
TGOnline: Enhancing Temporal Graph Learning with Adaptive
Online Meta-Learning

Ruijie Wang

University of Illinois

Urbana-Champaign, USA

ruijiew2@illinois.edu

Jingyuan Huang

Zhejiang University

Zhejiang, China

jingyuanh.20@intl.zju.edu.cn

Yutong Zhang

Stanford University

California, USA

yutongz7@stanford.edu

Jinyang Li

University of Illinois

Urbana-Champaign, USA

jinyang7@illinois.edu

Yufeng Wang

University of Illinois

Urbana-Champaign, USA

yufengw2@illinois.edu

Wanyu Zhao

University of Illinois

Urbana-Champaign, USA

wanyu2@illinois.edu

Shengzhong Liu

Shanghai Jiao Tong University

Shanghai, China

shengzhong@sjtu.edu.cn

Charith Mendis

University of Illinois

Urbana-Champaign, USA

charithm@illinois.edu

Tarek Abdelzaher

University of Illinois

Urbana-Champaign, USA

zaher@illinois.edu

ABSTRACT
Temporal graphs, depicting time-evolving node connections through

temporal edges, are extensively utilized in domains where temporal

connection patterns are essential, such as recommender systems,

financial networks, healthcare, and sensor networks. Despite recent

advancements in temporal graph representation learning, perfor-

mance degradation occurs with periodic collections of new tem-

poral edges, owing to their dynamic nature and newly emerging

information. This paper investigates online representation learning

on temporal graphs, aiming for efficient updates of temporal mod-

els to sustain predictive performance during deployment. Unlike

costly retraining or exclusive fine-tuning susceptible to catastrophic

forgetting, our approach aims to distill information from previous

model parameters and adapt it to newly gathered data. To this end,

we propose TGOnline, an adaptive online meta-learning framework,

tackling two key challenges. First, to distill valuable knowledge

from complex temporal parameters, we establish an optimization

objective that determines new parameters, either by leveraging

global ones or by placing greater reliance on new data, where

global parameters are meta-trained across various data collection

periods to enhance temporal generalization. Second, to acceler-

ate the online distillation process, we introduce an edge reduction

mechanism that skips new edges lacking additional information

and a node deduplication mechanism to prevent redundant compu-

tation within training batches on new data. Extensive experiments

on four real-world temporal graphs demonstrate the effectiveness

and efficiency of TGOnline for online representation learning, out-

performing 18 state-of-the-art baselines. Notably, TGOnline not

only outperforms the commonly utilized retraining strategy but

also achieves a significant speedup of 30x.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

SIGIR ’24, July 14–18, 2024, Washington, DC, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0431-4/24/07.

https://doi.org/10.1145/3626772.3657791

CCS CONCEPTS
• Computing methodologies→Machine learning; • Informa-
tion systems→ Information retrieval.

KEYWORDS
Temporal Graph Learning, Efficient Online Learning,Meta-Learning

ACM Reference Format:
Ruijie Wang, Jingyuan Huang, Yutong Zhang, Jinyang Li, Yufeng Wang,

Wanyu Zhao, Shengzhong Liu, Charith Mendis, and Tarek Abdelzaher. 2024.

TGOnline: Enhancing Temporal Graph Learningwith Adaptive OnlineMeta-

Learning. In Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’24), July 14–18,
2024, Washington, DC, USA. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3626772.3657791

1 INTRODUCTION
Temporal graphs, depicting time-varying connections among nodes,

have gained extensive utility across diverse applications. They typ-

ically manifest dynamic characteristics and undergo rapid topol-

ogy changes over time. Real-world instances include interaction

graphs that witness the emergence of new shopping records in E-

commerce [38], follower-followee graphs where new users register

on social media [5, 20, 35], and new events on temporal knowledge

graphs [1, 13, 21, 23, 36, 37, 39], among others. Consequently, vari-

ous Temporal GraphNeural Networks (TGNNs) have been proposed

to capture the temporally evolving information, outperforming the

static models in many tasks on temporal graphs [6, 18, 28, 29, 43].

Nevertheless, the disparity between the commonly used train-

ing/test setting in literature and the real-world deployment scenario

constrains the utility of temporal models. Concretely, most litera-

ture deterministically splits temporal edges by time into training

and testing data. They assume the availability of all training data

before the start of the training process. Once the training procedure

is completed, the deployment involves a fixed model tested on all

testing data. Such a setting, which we refer to as offline setting,
differs from the real-world scenarios, where the deployed model

1659

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626772.3657791
https://doi.org/10.1145/3626772.3657791
https://doi.org/10.1145/3626772.3657791
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626772.3657791&domain=pdf&date_stamp=2024-07-11

SIGIR ’24, July 14–18, 2024, Washington, DC, USA Ruijie Wang et al.

T3

t6

1 2

3 4 5
t7

6 7

T2

t5

1 2

3 4 5

t5

6

T1

t3
1 2

3 4 5
t4

…

Offline Setting:

Online Setting:

…Test

Graph before deployment

1 2

3 4

t0

t1
t0

t2

… Tn

Model
Train1 2t0

1 3t2
2 4t1
3 4t0

1 5t3
4 5t4

1 6t5
2 3t5

2 7t7
6 7t6

Model

Train Test

Model

Update

Model Model

…
1 2t0
1 3t2

2 4t1
3 4t0

1 5t3
4 5t4

1 6t5
2 3t5

2 7t7
6 7t6

Existing node New node Existing edge New edge

Update UpdateTest Test

Collection Periods

Figure 1: Task illustration. Our online setting is to update
the deployed model effectively and efficiently based on peri-
odically collected new temporal edges, ensuring sustained
long-term performance.

can be periodically updated on newly acquired data, which we call

online setting (as shown in Figure 1). Consequently, the observed

superiority in an offline setting may not necessarily yield mean-

ingful comparisons for real-world applications, which more closely

align with online settings.

This paper aims to develop a temporal graph learning technique

that facilitates effective and efficient online model updating strat-

egy for sustainable performance over time, as shown in Figure 1.

Different from the offline setting of temporal graph learning, a

unique challenge in the online stage lies at how to incorporate the

continuous appearance of new information (such as new edges

and nodes over time [11]) and utilize it for model updates. There-

fore, there is a need for an effective and efficient online updating

strategy for temporal models to append valuable information from

both pre-existing and new data. Inspired by the recent success in

knowledge distillation [10], our approach revolves around a key

philosophy: can we distill enduringly valuable knowledge from old
model parameter and adapt it onto freshly gathered data, instead
of directly retraining on all data or solely fine-tuning on new data?
This method ensures a harmonious integration of both old and

new information, preventing the excessive reuse of a substantial

amount of old data and addressing the overfitting issues that may

arise when simply fine-tuning advanced temporal models on new

data. Consequently, it demands a novel training strategy that first

extracts global knowledge for utilization across time steps from

existing data and then seamlessly adapts it to newly gathered infor-

mation under the guide of distillation, ensuring efficient adaptation

and sustainable performance over time.

