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ABSTRACT

Temporal graphs, depicting time-evolving node connections through
temporal edges, are extensively utilized in domains where temporal
connection patterns are essential, such as recommender systems,
financial networks, healthcare, and sensor networks. Despite recent
advancements in temporal graph representation learning, perfor-
mance degradation occurs with periodic collections of new tem-
poral edges, owing to their dynamic nature and newly emerging
information. This paper investigates online representation learning
on temporal graphs, aiming for efficient updates of temporal mod-
els to sustain predictive performance during deployment. Unlike
costly retraining or exclusive fine-tuning susceptible to catastrophic
forgetting, our approach aims to distill information from previous
model parameters and adapt it to newly gathered data. To this end,
we propose TGOnline, an adaptive online meta-learning framework,
tackling two key challenges. First, to distill valuable knowledge
from complex temporal parameters, we establish an optimization
objective that determines new parameters, either by leveraging
global ones or by placing greater reliance on new data, where
global parameters are meta-trained across various data collection
periods to enhance temporal generalization. Second, to acceler-
ate the online distillation process, we introduce an edge reduction
mechanism that skips new edges lacking additional information
and a node deduplication mechanism to prevent redundant compu-
tation within training batches on new data. Extensive experiments
on four real-world temporal graphs demonstrate the effectiveness
and efficiency of TGOnline for online representation learning, out-
performing 18 state-of-the-art baselines. Notably, TGOnline not
only outperforms the commonly utilized retraining strategy but
also achieves a significant speedup of 30x.
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1 INTRODUCTION

Temporal graphs, depicting time-varying connections among nodes,
have gained extensive utility across diverse applications. They typ-
ically manifest dynamic characteristics and undergo rapid topol-
ogy changes over time. Real-world instances include interaction
graphs that witness the emergence of new shopping records in E-
commerce [38], follower-followee graphs where new users register
on social media [5, 20, 35], and new events on temporal knowledge
graphs [1, 13, 21, 23, 36, 37, 39], among others. Consequently, vari-
ous Temporal Graph Neural Networks (TGNNs) have been proposed
to capture the temporally evolving information, outperforming the
static models in many tasks on temporal graphs [6, 18, 28, 29, 43].

Nevertheless, the disparity between the commonly used train-
ing/test setting in literature and the real-world deployment scenario
constrains the utility of temporal models. Concretely, most litera-
ture deterministically splits temporal edges by time into training
and testing data. They assume the availability of all training data
before the start of the training process. Once the training procedure
is completed, the deployment involves a fixed model tested on all
testing data. Such a setting, which we refer to as offline setting,
differs from the real-world scenarios, where the deployed model


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626772.3657791
https://doi.org/10.1145/3626772.3657791
https://doi.org/10.1145/3626772.3657791
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626772.3657791&domain=pdf&date_stamp=2024-07-11

SIGIR ’24, July 14-18, 2024, Washington, DC, USA

O Existing node Existing edge
2] t; 3 ® @ a ®
66 oo © @ LA "
to 6 ®
Graph before deployment T; T, T3 - Ty
Offline Setting: Collection Periods
@t @ @-t—@ | Train Vodel Test [ @ 5 @ 6 @ 7
@@ 1% @ @6 @0 @i
Online Setting:
@t @ @-t— @ @ 5 @ 6 @ 7
@10 @-t—® @ 5 @ 3 ® 7
Train Test Update Test Update Test Update
Model Model Model Model

Figure 1: Task illustration. Our online setting is to update
the deployed model effectively and efficiently based on peri-
odically collected new temporal edges, ensuring sustained
long-term performance.

can be periodically updated on newly acquired data, which we call
online setting (as shown in Figure 1). Consequently, the observed
superiority in an offline setting may not necessarily yield mean-
ingful comparisons for real-world applications, which more closely
align with online settings.

This paper aims to develop a temporal graph learning technique
that facilitates effective and efficient online model updating strat-
egy for sustainable performance over time, as shown in Figure 1.
Different from the offline setting of temporal graph learning, a
unique challenge in the online stage lies at how to incorporate the
continuous appearance of new information (such as new edges
and nodes over time [11]) and utilize it for model updates. There-
fore, there is a need for an effective and efficient online updating
strategy for temporal models to append valuable information from
both pre-existing and new data. Inspired by the recent success in
knowledge distillation [10], our approach revolves around a key
philosophy: can we distill enduringly valuable knowledge from old
model parameter and adapt it onto freshly gathered data, instead
of directly retraining on all data or solely fine-tuning on new data?
This method ensures a harmonious integration of both old and
new information, preventing the excessive reuse of a substantial
amount of old data and addressing the overfitting issues that may
arise when simply fine-tuning advanced temporal models on new
data. Consequently, it demands a novel training strategy that first
extracts global knowledge for utilization across time steps from
existing data and then seamlessly adapts it to newly gathered infor-
mation under the guide of distillation, ensuring efficient adaptation
and sustainable performance over time.

The fulfillment of the novel training strategy poses challenges
in two aspects: First, considering the model complexity of repre-
senting temporal graphs, how to distill enduringly valuable knowl-
edge from the sophisticated model parameters, especially for newly
emerging nodes/edges, is non-trivial. Second, periodic online up-
dates on new data underscore the importance of efficiency to pre-
vent excessive time and resource consumption. Recent efforts have
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studied lightweight model updates on graphs in the online set-
ting [3, 41, 55]. However, these methods primarily focus on up-
dating shallow and static graph models, such as matrix factoriza-
tion [41, 55] and static graph neural networks [3]. Their methods
lack the capability of updating complex temporal models in the
online setting to represent temporal information. Studies in the
continual graph learning field explore a seemingly similar con-
text, which aims to learn new patterns incrementally on evolving
graphs [17, 24, 33, 45, 54]. However, their main objective is to sus-
tain the model performance across old and emerging tasks, such as
predicting a new class in node classification [22, 33] or reasoning
on a new relation on knowledge graphs [17]. The goal falls outside
the scope of our focus, which is centered on enhancing the same
temporal task through the incorporation of newly collected data in
the future, without newly introduced tasks.

