear Programming. In Proceedings of the 19th International Conference on Languages
and Compilers for Parallel Computing (LCPC’06). Springer-Verlag, Berlin, Heidelberg, 267-282. http://dl.acm.org/citation.
cfm?id=1757112.1757140

Rajkishore Barik, Jisheng Zhao, and Vivek Sarkar. 2010. Efficient Selection of Vector Instructions Using Dynamic Program-
ming. In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’43). IEEE
Computer Society, Washington, DC, USA, 201-212. https://doi.org/10.1109/MICRO.2010.38

Derek Bruening, Qin Zhao, and Saman Amarasinghe. 2012. Transparent Dynamic Instrumentation. In Proceedings of the
8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments (VEE °12). ACM, New York, NY, USA, 133-144.
https://doi.org/10.1145/2151024.2151043

Chia-Ming Chang, Chien-Ming Chen, and Chung-Ta King. 1997. Using integer linear programming for instruction
scheduling and register allocation in multi-issue processors. Computers & Mathematics with Applications 34, 9 (1997), 1 -
14. https://doi.org/10.1016/S0898-1221(97)00184-3

Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. 2004. Vectorization for SIMD Architectures with Alignment
Constraints. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation
(PLDI °04). ACM, New York, NY, USA, 82-93. https://doi.org/10.1145/996841.996853

John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput. Archit. News 34, 4 (Sept. 2006), 1-17.
https://doi.org/10.1145/1186736.1186737

IBM. 2006. PowerPC microprocessor family: Vector/SIMD multimedia extension technology programming environments
manual. IBM Systems and Technology Group (2006).

IBM. 2017. IBM CPLEX ILP solver. https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Intel. 2017a. Intel Software Developer’s manuals. https://www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures- software-developer-manual-325462.html

Intel. 2017b. Intel VTune Amplifier. https://software.intel.com/en-us/intel-vtune-amplifier-xe

Ralf Karrenberg and Sebastian Hack. 2011. Whole-function Vectorization. In Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization (CGO ’11). IEEE Computer Society, Washington, DC, USA,
141-150. http://dl.acm.org/citation.cfm?id=2190025.2190061

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 110. Publication date: November 2018.


https://doi.org/10.1145/29873.29875
https://doi.org/10.1145/378795.378854
https://doi.org/10.1145/2908080.2908111
http://dl.acm.org/citation.cfm?id=1757112.1757140
http://dl.acm.org/citation.cfm?id=1757112.1757140
https://doi.org/10.1109/MICRO.2010.38
https://doi.org/10.1145/2151024.2151043
https://doi.org/10.1016/S0898-1221(97)00184-3
https://doi.org/10.1145/996841.996853
https://doi.org/10.1145/1186736.1186737
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://dl.acm.org/citation.cfm?id=2190025.2190061

goSLP: Globally Optimized SLP Framework 110:27

Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noél Pouchet, and P. Sadayappan. 2013. When Polyhedral
Transformations Meet SIMD Code Generation. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI °13). ACM, New York, NY, USA, 127-138. https://doi.org/10.1145/2491956.
2462187

Alexei Kudriavtsev and Peter Kogge. 2005. Generation of Permutations for SIMD Processors. In Proceedings of the 2005 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES °05). ACM, New York, NY,
USA, 147-156. https://doi.org/10.1145/1065910.1065931

Samuel Larsen. 2000. Exploiting Superword Level Parallelism with Multimedia Instruction Sets. S.M. Thesis. Massachusetts
Institute of Technology, Cambridge, MA. http://groups.csail. mit.edu/commit/papers/00/SLarsen-SM.pdf

Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword Level Parallelism with Multimedia Instruction Sets. In
Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation (PLDI "00). ACM,
New York, NY, USA, 145-156. https://doi.org/10.1145/349299.349320

Samuel Larsen, Emmett Witchel, and Saman P. Amarasinghe. 2002. Increasing and Detecting Memory Address Congruence.
In Proceedings of the 2002 International Conference on Parallel Architectures and Compilation Techniques (PACT °02). IEEE
Computer Society, Washington, DC, USA, 18-29. http://dl.acm.org/citation.cfm?id=645989.674329

Rainer Leupers. 2000. Code Selection for Media Processors with SIMD Instructions. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE °00). ACM, New York, NY, USA, 4-8. https://doi.org/10.1145/343647.343679

Chen Linchuan, Jiang Peng, and Agrawal Gagan. 2016. Exploiting recent SIMD architectural advances for irregular
applications. In Proceedings of the 2016 International Symposium on Code Generation and Optimization, CGO 2016,
Barcelona, Spain, March 12-18, 2016. 47-58.