The fulfillment of the novel training strategy poses challenges

in two aspects: First, considering the model complexity of repre-

senting temporal graphs, how to distill enduringly valuable knowl-

edge from the sophisticated model parameters, especially for newly

emerging nodes/edges, is non-trivial. Second, periodic online up-
dates on new data underscore the importance of efficiency to pre-

vent excessive time and resource consumption. Recent efforts have

studied lightweight model updates on graphs in the online set-

ting [3, 41, 55]. However, these methods primarily focus on up-

dating shallow and static graph models, such as matrix factoriza-

tion [41, 55] and static graph neural networks [3]. Their methods

lack the capability of updating complex temporal models in the

online setting to represent temporal information. Studies in the

continual graph learning field explore a seemingly similar con-

text, which aims to learn new patterns incrementally on evolving

graphs [17, 24, 33, 45, 54]. However, their main objective is to sus-

tain the model performance across old and emerging tasks, such as

predicting a new class in node classification [22, 33] or reasoning

on a new relation on knowledge graphs [17]. The goal falls outside

the scope of our focus, which is centered on enhancing the same

temporal task through the incorporation of newly collected data in

the future, without newly introduced tasks.

We introduce a novel framework for online learning on temporal

graphs, namely TGOnline. This temporal meta-training framework

parameterizes knowledge through attentive sampling and aggre-

gation from temporal neighbors, facilitating the learning of node

temporal patterns. During the online stage, TGOnline fine-tunes

global parameters, acquired from previous time steps, on newly

collected data following each collection period. To promote the

inheritance of enduringly valuable knowledge from old parameters

and mitigate overfitting on potentially different and unseen dis-

tributions in new data, we employ the PAC-Bayes method [25] to

analyze the optimization bound for fine-tuning on new data. This

method acts as an adaptation regularizer, guiding the distillation

process from old parameters and enhancing generalization over

time. Crucially, it allows for the utilization of old parameters, elim-

inating the need for expensive model retraining on old data. To

ensure the encoded global parameters carry enduringly valuable

knowledge, we formulate a set of meta-tasks and meta-train the

global parameters across data collection periods during the offline

stage. This approach eliminates the need for manual configuration

during the online fine-tuning stage, determining which information

to distill and which to ignore. The optimization of the fine-tuning

and meta-training procedures is achieved through a nested bi-level

optimization process, comprising an inner-loop adaptation of global

knowledge on newly collected data and an outer-loop training to

meta-learn the global knowledge. To illustrate the effectiveness

of our proposed training strategy, we implement and integrate it

with an temporal attention module for a real-world temporal link

prediction task. Additionally, to enhance online adaptation effi-

ciency, we introduce an edge reduction mechanism that bypasses

edge samples lacking additional information for fine-tuning. We

also incorporate a node deduplication mechanism proposed in [42]

to eliminate duplicated computations within batches. Empirically,

extensive experiments conducted on four real-world streaming tem-

poral graphs validate the effectiveness of TGOnline. It significantly

outperforms 18 baselines, encompassing both static/temporal graph

learning methods and online graph learning methods, achieving

up to 8.8% relative gains on average in terms of Recall and NDCG.

Moreover, our approach showcases superior efficiency compared

to other temporal baselines, and its efficiency is on par with that of

simple static models.

Overall, our contributions can be summarized as follows:

1660

TGOnline: Enhancing Temporal Graph Learning with Adaptive Online Meta-Learning SIGIR ’24, July 14–18, 2024, Washington, DC, USA

• Problem setting: We study and evaluate temporal graph learn-

ing in a more practical online setting, where users can gain access

to the new data and peodically update models for future tests;

• Novel framework: We propose a temporal meta-learning frame-

work TGOnline with efficiency optimization. It extracts endur-

ingly valuable knowledge across data collection periods during

the offline phase and efficiently fine-tunes the model to encode

newly emerging patterns during the online phase.

• Extensive evaluation: Empirical experiments on four real-world

temporal graphs demonstrate the effectiveness and efficiency of

TGOnline, compared with 18 state-of-the-art baselines.

2 PRELIMINARY
Definition 2.1 (Temporal Graphs). A temporal graph consists

of a set of temporal edges {(𝑢, 𝑣, 𝑡)}, where 𝑢, 𝑣 ∈ V denotes the

source and target nodes, 𝑡 denotes the specific timestamp attached

to each temporal edge.

Existing studies are commonly categorized into two types: temporal

graphs with discrete graph snapshots (DTDGs) [6, 14, 26, 29] and

those with continuous edge timestamps (CTDGs) [18, 28, 43]. In

most real-world graphs, 𝑡 represents a continuous timestamp that

reflects the actual time of each edge occurrence. Therefore, in this

paper, we default to studying continuous temporal graphs (CTDGs),

although the proposedmethod can effortlessly be applied to discrete

temporal graphs by utilizing a discrete 𝑡 .

In the offline setting commonly utilized in literature, the tem-

poral edges are split into training set and testing set, i.e., Dtrain =

{(𝑢, 𝑣, 𝑡) |0 ≤ 𝑡 < 𝑇 } and Dtest = {(𝑢, 𝑣, 𝑡) |𝑡 ≥ 𝑇 }. They test a

non-update model trained onDtrain
on all edges inDtest

. However,

in reality, new edges in Dtest
are collected incrementally, meaning

that we can utilize the newly collected data to update the model pe-

riodically before a newer test. Therefore, we study a more practical

online setting on temporal graphs, where edges in the test setDtest

can be further divided by collection periods, i.e., Dtest =
⋃𝑁

𝑖=1D𝑇𝑖
,

and D𝑇𝑖 = {(𝑢, 𝑣, 𝑡) |𝑇𝑖−1 ≤ 𝑡 < 𝑇𝑖 }. Figure 2a presents the ra-

tio of newly introduced nodes and edges absent in the temporal

graphs before this period. The online learning on temporal graphs

is formalized as follows:

Definition 2.2 (Online Learning on Temporal Graphs). Let Θ
denote the deployed temporal models. On each collection period

𝑇𝑖 , we consider the following two steps during online learning:

Step-1 : Θ𝑇𝑖−1 →
test

D𝑇𝑖 ,

Step-2 :

⋃ (
Dtrain (optional), · · · ,D𝑇𝑖

)
→

update

Θ𝑇𝑖 ,
(1)

and our ultimate goal is to maximize the average performance

tested in each online collection period (Step-1).