We introduce a novel framework for online learning on temporal
graphs, namely TGOnline. This temporal meta-training framework
parameterizes knowledge through attentive sampling and aggre-
gation from temporal neighbors, facilitating the learning of node
temporal patterns. During the online stage, TGOnline fine-tunes
global parameters, acquired from previous time steps, on newly
collected data following each collection period. To promote the
inheritance of enduringly valuable knowledge from old parameters
and mitigate overfitting on potentially different and unseen dis-
tributions in new data, we employ the PAC-Bayes method [25] to
analyze the optimization bound for fine-tuning on new data. This
method acts as an adaptation regularizer, guiding the distillation
process from old parameters and enhancing generalization over
time. Crucially, it allows for the utilization of old parameters, elim-
inating the need for expensive model retraining on old data. To
ensure the encoded global parameters carry enduringly valuable
knowledge, we formulate a set of meta-tasks and meta-train the
global parameters across data collection periods during the offline
stage. This approach eliminates the need for manual configuration
during the online fine-tuning stage, determining which information
to distill and which to ignore. The optimization of the fine-tuning
and meta-training procedures is achieved through a nested bi-level
optimization process, comprising an inner-loop adaptation of global
knowledge on newly collected data and an outer-loop training to
meta-learn the global knowledge. To illustrate the effectiveness
of our proposed training strategy, we implement and integrate it
with an temporal attention module for a real-world temporal link
prediction task. Additionally, to enhance online adaptation effi-
ciency, we introduce an edge reduction mechanism that bypasses
edge samples lacking additional information for fine-tuning. We
also incorporate a node deduplication mechanism proposed in [42]
to eliminate duplicated computations within batches. Empirically,
extensive experiments conducted on four real-world streaming tem-
poral graphs validate the effectiveness of TGOnline. It significantly
outperforms 18 baselines, encompassing both static/temporal graph
learning methods and online graph learning methods, achieving
up to 8.8% relative gains on average in terms of Recall and NDCG.
Moreover, our approach showcases superior efficiency compared
to other temporal baselines, and its efficiency is on par with that of
simple static models.

Overall, our contributions can be summarized as follows:
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o Problem setting: We study and evaluate temporal graph learn-
ing in a more practical online setting, where users can gain access
to the new data and peodically update models for future tests;

e Novel framework: We propose a temporal meta-learning frame-
work TGOnline with efficiency optimization. It extracts endur-
ingly valuable knowledge across data collection periods during
the offline phase and efficiently fine-tunes the model to encode
newly emerging patterns during the online phase.

o Extensive evaluation: Empirical experiments on four real-world
temporal graphs demonstrate the effectiveness and efficiency of
TGOnline, compared with 18 state-of-the-art baselines.

2 PRELIMINARY

Definition 2.1 (Temporal Graphs). A temporal graph consists
of a set of temporal edges {(u, v, t)}, where u,v € V denotes the
source and target nodes, ¢ denotes the specific timestamp attached
to each temporal edge.

Existing studies are commonly categorized into two types: temporal
graphs with discrete graph snapshots (DTDGs) [6, 14, 26, 29] and
those with continuous edge timestamps (CTDGs) [18, 28, 43]. In
most real-world graphs, t represents a continuous timestamp that
reflects the actual time of each edge occurrence. Therefore, in this
paper, we default to studying continuous temporal graphs (CTDGs),
although the proposed method can effortlessly be applied to discrete
temporal graphs by utilizing a discrete ¢.

In the offline setting commonly utilized in literature, the tem-
poral edges are split into training set and testing set, i.e., D" =
{(,0,0)]0 < t < T} and D = {(u,0,t)|t > T}. They test a
non-update model trained on DM on all edges in Dt However,
in reality, new edges in D' are collected incrementally, meaning
that we can utilize the newly collected data to update the model pe-
riodically before a newer test. Therefore, we study a more practical
online setting on temporal graphs, where edges in the test set Dt
can be further divided by collection periods, i.e., Dt = Uf\i 1 T,
and DT = {(w0,0)|Ti-; < t < T} Figure 2a presents the ra-
tio of newly introduced nodes and edges absent in the temporal
graphs before this period. The online learning on temporal graphs
is formalized as follows:

Definition 2.2 (Online Learning on Temporal Graphs). Let ©
denote the deployed temporal models. On each collection period
T;, we consider the following two steps during online learning:

Step-1: el - o,

test

Step-2 : U (Dtrain(optional), e ,DTi) @

— of s
update

and our ultimate goal is to maximize the average performance
tested in each online collection period (Step-1).

3 TGONLINE FRAMEWORK

In this section, we present a novel framework TGOnline to solve
the online learning task on temporal graphs, as shown in Figure 3.
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(a) New node emergence. (b) New edge emergence.
Figure 2: Motivating examples. New nodes and edges contin-
uously emerge on four real-world temporal graphs, leading
to significant performance decay.