Jun Liu, Yuanrui Zhang, Ohyoung Jang, Wei Ding, and Mahmut Kandemir. 2012. A Compiler Framework for Extracting
Superword Level Parallelism. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’12). ACM, New York, NY, USA, 347-358. https://doi.org/10.1145/2254064.2254106

LLVM. 2017. LLVM Compiler Infrastructure. https://llvm.org

Roberto Castaiieda Lozano, Mats Carlsson, Gabriel Hjort Blindell, and Christian Schulte. 2018. Combinatorial Register
Allocation and Instruction Scheduling. CoRR abs/1804.02452 (2018). arXiv:1804.02452 http://arxiv.org/abs/1804.02452

Charith Mendis, Saman Amarasinghe, and Michael Carbin. 2018. Ithemal: Accurate, Portable and Fast Basic Block Throughput
Estimation using Deep Neural Networks. ArXiv e-prints (Aug. 2018). arXiv:cs.DC/1808.07412

S. Muthukrishnan. 2005. Data Streams: Algorithms and Applications. Found. Trends Theor. Comput. Sci. 1, 2 (Aug. 2005),
117-236. https://doi.org/10.1561/0400000002

Santosh G. Nagarakatte and R. Govindarajan. 2007. Register Allocation and Optimal Spill Code Scheduling in Software
Pipelined Loops Using 0-1 Integer Linear Programming Formulation. In Compiler Construction, Shriram Krishnamurthi
and Martin Odersky (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 126-140.

Division NASA Advanced Supercomputing. 1991-2014. NAS C Benchmark Suite 3.0. https://github.com/
benchmark-subsetting/NPB3.0-omp-C/

Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization of Interleaved Data for SIMD. In Proceedings of the 27th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI °06). ACM, New York, NY, USA,
132-143. https://doi.org/10.1145/1133981.1133997

Dorit Nuzman and Ayal Zaks. 2008. Outer-loop Vectorization: Revisited for Short SIMD Architectures. In Proceedings of the
17th International Conference on Parallel Architectures and Compilation Techniques (PACT 08). ACM, New York, NY, USA,
2-11. https://doi.org/10.1145/1454115.1454119

Stuart Oberman, Greg Favor, and Fred Weber. 1999. AMD 3DNow! Technology: Architecture and Implementations. IEEE
Micro 19, 2 (March 1999), 37-48. https://doi.org/10.1109/40.755466

Vasileios Porpodas and Timothy M. Jones. 2015. Throttling Automatic Vectorization: When Less is More. In Proceedings of
the 2015 International Conference on Parallel Architecture and Compilation (PACT) (PACT ’15). IEEE Computer Society,
Washington, DC, USA, 432-444. https://doi.org/10.1109/PACT.2015.32

Vasileios Porpodas, Alberto Magni, and Timothy M. Jones. 2015. PSLP: Padded SLP Automatic Vectorization. In Proceedings
of the 13th Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO °15). IEEE Computer
Society, Washington, DC, USA, 190-201. http://dl.acm.org/citation.cfm?id=2738600.2738625

Fernando Magno Quintao Pereira and Jens Palsberg. 2008. Register Allocation by Puzzle Solving. SIGPLAN Not. 43, 6 (June
2008), 216-226. https://doi.org/10.1145/1379022.1375609

Gang Ren, Peng Wu, and David Padua. 2006. Optimizing Data Permutations for SIMD Devices. In Proceedings of the 27th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 06). ACM, New York, NY, USA,
118-131. https://doi.org/10.1145/1133981.1133996

Jaewook Shin, Jacqueline Chame, and Mary W. Hall. 2003. Exploiting superword-level locality in multimedia extension
architectures. Vol. 5.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 110. Publication date: November 2018.