3 TGONLINE FRAMEWORK
In this section, we present a novel framework TGOnline to solve

the online learning task on temporal graphs, as shown in Figure 3.

(a) New node emergence. (b) New edge emergence.

Figure 2: Motivating examples. New nodes and edges contin-
uously emerge on four real-world temporal graphs, leading
to significant performance decay.

3.1 Framework Overview
During the online stage, in handling the new data collection D𝑇𝑖

,

our approach is guided by a fundamental principle: TGOnline dis-

tills enduringly valuable knowledge from the global model param-

eter Θ across different collection periods and adapts it onto new

data as Θ𝑇𝑖
for utilization. This stands in contrast to the direct re-

training on the entire dataset

⋃ (
Dtrain, · · · ,D𝑇𝑖

)
or the exclusive

fine-tuning the old Θ𝑇𝑖−1
on the new data D𝑇𝑖

. It guarantees the

utilization of valuable information from both previous and current

data, while simultaneously conserving computational resources.

To this end, TGOnline mainly consists of two design components:

• Distillation-Guided Online Model Updates aims to infer the

updated model parameters Θ𝑇𝑖
based on fine-tuning on new

dataD𝑇𝑖
and distilling knowledge from global model parameters

across collection periods Θ (Section 3.2);

• Temporal Meta Training involves the extraction of global

model parameters Θ from the previous dataset during offline

training, aiming to acquire generalizable information across time

(such as how to encode time, how to aggregate neighbor’s infor-

mation, etc). It engages in a nested bi-level optimization process

on a set of meta-tasks during offline training. Each task is sim-

ulated to predict new edges by based on existing data, and it

mimics the online task’s behavior after the model is deployed

(Section 3.3);

we implement the strategy above on an attentive temporal mod-

ule for representing temporal graphs (Section 3.4), and further

introduce acceleration techniques to improve efficiency of the

Distillation-Guided Online Model Updates (Section 3.5). They in-

clude edge reduction that bypasses new edgeswithout novel informa-

tion and node deduplication that avoids representation computation

on duplicated temporal neighbors.

3.2 Distillation-Guided Online Model Updates
The online update of the deployed model is essentially estimating

the new parameter distribution 𝑝 (Θ𝑇𝑖) given the newly collected

data D𝑇𝑖
based on the prior estimation of the global knowledge

𝑝 (Θ). As pointed out by [54, 55], a unique challenge arises to avoid

the overfitting and catastrophic forgetting issues on the new data.

Otherwise, informative knowledge presented in 𝑝 (Θ) might be

dominated and biased by the new observations. For example, the

representation of old nodes (that are not active in the new period)

1661

SIGIR ’24, July 14–18, 2024, Washington, DC, USA Ruijie Wang et al.

Θ!!"#

ℎ"#$

ℎ"#$
ℎ"#$

ℎ"#$ℎ"(t) ℎ"(t)
𝜶
𝜶

𝜶
𝜶

Θ∗

𝒟!$%&

Θ!$
……

……

Outer-loop
Optimization

Inner-loop
Optimization

Online
Update Test

Support Set Query Set

Distillation Distillation

𝒟!$𝒟!!𝒟!!"&𝒟!!"#𝒟!!"'

Figure 3: Framework overview. TGOnline consists of a
distillation-guided online model updates and a temporal
meta training for learning global temporal parameters.

should be largely preserve and instead of being misled by the new

observations.

One might view the new parameter distribution 𝑝 (Θ𝑇𝑖) as a pos-
terior distribution conditioning on the new data. However, it is hard

to compute the posterior given the prior 𝑝 (Θ) and the observations
D𝑇𝑖

, as it requires us to have already access to the likelihood of

D𝑇𝑖
, which needs to be estimated first. To resolve this, we instead

adopt the PAC-Bayes method [25, 31], which allows one to learn a

parameter posterior that fits the observations without knowing the

distribution of the observations. We propose the following theorem

to provide the optimization objective for the online model updates:

Theorem 3.1 (PAC-Bayes Bound on New Data). Let 𝑝 (Θ) de-
note the prior distribution gained by the global knowledge across tasks,
𝑝 (Θ𝑇𝑖) denote the empirical estimation of new parameters on new
data, | · | denote the set size. For any 𝛿 ∈ (0, 1) and learned prior 𝑝 (Θ),
with probability at least 1− 𝛿 over new dataD𝑇𝑖 , the upper bound of
the online optimization loss to be optimized on the new data is given
by:

LOnline (Θ𝑇𝑖 ,D𝑇𝑖) ≤ L(Θ𝑇𝑖 ,D𝑇𝑖) +

√√
KL(𝑝 (Θ𝑇𝑖) ∥𝑝 (Θ)) + log |D

𝑇𝑖 |
𝛿

2 |D𝑇𝑖 | − 1

,

(2)

whereLOnline (Θ𝑇𝑖 ,D𝑇𝑖) denotes the online loss to updateΘ𝑇𝑖 on data
D𝑇𝑖 , and L(Θ𝑇𝑖 ,D𝑇𝑖) denotes the normal loss function determined
by underlying temporal model.

Remark. Readers can refer to Appendix A.1 for proof. The Eq. (2)

can be interpreted as a combination of empirical loss on the new

data in the new time interval and a distillation regularizer of pa-

rameter distribution with the global parameter distribution in the

form of KL-divergence. The regularizer along the time domain can

guarantee that the online update is trained only on new data but

without overfitting in specific time intervals. Thus, we can improve

the generalization ability of our online updates procedure, which

can be formalized as follows:

Θ𝑇𝑖 ← Θ𝑇𝑖 − 𝜂 𝜕LOnline (Θ𝑇𝑖 ,D𝑇𝑖)
𝜕Θ𝑇𝑖

. (3)

3.3 Temporal Meta Training
In this section, we discuss how to ensure the global parameter Θ
in Eq. 2 encode generalizable knowledge across collection periods

so that it provides correct distillation guideline for online model

updates, as stated in Eq. (3). To achieve, we view extracting the

7

6t3 t3

t2 t1t1
4

1
2

5

3

1 5t1
2 4t2

1 6t1
4 6t3

4 7t3

1 5t1
4 6t3

1 6t1
4 7t3

< , t1 > 1 < , t1 > 5

< , t3 > 4 < , t3 > 6
< , t3 > 4 < , t3 > 7

< , t1 > 1 < , t1 > 6

< , t1 > 1 < , t1 > 5

< , t3 > 6
< , t3 > 4
< , t3 > 7

< , t1 > 6

Edge
Reduction

Node
Deduplication

Attentive Temporal
Module

Acceleration

ℎ!"#$ 2

ℎ%"#$ 3

ℎ&"#$ 5 ℎ'" (t3)

4 7

ℎ(" (t3)

𝜶𝟒,𝟐
𝜶𝟒,𝟑
𝜶𝟒,𝟓

Existing node New node Existing edge New edge

Figure 4: The attentive temporal module and the acceleration
including edge reduction and node deduplication.

global parameters as a meta-task and meta-train them on a set of

tasks simulated during offline stage.