3.1 Framework Overview

During the online stage, in handling the new data collection DT,
our approach is guided by a fundamental principle: TGOnline dis-
tills enduringly valuable knowledge from the global model param-
eter © across different collection periods and adapts it onto new
data as ©7: for utilization. This stands in contrast to the direct re-

training on the entire dataset | (Z)train, cee DTi) or the exclusive

fine-tuning the old ©%-1 on the new data D:. It guarantees the

utilization of valuable information from both previous and current

data, while simultaneously conserving computational resources.
To this end, TGOnline mainly consists of two design components:

o Distillation-Guided Online Model Updates aims to infer the
updated model parameters ©F based on fine-tuning on new
data DT and distilling knowledge from global model parameters
across collection periods © (Section 3.2);

e Temporal Meta Training involves the extraction of global
model parameters © from the previous dataset during offline
training, aiming to acquire generalizable information across time
(such as how to encode time, how to aggregate neighbor’s infor-
mation, etc). It engages in a nested bi-level optimization process
on a set of meta-tasks during offline training. Each task is sim-
ulated to predict new edges by based on existing data, and it
mimics the online task’s behavior after the model is deployed
(Section 3.3);

we implement the strategy above on an attentive temporal mod-
ule for representing temporal graphs (Section 3.4), and further
introduce acceleration techniques to improve efficiency of the
Distillation-Guided Online Model Updates (Section 3.5). They in-
clude edge reduction that bypasses new edges without novel informa-
tion and node deduplication that avoids representation computation
on duplicated temporal neighbors.

3.2 Distillation-Guided Online Model Updates

The online update of the deployed model is essentially estimating
the new parameter distribution p(©7) given the newly collected
data DT based on the prior estimation of the global knowledge
p(0©). As pointed out by [54, 55], a unique challenge arises to avoid
the overfitting and catastrophic forgetting issues on the new data.
Otherwise, informative knowledge presented in p(©) might be
dominated and biased by the new observations. For example, the
representation of old nodes (that are not active in the new period)
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Figure 3: Framework overview. TGOnline consists of a
distillation-guided online model updates and a temporal
meta training for learning global temporal parameters.

should be largely preserve and instead of being misled by the new
observations.

One might view the new parameter distribution p(©7') as a pos-
terior distribution conditioning on the new data. However, it is hard
to compute the posterior given the prior p(®) and the observations
DT, as it requires us to have already access to the likelihood of
DT which needs to be estimated first. To resolve this, we instead
adopt the PAC-Bayes method [25, 31], which allows one to learn a
parameter posterior that fits the observations without knowing the
distribution of the observations. We propose the following theorem
to provide the optimization objective for the online model updates:

THEOREM 3.1 (PAC-BAYEs BOUND ON NEw DATA). Let p(®) de-
note the prior distribution gained by the global knowledge across tasks,
p(OT)) denote the empirical estimation of new parameters on new
data, | -| denote the set size. For any § € (0, 1) and learned prior p(®),
with probability at least 1 — & over new data D, the upper bound of
the online optimization loss to be optimized on the new data is given

by:

|D%i|
S

5

KL(p(07)||p(®)) +log
2|DT| -1

LOnline(QTi, 0Ty < £(0%, pT) +J

) ()
where £LOMine(@Ti DTty denotes the online loss to update 0% on data
DL and L(@Ti, DT") denotes the normal loss function determined
by underlying temporal model.

Remark. Readers can refer to Appendix A.1 for proof. The Eq. (2)
can be interpreted as a combination of empirical loss on the new
data in the new time interval and a distillation regularizer of pa-
rameter distribution with the global parameter distribution in the
form of KL-divergence. The regularizer along the time domain can
guarantee that the online update is trained only on new data but
without overfitting in specific time intervals. Thus, we can improve
the generalization ability of our online updates procedure, which
can be formalized as follows:

aLOnliHE(GTi, DTI)

T; T;
O «— 0O PYYE

-n (3)

3.3 Temporal Meta Training

In this section, we discuss how to ensure the global parameter ©
in Eq. 2 encode generalizable knowledge across collection periods
so that it provides correct distillation guideline for online model
updates, as stated in Eq. (3). To achieve, we view extracting the
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Figure 4: The attentive temporal module and the acceleration
including edge reduction and node deduplication.

global parameters as a meta-task and meta-train them on a set of
tasks simulated during offline stage.
Meta-Learning Setup. We follow model-agnostic meta-learning
(MAML) [4] and formulate a task as adapting global knowledge
on recently collected data (organized as support set) to update the
model for future prediction ((organized as query set). In each task at
the data collection time Tj, the global parameters © can be adapted
on a support set to mimic the online update procedure. A query set
in the future is utilized to measure the quality of global parameters
O across time periods. Future prediction serves as an indicator of
how effectively the distillation guide provided by © performs.
Concretely, the support set ST consists of data from the new

and several recent time periods: STi = U DT, and the
T;-Ts<T<T;

query set Qi consists of data from several future time periods:
Qi = U DT, where Ty and Ty are hyperparameters to
T;<T<Ti+Ty
control the length of time periods to be considered. Each distinct
task, denoted as (STi, QTi), is designed to facilitate model updates
using the support set STi, with the ultimate aim of optimizing
performance on the future query set Q.
Bi-Level Optimization. We then introduce how to meta-train
global parameters © for better guiding the online model updates.
During the meta-training phase, we simulate a set of tasks by slicing
time windows within the observed time range (0, T) and construct
the corresponding pairs of support and query sets, with the assump-
tion that the support set is the freshly collected data, and the query
set is the future data that awaits model deployment and evaluation.
Thus, we can mimic the real online updates by adapting the global
parameter ©, on the support set via several fine-tuning steps (in-
ner loop). And the global knowledge can be further improved by
tuning the model on each query set (outer loop), as the quality of
global parameters can be quantitively measured by how well the
model performs on future data. Such a bi-level optimization can be
detailed as follows:
0* «— arg m@in ET, [L(@Ti, Qh )] (Outer Loop),

aLOnline(@Ti’ ST,) (4)

g = 22 )

where 07 = @7 —
00T

(Inner Loop),

where © denotes the global parameters across tasks, ®* denotes
the optimal global parameters after the meta training, and ©%
denotes the updated model parameters at the T;-th collection period,
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Algorithm 1: Offline meta-optimization algorithm.