https://doi.org/10.1145/2491956.2462187
https://doi.org/10.1145/2491956.2462187
https://doi.org/10.1145/1065910.1065931
http://groups.csail.mit.edu/commit/papers/00/SLarsen-SM.pdf
https://doi.org/10.1145/349299.349320
http://dl.acm.org/citation.cfm?id=645989.674329
https://doi.org/10.1145/343647.343679
https://doi.org/10.1145/2254064.2254106
https://llvm.org
http://arxiv.org/abs/1804.02452
http://arxiv.org/abs/1804.02452
http://arxiv.org/abs/cs.DC/1808.07412
https://doi.org/10.1561/0400000002
https://github.com/benchmark-subsetting/NPB3.0-omp-C/
https://github.com/benchmark-subsetting/NPB3.0-omp-C/
https://doi.org/10.1145/1133981.1133997
https://doi.org/10.1145/1454115.1454119
https://doi.org/10.1109/40.755466
https://doi.org/10.1109/PACT.2015.32
http://dl.acm.org/citation.cfm?id=2738600.2738625
https://doi.org/10.1145/1379022.1375609
https://doi.org/10.1145/1133981.1133996

110:28 Charith Mendis and Saman Amarasinghe

Jaewook Shin, Jacqueline Chame, and Mary W. Hall. 2002. Compiler-Controlled Caching in Superword Register Files for
Multimedia Extension Architectures. In Proceedings of the 2002 International Conference on Parallel Architectures and
Compilation Techniques (PACT °02). IEEE Computer Society, Washington, DC, USA, 45-55. http://dl.acm.org/citation.
cfm?id=645989.674318

Jaewook Shin, Mary Hall, and Jacqueline Chame. 2005. Superword-Level Parallelism in the Presence of Control Flow. In
Proceedings of the International Symposium on Code Generation and Optimization (CGO ’05). IEEE Computer Society,
Washington, DC, USA, 165-175. https://doi.org/10.1109/CGO.2005.33

Corporation SPEC. 2017. SPEC CPU2017 Benchmark Suite. https://www.spec.org/cpu2017/

N. Sreraman and R. Govindarajan. 2000. A Vectorizing Compiler for Multimedia Extensions. Int. J. Parallel Program. 28, 4
(Aug. 2000), 363-400. https://doi.org/10.1023/A:1007559022013

Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira Rosen. 2009. Polyhedral-Model Guided Loop-Nest
Auto-Vectorization. In Proceedings of the 2009 18th International Conference on Parallel Architectures and Compilation
Techniques (PACT "09). IEEE Computer Society, Washington, DC, USA, 327-337. https://doi.org/10.1109/PACT.2009.18

Hao Zhou and Jingling Xue. 2016. Exploiting Mixed SIMD Parallelism by Reducing Data Reorganization Overhead. In
Proceedings of the 2016 International Symposium on Code Generation and Optimization (CGO ’16). ACM, New York, NY,
USA, 59-69. https://doi.org/10.1145/2854038.2854054

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 110. Publication date: November 2018.


http://dl.acm.org/citation.cfm?id=645989.674318
http://dl.acm.org/citation.cfm?id=645989.674318
https://doi.org/10.1109/CGO.2005.33
https://www.spec.org/cpu2017/
https://doi.org/10.1023/A:1007559022013
https://doi.org/10.1109/PACT.2009.18
https://doi.org/10.1145/2854038.2854054

	Abstract
	1 Introduction
	2 Superword Level Parallelism
	2.1 SLP Vectorization Strategies

	3 goSLP Overview
	3.1 The Statement Packing Problem
	3.2 The Vector Permutation Selection Problem

	4 Statement Packing
	4.1 Candidate Pair Collection
	4.2 ILP Formulation Overview
	4.3 Decision Variable Creation
	4.4 Encoding Vector Cost Savings
	4.5 Encoding Packing Costs
	4.6 Encoding Unpacking Costs
	4.7 Scheduling Constraints
	4.8 Complete ILP Formulation
	4.9 Multiple Iterations
	4.10 Discussion

	5 Vector Permutation Selection
	5.1 Vectorization Graph Building
	5.2 Permutation Mask Propagation
	5.3 Dynamic Programming Formulation
	5.4 Illustrative Example

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Case Studies
	7.3 Dynamic Performance
	7.4 Compile Time Statistics
	7.5 Vectorization Impact

	8 Related Work
	9 Conclusion and future work
	Acknowledgments
	References