Meta-Learning Setup. We follow model-agnostic meta-learning

(MAML) [4] and formulate a task as adapting global knowledge

on recently collected data (organized as support set) to update the

model for future prediction ((organized as query set). In each task at

the data collection time 𝑇𝑖 , the global parameters Θ can be adapted

on a support set to mimic the online update procedure. A query set

in the future is utilized to measure the quality of global parameters

Θ across time periods. Future prediction serves as an indicator of

how effectively the distillation guide provided by Θ performs.

Concretely, the support set S𝑇𝑖 consists of data from the new

and several recent time periods: S𝑇𝑖 =
⋃

𝑇𝑖−𝑇𝑠<𝑇 ≤𝑇𝑖
D𝑇

, and the

query set Q𝑇𝑖 consists of data from several future time periods:

Q𝑇𝑖 =
⋃

𝑇𝑖<𝑇 ≤𝑇𝑖+𝑇𝑞
D𝑇

, where 𝑇𝑠 and 𝑇𝑞 are hyperparameters to

control the length of time periods to be considered. Each distinct

task, denoted as (S𝑇𝑖 , Q𝑇𝑖), is designed to facilitate model updates

using the support set S𝑇𝑖 , with the ultimate aim of optimizing

performance on the future query set Q𝑇𝑖 .
Bi-Level Optimization. We then introduce how to meta-train

global parameters Θ for better guiding the online model updates.

During the meta-training phase, we simulate a set of tasks by slicing

time windows within the observed time range (0,𝑇) and construct

the corresponding pairs of support and query sets, with the assump-

tion that the support set is the freshly collected data, and the query

set is the future data that awaits model deployment and evaluation.

Thus, we can mimic the real online updates by adapting the global

parameter Θ, on the support set via several fine-tuning steps (in-

ner loop). And the global knowledge can be further improved by

tuning the model on each query set (outer loop), as the quality of

global parameters can be quantitively measured by how well the

model performs on future data. Such a bi-level optimization can be

detailed as follows:

Θ★ ←− argmin

Θ
E𝑇𝑖

[
L(Θ𝑇𝑖 , Q𝑇𝑖)

]
(Outer Loop),

where Θ𝑇𝑖 = Θ𝑇𝑖 − 𝜂 𝜕LOnline (Θ𝑇𝑖 , S𝑇𝑖)
𝜕Θ𝑇𝑖

(Inner Loop),

(4)

where Θ denotes the global parameters across tasks, Θ★
denotes

the optimal global parameters after the meta training, and Θ𝑇𝑖

denotes the updated model parameters at the𝑇𝑖 -th collection period,

1662

TGOnline: Enhancing Temporal Graph Learning with Adaptive Online Meta-Learning SIGIR ’24, July 14–18, 2024, Washington, DC, USA

Algorithm 1: Offline meta-optimization algorithm.

Input: Temporal graph Dtrain = {D0,D1, · · · ,D𝑇 },𝑇𝑠 ,𝑇𝑞
Output: The global parameter for distillation Θ★

1 Construct the support/query sets based on Dtrain
,𝑇𝑠 ,𝑇𝑞 ;

2 while Θ not converge do
3 # Outer loop: for each task at𝑇𝑖 do
4 # Inner loop:

5 Calculate PAC-Bayes bound on S𝑇𝑖 by Eq. (2);

6 Optimize Θ𝑇𝑖 by Eq. (3);

7 Calculate predictive loss on query set L(Θ𝑇𝑖 , Q𝑇𝑖) ;
8 end
9 Calculate loss across tasks E𝑇𝑖

[
L(Θ𝑇𝑖 , Q𝑇𝑖)

]
;

10 Θ←− argminΘ E𝑇𝑖
[
L(Θ𝑇𝑖 , Q𝑇𝑖)

]
;

11 end
12 Θ★ ←− Θ.

Algorithm 2: Online model update algorithm.

Input: New data D𝑇𝑖 , Global model parameter Θ★

Output: Updated parameter Θ𝑇𝑖 for new period

1 Construct S𝑇𝑖 based on recent𝑇𝑠 collections;

2 Perform edge reduction and node deduplication on S𝑇𝑖 ;
3 Calculate PAC-Bayes bound on S𝑇𝑖 by Eq. (2);

4 Optimize Θ𝑇𝑖 by Eq. (3) untill converge.

LOnline (Θ𝑇𝑖 ,S𝑇𝑖) denotes the online loss to updateΘ𝑇𝑖
on dataS𝑇𝑖 ,

and L(Θ𝑇𝑖 ,Q𝑇𝑖) denotes the normal loss function determined by

underlying temporal model.

The bi-level optimization procedure outlined in Eq. (4) emulates

the iterative refinement process of the deployed model in the online

setting. The inner loop optimization mirrors the strategy for swiftly

adapting the model to recently acquired data by distilling knowl-

edge from the fixed Θ. Meanwhile, the outer loop optimization is

geared towards tuning the global parameterΘ shared across various

tasks to the optimal one Θ★
, enhancing its capacity to encapsulate

generalization information from the existing data. During the of-

fline training phase, both the global parameter Θ and the online

updating procedure can be learned via the nestedmeta-optimization

procedure, which is iterated over time. During the online updating

phase, the optimal knowledge Θ★
can be further utilized to provide

distillation guide for fine-tuning on the new data by optimizing the

inner loop. The procedure of offline/online training is summarized

in Algorithm 1 and Algorithm 2 respectively.

3.4 The Attentive Temporal Module
Towards the learning objective above, we introduce the detailed

model parameterized by Θ and the specific loss function for tem-

poral tasks. Figure 4 shows an one-layer attentive module for il-

lustration. The attentive temporal model parameterized by Θ is

designed to measure the plausibility of each temporal edge, which

represents each node 𝑢 into a low-dimensional latent space at each

time 𝑡 : h𝑢 (𝑡) ∈ R𝑑 . On a temporal graph, nodes 𝑢 ∈ V evolve as

they interact with different neighbors over time. Such temporally

interacted nodes are defined as temporal neighbors. Therefore, we

aim to model the temporal pattern of each node 𝑢 by encoding the

changes of temporal neighbors.

Table 1: The dataset statistics.