Input: Temporal graph D% = {D°, DL,... DT} T, T,
Output: The global parameter for distillation ®*
1 Construct the support/query sets based on Ptrain T Tys

2 while © not converge do
3 # Outer loop: for each task at T; do

4 # Inner loop:

5 Calculate PAC-Bayes bound on S”i by Eq. (2);

6 Optimize ©Ti by Eq. (3);

7 Calculate predictive loss on query set £(07, QTi);
8 end

9 Calculate loss across tasks Er, [ £(07, QTH)];
10 © «—— argming E; [ L(07,QTH)];
11 end
12 0% «— 0.

Algorithm 2: Online model update algorithm.

Input: New data D7, Global model parameter ©*
Output: Updated parameter ©%i for new period
Construct STi based on recent Ty collections;

-

2 Perform edge reduction and node deduplication on S7i;
3 Calculate PAC-Bayes bound on S”i by Eq. (2);
a4 Optimize ©Ti by Eq. (3) untill converge.

£0nline (@7 §Ti) denotes the online loss to update ©%i on data ST,
and £(0%:, Q") denotes the normal loss function determined by
underlying temporal model.

The bi-level optimization procedure outlined in Eq. (4) emulates
the iterative refinement process of the deployed model in the online
setting. The inner loop optimization mirrors the strategy for swiftly
adapting the model to recently acquired data by distilling knowl-
edge from the fixed ®. Meanwhile, the outer loop optimization is
geared towards tuning the global parameter © shared across various
tasks to the optimal one ©*, enhancing its capacity to encapsulate
generalization information from the existing data. During the of-
fline training phase, both the global parameter ® and the online
updating procedure can be learned via the nested meta-optimization
procedure, which is iterated over time. During the online updating
phase, the optimal knowledge ®* can be further utilized to provide
distillation guide for fine-tuning on the new data by optimizing the
inner loop. The procedure of offline/online training is summarized
in Algorithm 1 and Algorithm 2 respectively.

3.4 The Attentive Temporal Module

Towards the learning objective above, we introduce the detailed
model parameterized by © and the specific loss function for tem-
poral tasks. Figure 4 shows an one-layer attentive module for il-
lustration. The attentive temporal model parameterized by © is
designed to measure the plausibility of each temporal edge, which
represents each node u into a low-dimensional latent space at each
time : hy, (f) € R%. On a temporal graph, nodes u € V evolve as
they interact with different neighbors over time. Such temporally
interacted nodes are defined as temporal neighbors. Therefore, we
aim to model the temporal pattern of each node u by encoding the
changes of temporal neighbors.
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Table 1: The dataset statistics.

Dataset ‘ #Interaction #User #Item Density Split

Wiki 157,474 8,227 1,000  0.019141  30/2/8
Reddit 672,447 10,000 984 0.068338  30/2/8
Twitter 134,291 8,780 1,333 0.011474 30/2/8

Yelp 1,266,728 63,228 59,375  0.000337  30/2/8

Towards this goal, this module first samples temporal neighbors
Nu(t) = (v;, t;) from the existing temporal graph for each node
u € V. Ny (t) consists of a set of the most recently interacted nodes
no later than time ¢. Then it attentively aggregates information from
the temporal neighbors. Specifically, given the temporal neighbor
Ny (t), we represent the entity u as hy,(¢) at time ¢:

1, (¢) = ReLU . (hlulfl(tl—)w) , )
(vj,t;) €Ny (t)
i eXP(qu,i)
o = Y exp(ghy)
ot eNa(t) K ()

Gho, = a (B0 e - 1))

where qfwk measures pairwise importance by considering the node
features of u and each vy, and time feature, a € R34 is the shared
parameter in the attention mechanism. Following [43], we adopt
random Fourier features as time encoding k(At) to reflect the time
difference. Similarly, the edge feature, if available, can be concate-
nated together in the pairwise importance measurement qfwk.

To measure the probability of each possible temporal edge, we
utilize inner product [15] as the score function p = o((hl,h?)),
where o(-) denotes the Sigmoid activation function. To optimize
the parameter © for a task on either the support or query set, we
minimize the loss for each temporal edge to train the model ©.
Taking the support set ST as an example:

£(6,8") =E[-yilog(p:) - (1 - yi) log(1 - pi)], @)
where y; = 1 if the edge (u;,0;,t;) € ST and y; = 0 otherwise.

3.5 Acceleration for Online Update

Edge Reduction. We analyze the time complexity of the inner
loop optimization, which is used for online model updating. Let b
denote the number of temporal neighbors for each node, [ denote
the number of attention layers, N denote the negative sampling

factor, and the overall complexity is O (lsz |ST: |) which grows

linearly with |STi|. To further expedite the online update process,
we explore methods to diminish the size of |STi| using the edge
reduction technique, all while maintaining its efficacy. We propose
a straightforward approach that involves bypassing edges where
the two nodes are already 1- or 2-hop neighbors in recent time steps.
This strategy is based on the premise that such edges might not
introduce any supplementary information, as the existing historical
data and PAC-Bayes bound have already covered their contribution.
For example, we skip edge (2,4, t2) in Figure 4.

Node Deduplication. The new edges are grouped into batches
for the distillation-guided online model updates. In the underlying
attentive temporal module, each edge is separated into source and
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Table 2: The overall performance of baseline models and TGOnline. Average results of 5 independent runs are reported. For
baselines tailored for offline training scenarios, we utilize both retraining and fine-tuning techniques, and retaining the

approach with better performance.

Dataset Wiki Reddit Twitter Yelp

Performance Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20
MF 0.662 + 0.013 0.319 + 0.005 0.750 + 0.017 0.522 + 0.004 0.172 + 0.007 0.099 + 0.002 0.183 + 0.002 0.125 + 0.002
GAE 0.481+ 0.018 0.221 + 0.012 0.708 + 0.013 0.481 + 0.017 0.600 + 0.000 0.307 £ 0.001 0.213 £ 0.001 0.091 £ 0.000
GAT 0.540 + 0.007 0.328 + 0.012 0.706 + 0.007 0.490 + 0.007 0.340 + 0.009 0.154 + 0.023 0.091 + 0.002 0.038 + 0.001
GIN 0.409 + 0.016 0.193 + 0.006 0.568 + 0.055 0.345 + 0.050 0.519 + 0.009 0.287 + 0.008 0.220 + 0.001 0.093 + 0.001
LightGCN 0.698 + 0.003 0.503 + 0.003 0.741 £ 0.001 0.561 + 0.003 0.568 + 0.001 0.291 £ 0.001 0.224 + 0.003 0.092 £ 0.001
GRU4Rec 0.080 £ 0.001 0.046 + 0.001 0.048 + 0.001 0.037 £ 0.000 0.056 + 0.000 0.030 + 0.000 0.026 + 0.000 0.010 £ 0.000

JODIE 0.239 + 0.015 0.198 + 0.024 0.211 £ 0.011 0.183 + 0.025 0.139 + 0.015 0.098 + 0.007 OOM OOM

EGCN-H/O 0.089 + 0.002 0.039 £ 0.001 0.471 + 0.007 0.285 + 0.004 0.250 + 0.010 0.124 + 0.007 OOM OOM
VGRNN 0.048 + 0.030 0.025 + 0.016 0.389 + 0.073 0.193+ 0.036 0.389 + 0.073 0.193 + 0.036 0.165 + 0.014 0.071 £ 0.006
Euler 0.040 + 0.010 0.018 + 0.005 0.484 + 0.032 0.242 + 0.017 0.600 + 0.003 0.334 + 0.002 0.070 + 0.021 0.028 + 0.010
DySAT 0.442 + 0.010 0.224 + 0.002 0.668 + 0.002 0.426 + 0.007 0.410 + 0.011 0.176 + 0.011 0.020 £ 0.000 0.007 £ 0.000
DIDA 0.601 £ 0.007 0.510 + 0.009 0.617 £ 0.015 0.392 + 0.025 0.551 + 0.016 0.391 + 0.012 0.242 + 0.002 0.136 + 0.002
TGAT 0.664 + 0.010 0.529 + 0.008 0.744 £ 0.011 0.618 + 0.017 0.604 + 0.010 0.231 + 0.006 0.215 £ 0.012 0.121 £ 0.013
SPMF 0.585 + 0.007 0.358 + 0.006 0.741 + 0.001 0.507 £+ 0.002 0.022 + 0.003 0.007 + 0.001 0.166 + 0.001 0.100 + 0.001
SML 0.374 + 0.023 0.190 + 0.017 0.704 + 0.013 0.455 + 0.016 0.500 + 0.071 0.250 + 0.049 0.177 £ 0.010 0.111 £ 0.003
1GC 0.685 + 0.014 0.526 +0.011 0.754 £ 0.011 0.589 + 0.010 0.577 + 0.002 0.335 + 0.005 0.248 +0.008 0.132 £ 0.006
ROLAND 0.681 + 0.015 0.536 + 0.028 0.757 + 0.009 0.592 + 0.019 0.561 + 0.015 0.324 + 0.021 0.231 £ 0.012 0.129 +0.021
MetaDyGNN | 0.667 + 0.030 0.510 + 0.018 0.752 + 0.023 0.610 + 0.031 0.581 + 0.030 0.350 + 0.019 0.251 + 0.024 0.129 £+ 0.011
TGOnline 0.716 + 0.017 0.575 + 0.005 | 0.807 + 0.006 0.645 + 0.010 | 0.644 + 0.002 0.475 + 0.002 | 0.272 + 0.005 0.157 + 0.002

Gains (%) 2.6 8.7 7.0 4.4 5.9 8.0 9.8 154

target nodes using the same timestamp, creating node-timestamp
pairs. Since new edges can connect the same nodes at the same
time, leading to significant duplication of such pairs, such as (1, t1)
and (4, t3) in Figure 4, we employ a node deduplication technique
introduced in [42] to eliminate redundant computations.

4 EXPERIMENTS
4.1 Datasets

We collect four real-world temporal graphs as follows:

e Wiki [19]: The dataset is a public collection of edits made
by users who contributed at least 5 edits to the 1,000 most
edited Wikipedia pages within one month. The temporal edges
represent timestamped historical edits.

e Reddit [19]: The public Reddit post dataset comprises one
month of user posts from the 1,000 most active subreddits
and the 10,000 most active users. The temporal edges are the
timestamped posting requests.

e Twitter: The dataset collected from Twitter constitutes user-
hashtag interactions, whose nodes include users and hashtags,
and whose links represent who-post-what interaction records.
To maintain data quality, we excluded the top 10 users and top
20 hashtags with abnormal activation levels and users/hashtags
with fewer than 15 occurrences, considered invalid for analysis.

e Yelp !: The dataset is collected from the Yelp Challenge 2018
and consists of user-business interactions with ratings of 4 and
5 points after 2010. Inactive users with fewer than 8 interactions
are excluded.