Dataset #Interaction #User #Item Density Split
Wiki 157,474 8,227 1,000 0.019141 30/2/8

Reddit 672,447 10,000 984 0.068338 30/2/8

Twitter 134,291 8,780 1,333 0.011474 30/2/8

Yelp 1,266,728 63,228 59,375 0.000337 30/2/8

Towards this goal, this module first samples temporal neighbors

N𝑢 (𝑡) = (𝑣𝑖 , 𝑡𝑖) from the existing temporal graph for each node

𝑢 ∈ V .N𝑢 (𝑡) consists of a set of the most recently interacted nodes

no later than time 𝑡 . Then it attentively aggregates information from

the temporal neighbors. Specifically, given the temporal neighbor

N𝑢 (𝑡), we represent the entity 𝑢 as h𝑢 (𝑡) at time 𝑡 :

h𝑙𝑢 (𝑡) = ReLU
©­«

∑︁
(𝑣𝑖 ,𝑡𝑖) ∈N𝑢 (𝑡)

𝛼𝑙
𝑢,𝑣𝑖

(
h𝑙−1𝑣𝑖
(𝑡𝑖)W

)ª®¬ , (5)

𝛼𝑙𝑢,𝑣𝑖 =
exp(𝑞𝑙𝑢,𝑣𝑖)∑

(𝑣𝑘 ,𝑡𝑘) ∈N𝑢 (𝑡)
exp(𝑞𝑙𝑢,𝑣𝑘)

,

𝑞𝑙𝑢,𝑣𝑘 = a
(
h𝑙−1𝑢 ∥h𝑙−1𝑣𝑘

∥𝜅 (𝑡 − 𝑡𝑘)
)
,

(6)

where 𝑞𝑙𝑢,𝑣𝑘 measures pairwise importance by considering the node

features of 𝑢 and each 𝑣𝑘 , and time feature, a ∈ R3𝑑 is the shared

parameter in the attention mechanism. Following [43], we adopt

random Fourier features as time encoding 𝜅 (Δ𝑡) to reflect the time

difference. Similarly, the edge feature, if available, can be concate-

nated together in the pairwise importance measurement 𝑞𝑙𝑢,𝑣𝑘 .

To measure the probability of each possible temporal edge, we

utilize inner product [15] as the score function 𝑝 = 𝜎 ((h𝑡𝑢 , h𝑡𝑣)),
where 𝜎 (·) denotes the Sigmoid activation function. To optimize

the parameter Θ for a task on either the support or query set, we

minimize the loss for each temporal edge to train the model Θ.
Taking the support set S𝑇𝑖 as an example:

L(Θ, S𝑇𝑖) = E [−𝑦𝑖 log(𝑝𝑖) − (1 − 𝑦𝑖) log(1 − 𝑝𝑖)] , (7)

where 𝑦𝑖 = 1 if the edge (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) ∈ S𝑇𝑖 , and 𝑦𝑖 = 0 otherwise.

3.5 Acceleration for Online Update
Edge Reduction. We analyze the time complexity of the inner

loop optimization, which is used for online model updating. Let 𝑏

denote the number of temporal neighbors for each node, 𝑙 denote

the number of attention layers, 𝑁 denote the negative sampling

factor, and the overall complexity is O
(
𝑙𝑏2𝑁 |S𝑇𝑖 |

)
, which grows

linearly with |S𝑇𝑖 |. To further expedite the online update process,

we explore methods to diminish the size of |S𝑇𝑖 | using the edge

reduction technique, all while maintaining its efficacy. We propose

a straightforward approach that involves bypassing edges where

the two nodes are already 1- or 2-hop neighbors in recent time steps.

This strategy is based on the premise that such edges might not

introduce any supplementary information, as the existing historical

data and PAC-Bayes bound have already covered their contribution.

For example, we skip edge (2, 4, 𝑡2) in Figure 4.

Node Deduplication. The new edges are grouped into batches

for the distillation-guided online model updates. In the underlying

attentive temporal module, each edge is separated into source and

1663

SIGIR ’24, July 14–18, 2024, Washington, DC, USA Ruijie Wang et al.

Table 2: The overall performance of baseline models and TGOnline. Average results of 5 independent runs are reported. For
baselines tailored for offline training scenarios, we utilize both retraining and fine-tuning techniques, and retaining the
approach with better performance.

Dataset Wiki Reddit Twitter Yelp
Performance Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

MF 0.662 ± 0.013 0.319 ± 0.005 0.750 ± 0.017 0.522 ± 0.004 0.172 ± 0.007 0.099 ± 0.002 0.183 ± 0.002 0.125 ± 0.002

GAE 0.481± 0.018 0.221 ± 0.012 0.708 ± 0.013 0.481 ± 0.017 0.600 ± 0.000 0.307 ± 0.001 0.213 ± 0.001 0.091 ± 0.000

GAT 0.540 ± 0.007 0.328 ± 0.012 0.706 ± 0.007 0.490 ± 0.007 0.340 ± 0.009 0.154 ± 0.023 0.091 ± 0.002 0.038 ± 0.001

GIN 0.409 ± 0.016 0.193 ± 0.006 0.568 ± 0.055 0.345 ± 0.050 0.519 ± 0.009 0.287 ± 0.008 0.220 ± 0.001 0.093 ± 0.001

LightGCN 0.698 ± 0.003 0.503 ± 0.003 0.741 ± 0.001 0.561 ± 0.003 0.568 ± 0.001 0.291 ± 0.001 0.224 ± 0.003 0.092 ± 0.001

GRU4Rec 0.080 ± 0.001 0.046 ± 0.001 0.048 ± 0.001 0.037 ± 0.000 0.056 ± 0.000 0.030 ± 0.000 0.026 ± 0.000 0.010 ± 0.000

JODIE 0.239 ± 0.015 0.198 ± 0.024 0.211 ± 0.011 0.183 ± 0.025 0.139 ± 0.015 0.098 ± 0.007 OOM OOM

EGCN-H/O 0.089 ± 0.002 0.039 ± 0.001 0.471 ± 0.007 0.285 ± 0.004 0.250 ± 0.010 0.124 ± 0.007 OOM OOM

VGRNN 0.048 ± 0.030 0.025 ± 0.016 0.389 ± 0.073 0.193± 0.036 0.389 ± 0.073 0.193 ± 0.036 0.165 ± 0.014 0.071 ± 0.006

Euler 0.040 ± 0.010 0.018 ± 0.005 0.484 ± 0.032 0.242 ± 0.017 0.600 ± 0.003 0.334 ± 0.002 0.070 ± 0.021 0.028 ± 0.010

DySAT 0.442 ± 0.010 0.224 ± 0.002 0.668 ± 0.002 0.426 ± 0.007 0.410 ± 0.011 0.176 ± 0.011 0.020 ± 0.000 0.007 ± 0.000

DIDA 0.601 ± 0.007 0.510 ± 0.009 0.617 ± 0.015 0.392 ± 0.025 0.551 ± 0.016 0.391 ± 0.012 0.242 ± 0.002 0.136 ± 0.002
TGAT 0.664 ± 0.010 0.529 ± 0.008 0.744 ± 0.011 0.618 ± 0.017 0.604 ± 0.010 0.231 ± 0.006 0.215 ± 0.012 0.121 ± 0.013
SPMF 0.585 ± 0.007 0.358 ± 0.006 0.741 ± 0.001 0.507 ± 0.002 0.022 ± 0.003 0.007 ± 0.001 0.166 ± 0.001 0.100 ± 0.001

SML 0.374 ± 0.023 0.190 ± 0.017 0.704 ± 0.013 0.455 ± 0.016 0.500 ± 0.071 0.250 ± 0.049 0.177 ± 0.010 0.111 ± 0.003

IGC 0.685 ± 0.014 0.526 ± 0.011 0.754 ± 0.011 0.589 ± 0.010 0.577 ± 0.002 0.335 ± 0.005 0.248 ± 0.008 0.132 ± 0.006

ROLAND 0.681 ± 0.015 0.536 ± 0.028 0.757 ± 0.009 0.592 ± 0.019 0.561 ± 0.015 0.324 ± 0.021 0.231 ± 0.012 0.129 ± 0.021
MetaDyGNN 0.667 ± 0.030 0.510 ± 0.018 0.752 ± 0.023 0.610 ± 0.031 0.581 ± 0.030 0.350 ± 0.019 0.251 ± 0.024 0.129 ± 0.011

𝑇𝐺𝑂𝑛𝑙𝑖𝑛𝑒 0.716 ± 0.017 0.575 ± 0.005 0.807 ± 0.006 0.645 ± 0.010 0.644 ± 0.002 0.475 ± 0.002 0.272 ± 0.005 0.157 ± 0.002
Gains (%) 2.6 8.7 7.0 4.4 5.9 8.0 9.8 15.4

target nodes using the same timestamp, creating node-timestamp

pairs. Since new edges can connect the same nodes at the same

time, leading to significant duplication of such pairs, such as (1, 𝑡1)
and (4, 𝑡3) in Figure 4, we employ a node deduplication technique

introduced in [42] to eliminate redundant computations.

4 EXPERIMENTS
4.1 Datasets
We collect four real-world temporal graphs as follows:

• Wiki [19]: The dataset is a public collection of edits made

by users who contributed at least 5 edits to the 1,000 most

edited Wikipedia pages within one month. The temporal edges

represent timestamped historical edits.

• Reddit [19]: The public Reddit post dataset comprises one

month of user posts from the 1,000 most active subreddits

and the 10,000 most active users. The temporal edges are the

timestamped posting requests.

• Twitter: The dataset collected from Twitter constitutes user-

hashtag interactions, whose nodes include users and hashtags,

and whose links represent who-post-what interaction records.

To maintain data quality, we excluded the top 10 users and top

20 hashtags with abnormal activation levels and users/hashtags

with fewer than 15 occurrences, considered invalid for analysis.

• Yelp 1
: The dataset is collected from the Yelp Challenge 2018

and consists of user-business interactions with ratings of 4 and

5 points after 2010. Inactive users with fewer than 8 interactions

are excluded.

For each dataset, we sort all interactions in chronological order

and split them into 40 timesteps, each containing an equal number

of interactions. We further split 40 periods into 30/2/8 for offline
training/online validating/online testing phases. To be concrete:

1
https://www.yelp.com/dataset/

• Offline training phase is utilized to train both baselines as

well as TGOnline before deployment. The data in this phase

are assumed to be given at once;

• Online phase is the phase where we utilize the online data to
first test the deployed models and then to update the models.

The average performance in the first 2 periods is selected as

an indicator to choose important hyperparameters for the on-

line testing phase, and the average testing performance on the

remaining 8 periods is reported.

4.2 Experimental Setup
4.2.1 Baselines. We compare 18 state-of-the-art baselines from

three related areas. Due to page limitations, we refrain from pro-

viding a detailed description for each baseline. We report baseline

setup details in Appendix A.2.

• Static graph learning methods:Matrix Factorization (MF) [27],
GAE [15], GAT [32], GIN [44], LightGCN [8];

• Temporal graph learning methods: GRU4Rec [9], JODIE [18],

EGCN-H/O [26],VGRNN [6],Euler [14],DySAT [29],DIDA [56],

TGAT [43];

• Online graph learning methods: SPMF [41], SML [55], IGC [3],

ROLAND [53], MetaDyGNN [51].

4.2.2 Evaluation Protocol and Metrics. We evaluate online link

prediction tasks in a retrieval setting. For each link collected during

the online phase, given the observed user nodes, we compare the

predicted top-𝐾 ranking list of missing items with the ground-truth

item in each testing time step.We adopt two widely-used evaluation

protocols: Recall@𝐾 and NDCG@𝐾 , where 𝐾 = {5, 10, 20}.

4.2.3 Setup and Implementation. All baselines and TGOnline are

first evaluated and then updated on the new interactions in each

period during the online validating/online testing phases. For base-

lines tailored for offline training scenarios, we utilize both retraining

1664

https://www.yelp.com/dataset/

TGOnline: Enhancing Temporal Graph Learning with Adaptive Online Meta-Learning SIGIR ’24, July 14–18, 2024, Washington, DC, USA

Recall@5
Recall@10

NDCG@5
NDCG@10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Wiki

Recall@5
Recall@10

NDCG@5
NDCG@10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Reddit

Recall@5
Recall@10

NDCG@5
NDCG@10

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Twitter

Recall@5
Recall@10

NDCG@5
NDCG@10

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Yelp

MF LightGCN VGAE DySAT TGAT SML IGC TGOnline

Figure 5: Detailed Recall@K and NDCG@K when 𝐾 = {5, 10}. The average results of 5 independent runs are reported. TGOnline
achieves the best performance, with 8.8% relative gains over the second-best results on average.

and fine-tuning techniques and retain the approach with better per-

formance. During the evaluation, we tune hyperparameters based

on Recall@20 on the online validating phase, and report the aver-

age performance on the remaining periods of the online testing

phase. We train all baseline models and TGOnline on the same

GPUs (GeForce RTX 3090) and CPUs (AMD Ryzen Threadripper

3970X 32-Core Processor).