For each dataset, we sort all interactions in chronological order
and split them into 40 timesteps, each containing an equal number
of interactions. We further split 40 periods into 30/2/8 for offline
training/online validating/online testing phases. To be concrete:

Thttps://www.yelp.com/dataset/
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e Offline training phase is utilized to train both baselines as
well as TGOnline before deployment. The data in this phase
are assumed to be given at once;

Online phase is the phase where we utilize the online data to
first test the deployed models and then to update the models.
The average performance in the first 2 periods is selected as
an indicator to choose important hyperparameters for the on-
line testing phase, and the average testing performance on the
remaining 8 periods is reported.

4.2 Experimental Setup

4.2.1 Baselines. We compare 18 state-of-the-art baselines from
three related areas. Due to page limitations, we refrain from pro-
viding a detailed description for each baseline. We report baseline
setup details in Appendix A.2.

e Static graph learning methods: Matrix Factorization (MF) [27],
GAE [15], GAT [32], GIN [44], LightGCN [8];

e Temporal graph learning methods: GRU4Rec [9], JODIE [18],
EGCN-H/O [26], VGRNN [6], Euler [14], DySAT [29], DIDA [56],
TGAT [43];

e Online graph learning methods: SPMF [41], SML [55], IGC [3],
ROLAND [53], MetaDyGNN [51].

4.2.2  Evaluation Protocol and Metrics. We evaluate online link
prediction tasks in a retrieval setting. For each link collected during
the online phase, given the observed user nodes, we compare the
predicted top-K ranking list of missing items with the ground-truth
item in each testing time step. We adopt two widely-used evaluation
protocols: Recall@K and NDCG@K, where K = {5, 10, 20}.

4.2.3  Setup and Implementation. All baselines and TGOnline are
first evaluated and then updated on the new interactions in each
period during the online validating/online testing phases. For base-
lines tailored for offline training scenarios, we utilize both retraining
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Figure 5: Detailed Recall@K and NDCG@K when K = {5, 10}. The average results of 5 independent runs are reported. TGOnline
achieves the best performance, with 8.8% relative gains over the second-best results on average.

and fine-tuning techniques and retain the approach with better per-
formance. During the evaluation, we tune hyperparameters based
on Recall@20 on the online validating phase, and report the aver-
age performance on the remaining periods of the online testing
phase. We train all baseline models and TGOnline on the same
GPUs (GeForce RTX 3090) and CPUs (AMD Ryzen Threadripper
3970X 32-Core Processor).

To construct the task set for the meta-learning formulation, we
set temporal edges in K5 = K4 = 2, meaning we consider 2 con-
secutive historical periods as support and query se. Such a choice
enable us to i) consider sufficient historical information to update
the model online; ii) utilize relatively long-term performance as in-
stant feedback for learning the global parameters in the outer-loop
optimization; iii) maintain acceptable efficiency. Next, we report
the choices of hyperparameters. For model training, we set the
maximum number of epochs as 200 for offline training. We keep
the dimension of all embeddings as 128. For the sake of efficiency,
we set the neighbor budget b of temporal neighbor sampler as
16, and employ 2 neighborhood aggregation layers in temporal
encoder. We perform 20 steps of gradient descent for inner loop
optimization. We mainly tune inner/outer loop learning rate n and
p in range {0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001}. For
Wiki, Reddit and Twitter, we set n = = 0.0001. For Yelp, we set
n = 0.0005, and = 0.0001. We report other baseline setup details
in Appendix A.2.

4.3 Main Results

Overall Performance. We first discuss the main results on four
datasets. Table 2 shows the overall evaluation in terms of Recall@20
and NDCG@20, and Figure 5 shows the comparison with several
strong baselines with K = {5, 10}. TGOnline consistently outper-
forms all baseline models, exhibiting an average relative improve-
ment of 8.8%. Intriguingly, certain prominent dynamic models, like
GRU4Rec, EGCN, VGRNN, and Euler, demonstrate unexpectedly
suboptimal results, even underperforming the static baseline mod-
els. We hypothesize that it is caused by too long a graph sequence,
where these dynamic models struggle to effectively extract valu-
able knowledge from the historical data that are still useful on new
data patterns. While TGAT and IGC (an online algorithm based
on LightGCN) generally outperform other baselines, their results
still fall short of our approach. This deficiency could be attributed
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Figure 6: Performance across node quartiles on degree level.
(Q1:lowest, Q4: highest). TGOnline has higher gains for nodes
with sparse connections (quartiles Q1-Q3).

to the absence of a tailored online updating strategy specifically
for the temporal module. The superior performance of TGOnline
demonstrates the efficacy of the proposed temporal meta-training
strategy for online link prediction.

4.4 Performance of Diverse Node Groups

The key indicator to evaluate the online algorithm is how well the
model performs on newly emerging nodes with a few edges, as
new nodes continuously join the graph in the real world. We divide
nodes into quartiles by their degree levels, which is the number
of participating edges per node. Figure 6 shows the performance
distribution for each node group, from Q1 (lowest degree level) to
Q4 (highest degree level), compared with three strong baselines.
The major improvement of TGOnline comes from the nodes with
few links (Q1, Q2), as it can borrow useful information from the
high-resource nodes to the low-resource nodes via the extraction
of global knowledge.

4.5 Ablation Study

We conduct the following ablation studies to evaluate performance
improvements brought by the temporal meta-training strategy 1)
Retraining directly retrains our attentive temporal model on all
data; 2) Fine-tuning fine-tunes our attentive temporal model only
on new data; 3) TGOnline w/o PAC-Bayes Bound removes the
PAC-Bayes bound in the inner loop optimization; 4) TGOnline
w/o Edge Reduction update the global model on all edges in the
new data without skipping any sample; 5) TGOnline w/ Random
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Table 3: Ablation studies measured by Recall@20 and
NDCG@20. Online update time is also reported.

Dataset Wiki | Reddit

Metrics Recall NDCG Recall NDCG
Retraining 0.669 0.540 0.744 0.628
Fine-tuning 0.657 0.531 0.730 0.611
TGOnline 0.716 0.575 0.807 0.645

w/o PAC-Bayes 0.701 0.569 0.793 0.623
w/o Edge Reduction 0.722  0.589 | 0.820  0.660
w/ Random Reduction | 0.690 0.557 0.770 0.629

Reduction reduce the same amount of training samples during the
online phase by random selection.

Table 3 shows the evaluation results. Both retraining and fine-
tuning approaches for the attentive temporal model fail to outper-
form TGOnline. The retraining strategy might be dominated by
the existing data, leading to an excessive focus on historical pat-
terns and potentially overlooking new patterns. Conversely, the
fine-tuning strategy can easily result in overfitting on the new data.
Upon excluding the PAC-Bayes bound from the inner loop objective,
we observe a decline in performance, underscoring the bound’s
role in fortifying the stability and generalizability of the online
updating procedure. We also delve into the impact of the simple
edge reduction heuristic. While TGOnline without this heuristic
yields a marginal performance boost, it prolongs online training
time by up to 2x times. Substituting the heuristic with a random
strategy significantly compromises performance. These outcomes
underscore the value of our straightforward yet effective edge re-
duction algorithm, which accelerates the online update process
without inflicting significant performance degradation.

4.6 Efficiency Analysis

Table 3 also reports the online updating times for each variant,
quantifying the time taken per online epoch in seconds. Notably,
TGOnline accomplishes swifter online updates compared to simple
fine-tuning. This is due to the edge reduction algorithm employed
by TGOnline, which effectively reduces the volume of training
samples during the online phase in contrast to the standard fine-
tuning approach. The efficacy of the edge reduction heuristic is
further highlighted when contrasted with the variant that omits it.
This heuristic effectively halves the online running time without
introducing a notable drop in performance. This is because the
omitted edges fail to contribute substantially new information for
model training, and their contribution is already covered in the
global knowledge regulated by the PAC-Bayes bound.

We report the online updating efficiency comparison of repre-
sentative baselines in Table 4. Compared with dynamic models
(DySAT, TGAT) and online updating models (IGC, MetaDyGNN,
ROLAND), TGOnline achieves the best efficiecy. Notably, TGOnline
achieves compatible efficiency with simple static models (VGAE
and LightGCN) and achives better performance. This is because our
meta-training algorithm updates the complex model parameters
efficiently without expensive retraining on full dataset. And the
proposed edge reduction and node deduplication further accerlate
the online updating process.
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Table 4: Efficiency comparison on the Reddit dataset.

Baselines

Ours

VGAE LightGCN DySAT TGAT IGC MetaDyGNN ROLAND
717 741 668 744 754 752 757
8.1 3.6 73.1 14903  18.1 1627.8 70.3

Recall
Time (s)

5 RELATED WORK

Temporal Graph Learning. Temporal graph learning has been
attracting numerous research interests in the community [9, 18, 26,
28, 29, 43]. Recently, temporal graph neural networks (TGNNs) that
based on Graph Neural Networks (GNNs) [7, 16, 30, 34, 46-50] have
achieved the state-of-the-art performance, which is divided into two
categories: discrete methods that organize the temporal graphs as dis-
crete snapshot sequences (CTDGs) and utilize sequential modeling
including RNNs (e.g., EGCN [26], Euler [14], VGRNN [6]) and trans-
formers (e.g., DySAT [29]) to learn the evolution of node represen-
tations, continuous methods that operates on temporal graphs with
continuous edge timestamps (CTDGs) (e.g., TGAT [43], TGN [28]).
Ours is designed to handle CTDGs. However, despite the numerous
existing efforts, how to effectively and efficiently update temporal
graph models on the online setting still remains relatively unex-
plored. Recent efforts have studied lightweight model updates on
static graphs in the online setting [3, 41, 55]. SPMF [41] skillfully
sampled for retraining to represent long-term preference and rank
the items by an optimization framework. SML [55] introduces a
meta-learning approach that captures the long and short-term em-
beddings, saving time and memory. IGC [3] re-activates the previ-
ous nodes and updates only the new-neighbor-related parameters
to speed up the retrain speed. However, these methods primarily
focus on updating shallow and static models, and their applica-
bility to addressing the challenges of modeling temporal graphs
remains limited. Studies in the continual graph learning field ex-
plore a seemingly similar context, which aims to learn new pat-
terns incrementally on evolving graphs [17, 24, 33, 45, 54]. However,
their main objective is to sustain the model performance across
old and emerging tasks, such as predicting a new class in node
classification [22, 33] or reasoning on a new relation on knowledge
graphs [17]. It falls outside the scope of our focus which is centered
on enhancing the same temporal task through the incorporation of
newly collected data.