To construct the task set for the meta-learning formulation, we

set temporal edges in 𝐾𝑠 = 𝐾𝑞 = 2, meaning we consider 2 con-

secutive historical periods as support and query se. Such a choice

enable us to i) consider sufficient historical information to update

the model online; ii) utilize relatively long-term performance as in-

stant feedback for learning the global parameters in the outer-loop

optimization; iii) maintain acceptable efficiency. Next, we report

the choices of hyperparameters. For model training, we set the

maximum number of epochs as 200 for offline training. We keep

the dimension of all embeddings as 128. For the sake of efficiency,

we set the neighbor budget 𝑏 of temporal neighbor sampler as

16, and employ 2 neighborhood aggregation layers in temporal

encoder. We perform 20 steps of gradient descent for inner loop

optimization. We mainly tune inner/outer loop learning rate 𝜂 and

𝛽 in range {0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001}. For
Wiki, Reddit and Twitter, we set 𝜂 = 𝛽 = 0.0001. For Yelp, we set

𝜂 = 0.0005, and 𝛽 = 0.0001. We report other baseline setup details

in Appendix A.2.

4.3 Main Results
Overall Performance. We first discuss the main results on four

datasets. Table 2 shows the overall evaluation in terms of Recall@20

and NDCG@20, and Figure 5 shows the comparison with several

strong baselines with 𝐾 = {5, 10}. TGOnline consistently outper-

forms all baseline models, exhibiting an average relative improve-

ment of 8.8%. Intriguingly, certain prominent dynamic models, like

GRU4Rec, EGCN, VGRNN, and Euler, demonstrate unexpectedly

suboptimal results, even underperforming the static baseline mod-

els. We hypothesize that it is caused by too long a graph sequence,

where these dynamic models struggle to effectively extract valu-

able knowledge from the historical data that are still useful on new

data patterns. While TGAT and IGC (an online algorithm based

on LightGCN) generally outperform other baselines, their results

still fall short of our approach. This deficiency could be attributed

Q1 Q2 Q3 Q4
0.3

0.4

0.5

0.6

0.7

0.8

Re
ca

ll@
20

LightGCN
TGAT
IGC
TGOnline

(a) Wiki.

Q1 Q2 Q3 Q4

0.5

0.6

0.7

0.8

0.9

Re
ca

ll@
20

LightGCN
TGAT
IGC
TGOnline

(b) Reddit.

Figure 6: Performance across node quartiles on degree level.
(Q1: lowest, Q4: highest). TGOnline has higher gains for nodes
with sparse connections (quartiles Q1-Q3).

to the absence of a tailored online updating strategy specifically

for the temporal module. The superior performance of TGOnline

demonstrates the efficacy of the proposed temporal meta-training

strategy for online link prediction.

4.4 Performance of Diverse Node Groups
The key indicator to evaluate the online algorithm is how well the

model performs on newly emerging nodes with a few edges, as

new nodes continuously join the graph in the real world. We divide

nodes into quartiles by their degree levels, which is the number

of participating edges per node. Figure 6 shows the performance

distribution for each node group, from Q1 (lowest degree level) to

Q4 (highest degree level), compared with three strong baselines.

The major improvement of TGOnline comes from the nodes with

few links (Q1, Q2), as it can borrow useful information from the

high-resource nodes to the low-resource nodes via the extraction

of global knowledge.

4.5 Ablation Study
We conduct the following ablation studies to evaluate performance

improvements brought by the temporal meta-training strategy 1)

Retraining directly retrains our attentive temporal model on all

data; 2) Fine-tuning fine-tunes our attentive temporal model only

on new data; 3) TGOnline w/o PAC-Bayes Bound removes the

PAC-Bayes bound in the inner loop optimization; 4) TGOnline
w/o Edge Reduction update the global model on all edges in the

new data without skipping any sample; 5) TGOnline w/ Random

1665

SIGIR ’24, July 14–18, 2024, Washington, DC, USA Ruijie Wang et al.

Table 3: Ablation studies measured by Recall@20 and
NDCG@20. Online update time is also reported.

Dataset Wiki Reddit
Metrics Recall NDCG Recall NDCG

Retraining 0.669 0.540 0.744 0.628

Fine-tuning 0.657 0.531 0.730 0.611

TGOnline 0.716 0.575 0.807 0.645

w/o PAC-Bayes 0.701 0.569 0.793 0.623

w/o Edge Reduction 0.722 0.589 0.820 0.660
w/ Random Reduction 0.690 0.557 0.770 0.629

Reduction reduce the same amount of training samples during the

online phase by random selection.

Table 3 shows the evaluation results. Both retraining and fine-

tuning approaches for the attentive temporal model fail to outper-

form TGOnline. The retraining strategy might be dominated by

the existing data, leading to an excessive focus on historical pat-

terns and potentially overlooking new patterns. Conversely, the

fine-tuning strategy can easily result in overfitting on the new data.

Upon excluding the PAC-Bayes bound from the inner loop objective,

we observe a decline in performance, underscoring the bound’s

role in fortifying the stability and generalizability of the online

updating procedure. We also delve into the impact of the simple

edge reduction heuristic. While TGOnline without this heuristic

yields a marginal performance boost, it prolongs online training

time by up to 2× times. Substituting the heuristic with a random

strategy significantly compromises performance. These outcomes

underscore the value of our straightforward yet effective edge re-

duction algorithm, which accelerates the online update process

without inflicting significant performance degradation.

4.6 Efficiency Analysis
Table 3 also reports the online updating times for each variant,

quantifying the time taken per online epoch in seconds. Notably,

TGOnline accomplishes swifter online updates compared to simple

fine-tuning. This is due to the edge reduction algorithm employed

by TGOnline, which effectively reduces the volume of training

samples during the online phase in contrast to the standard fine-

tuning approach. The efficacy of the edge reduction heuristic is

further highlighted when contrasted with the variant that omits it.

This heuristic effectively halves the online running time without

introducing a notable drop in performance. This is because the

omitted edges fail to contribute substantially new information for

model training, and their contribution is already covered in the

global knowledge regulated by the PAC-Bayes bound.

We report the online updating efficiency comparison of repre-

sentative baselines in Table 4. Compared with dynamic models

(DySAT, TGAT) and online updating models (IGC, MetaDyGNN,

ROLAND), TGOnline achieves the best efficiecy. Notably, TGOnline

achieves compatible efficiency with simple static models (VGAE

and LightGCN) and achives better performance. This is because our

meta-training algorithm updates the complex model parameters

efficiently without expensive retraining on full dataset. And the

proposed edge reduction and node deduplication further accerlate

the online updating process.

Table 4: Efficiency comparison on the Reddit dataset.