Meta-learning on Graphs. Given a set of tasks, meta-learning
aims to learn general knowledge that is shared across all tasks and
can be efficiently adapted to new tasks [52]. In this paper, we for-
mulate the online learning task as a meta-learning problem and
utilize model-agnostic meta-learning (MAML) [4] to address the
challenges. Recently, meta-learning was integrated with graph neu-
ral network models for few-shot predictions on graphs, e.g., Meta-
Graph [2], G-Meta [12], MetaDyGNN [51], and MetaTKGR [40].
However, most works are designed for few-shot learning task on
static/temproal graphs. The adaptation of the meta-learning ap-
proach for temporal graph learning in the online setting remains
underexplored.

.807
10.1

6 CONCLUSION

We studied a realistic online learning problem on temporal graphs,
which aims to effectively and efficiently update the deployed model
on the newly collected graph data. To this end, we proposed a novel
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temporal meta-training framework TGOnline. It meta-learns the
global parameters of sampling and aggregating temporal neighbors,
which can be adapted quickly to new data for future prediction
via distillation-guided fine-tuning steps. Such bi-level optimization
is nested and alternated during the offline training to mimic the
online scenario. During the online stage, we further theoretically
analyzed and utilized a PAC-Bayes bound to enable distillation from
global parameters, which are further accelerated by the proposed
edge reduction and node deduplication techniques. We empirically
validated the effectiveness of TGOnline on four real-world temporal
knowledge graphs, on which the proposed framework significantly
outperforms an extensive set of SOTA baselines.
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A APPENDIX
A.1 Proof of Theorem 3.1

Proor. First, for convenience of discussion, we define the dif-
ference between the real online updating loss and the predictive

loss on the new data DT as follows:
AL = Online(@T: pTiy _ r(@%, D). ®

We are interested in the relation of AL and the distribution
discrenpency between the global parameter p(©) and the desired
updated p(©Ti). Towards this goal, following [25, 31, 40], we con-
struct the following function:

FDT) =2(1D" | = DEg1; _om) [(AL)*] ~EL(p(@")IIp(©)). (9)
Next, using Markov’s inequality, we have:
B, [or @™

e€

PF(DT) > €) = p(el P > ¢%) < (10)

where E; [ef (DTi)] denotes the expectation of ef (D) yrt. new
data collection period. To upper bound the expectation, we have
the following inequality:

(D7) =2(1D% | = DEgr;_yem) [(AL)*] =~ KL(p(@")]Ip(©))

2007 -1(a0)?_P(©) )
p(0T)

= EQTi ~p(0Ti) [Iog (

20T -1y (aL)2 P(O)
glog(E@Tiw(@Ti) e 2O

_ 2(1DTi|-1)(AL)?
= log (E®T1~p(@) [e (107 ) D

(11)
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where Jensen’s inequality is utilized to derive the inequality. There-
fore, we have

E; [ef(DTi)] < Egry

2(10%i|-1)(AL)?
i~p(e) 2t [€ ;

(12)
the order of expectations is swapped as p(©) is independent to DT,
Next, based on Hoeffding’s inequality, we have:

PAL>e) < e80TI, (13)

and we can further derive the following inequality:
T; T — 2 "
E; [ef(” )] < Botip(o)Be [?IPTITVALT 1T (14)
Combining Eq. 14 and Eq. 10, we get:
2]

PO >e) < =—— (15)
where 8 = |DTi|/e€. Therefore, with probability of at least 1 — &,
we have that for all ©¢:

FOT) =2(1D" | = DEg1; _yom) [(AL)*] = KL(p(@")|p(©))

=4,

< log | DT | .
- S
(16)
Further, by utilizing Jensen’s inequality again, we have:
2
(Bai-piory LAD)” < Bgr,_ e (8L
log |D7i| (17)

KL(p(©")|p(®)) +
2(|DTi| -1
Substituting the definition of AL in Eq. 17, we prove the PAC-
Bayes Bound on the newly collected data with unknown distribu-
o

S

tion.

A.2 Baseline Setup

We compare retraining all the previous data and fine-tuning the
new snapshot for MF method when testing online in the last ten
periods, and preserve the strategy with better performance. As for
SPMF, SML, and IGC, we perform online update on the last 10 time
steps. For GRU4Rec and JODIE, we follow the similar procedure.
To implement full retraining strategy, we concatenate all action
sequences from all time periods together for model training. And
we only consider the sequence happened within the last time pe-
riod to train model, as the fine-tuning implementation. We tuned
the learning rate in {1,0.5,0.1,0.05,0.01, 5¢ — 3,1e — 3, ..., 1le — 8}.
Particularly for SML, we tuned transfer learning rate in {le—1, 1e —
2,1e—3,1e —4,1e — 5,1e — 6}.

For other baselines, we use the first 30 periods for offline train-
ing. When evaluating each online period, all baselines are trained
using both fine-tuning strategy on the last snapshot and full-retrain
strategy on all the previous ones. Specifically for static baselines,
we merge all historical time steps as one graph via or operation to
implement the full retraining strategy. Notably, several baselines
easily encounter out-of-memory (OOM) issue on large graphs, e.g.,
DySAT, EGCN, Euler, JODIE, etc. We use the following ways to
try to deal with the OOM issue: 1. we adopt edge sampling tech-
nique instead of full graph training to reduce the training samples
and graph size; 2. we devide the time steps into groups and only
consider the temporal dependency within each group to save GPU
memory. Each group contains K = {3, 10} consecutive time steps.
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