Baselines VGAE LightGCN DySAT TGAT IGC MetaDyGNN ROLAND Ours
Recall .717 .741 .668 .744 .754 .752 .757 .807
Time (s) 8.1 3.6 73.1 1490.3 18.1 1627.8 70.3 10.1

5 RELATEDWORK
Temporal Graph Learning. Temporal graph learning has been

attracting numerous research interests in the community [9, 18, 26,

28, 29, 43]. Recently, temporal graph neural networks (TGNNs) that

based on Graph Neural Networks (GNNs) [7, 16, 30, 34, 46–50] have

achieved the state-of-the-art performance, which is divided into two

categories: discrete methods that organize the temporal graphs as dis-

crete snapshot sequences (CTDGs) and utilize sequential modeling

including RNNs (e.g., EGCN [26], Euler [14], VGRNN [6]) and trans-

formers (e.g., DySAT [29]) to learn the evolution of node represen-

tations, continuous methods that operates on temporal graphs with

continuous edge timestamps (CTDGs) (e.g., TGAT [43], TGN [28]).

Ours is designed to handle CTDGs. However, despite the numerous

existing efforts, how to effectively and efficiently update temporal

graph models on the online setting still remains relatively unex-

plored. Recent efforts have studied lightweight model updates on

static graphs in the online setting [3, 41, 55]. SPMF [41] skillfully

sampled for retraining to represent long-term preference and rank

the items by an optimization framework. SML [55] introduces a

meta-learning approach that captures the long and short-term em-

beddings, saving time and memory. IGC [3] re-activates the previ-

ous nodes and updates only the new-neighbor-related parameters

to speed up the retrain speed. However, these methods primarily

focus on updating shallow and static models, and their applica-

bility to addressing the challenges of modeling temporal graphs

remains limited. Studies in the continual graph learning field ex-

plore a seemingly similar context, which aims to learn new pat-

terns incrementally on evolving graphs [17, 24, 33, 45, 54]. However,

their main objective is to sustain the model performance across

old and emerging tasks, such as predicting a new class in node

classification [22, 33] or reasoning on a new relation on knowledge

graphs [17]. It falls outside the scope of our focus which is centered

on enhancing the same temporal task through the incorporation of

newly collected data.

Meta-learning on Graphs. Given a set of tasks, meta-learning

aims to learn general knowledge that is shared across all tasks and

can be efficiently adapted to new tasks [52]. In this paper, we for-

mulate the online learning task as a meta-learning problem and

utilize model-agnostic meta-learning (MAML) [4] to address the

challenges. Recently, meta-learning was integrated with graph neu-

ral network models for few-shot predictions on graphs, e.g., Meta-

Graph [2], G-Meta [12], MetaDyGNN [51], and MetaTKGR [40].

However, most works are designed for few-shot learning task on

static/temproal graphs. The adaptation of the meta-learning ap-

proach for temporal graph learning in the online setting remains

underexplored.

6 CONCLUSION
We studied a realistic online learning problem on temporal graphs,

which aims to effectively and efficiently update the deployed model

on the newly collected graph data. To this end, we proposed a novel

1666

TGOnline: Enhancing Temporal Graph Learning with Adaptive Online Meta-Learning SIGIR ’24, July 14–18, 2024, Washington, DC, USA

temporal meta-training framework TGOnline. It meta-learns the

global parameters of sampling and aggregating temporal neighbors,

which can be adapted quickly to new data for future prediction

via distillation-guided fine-tuning steps. Such bi-level optimization

is nested and alternated during the offline training to mimic the

online scenario. During the online stage, we further theoretically

analyzed and utilized a PAC-Bayes bound to enable distillation from

global parameters, which are further accelerated by the proposed

edge reduction and node deduplication techniques. We empirically

validated the effectiveness of TGOnline on four real-world temporal

knowledge graphs, on which the proposed framework significantly

outperforms an extensive set of SOTA baselines.

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers for

their valuable comments and suggestions. Research reported in this

paper was sponsored in part by DARPA award HR001121C0165,

DARPA award HR00112290105, DoD Basic Research Office award

HQ00342110002, the Army Research Laboratory under Cooperative

Agreement W911NF-17-20196, and NSF award CCF-2316233. It was

also supported in part by ACE, one of the seven centers in JUMP 2.0,

a Semiconductor Research Corporation (SRC) program sponsored

by DARPA. Shengzhong Liu is supported by the National Natural

Science Foundation of China (Grant No. 62332014, 62332013).

A APPENDIX
A.1 Proof of Theorem 3.1

Proof. First, for convenience of discussion, we define the dif-

ference between the real online updating loss and the predictive

loss on the new data D𝑇𝑖
as follows:

ΔL = LOnline (Θ𝑇𝑖 ,D𝑇𝑖) − L(Θ𝑇𝑖 ,D𝑇𝑖) . (8)

We are interested in the relation of ΔL and the distribution

discrenpency between the global parameter 𝑝 (Θ) and the desired

updated 𝑝 (Θ𝑇𝑖). Towards this goal, following [25, 31, 40], we con-
struct the following function:

𝑓 (D𝑇𝑖) = 2(|D𝑇𝑖 | − 1)EΘ𝑇𝑖 ∼𝑝 (Θ𝑇𝑖)
[
(ΔL)2

]
−KL(𝑝 (Θ𝑇𝑖) ∥𝑝 (Θ)) . (9)

Next, using Markov’s inequality, we have:

𝑝 (𝑓 (D𝑇𝑖) > 𝜖) = 𝑝 (𝑒 𝑓 (D𝑇𝑖) > 𝑒𝜖) ≤
E𝑡

[
𝑒 𝑓 (D

𝑇𝑖)
]

𝑒𝜖
, (10)

where E𝑡

[
𝑒 𝑓 (D

𝑇𝑖)
]
denotes the expectation of 𝑒 𝑓 (D

𝑇𝑖)
w.r.t. new

data collection period. To upper bound the expectation, we have

the following inequality:

𝑓 (D𝑇𝑖) = 2(|D𝑇𝑖 | − 1)EΘ𝑇𝑖 ∼𝑝 (Θ𝑇𝑖)
[
(ΔL)2

]
− KL(𝑝 (Θ𝑇𝑖) ∥𝑝 (Θ))

= EΘ𝑇𝑖 ∼𝑝 (Θ𝑇𝑖)

[
log

(
𝑒2(|D

𝑇𝑖 |−1) (ΔL)2 𝑝 (Θ)
𝑝 (Θ𝑇𝑖)

)]

≤ log

(
EΘ𝑇𝑖 ∼𝑝 (Θ𝑇𝑖)

[
𝑒2(|D

𝑇𝑖 |−1) (ΔL)2 𝑝 (Θ)
𝑝 (Θ𝑇𝑖)

])

= log

(
EΘ𝑇𝐼 ∼𝑝 (Θ)

[
𝑒2(|D

𝑇𝑖 |−1) (ΔL)2
])

,

(11)

where Jensen’s inequality is utilized to derive the inequality. There-

fore, we have

E𝑡

[
𝑒 𝑓 (D

𝑇𝑖)
]
≤ EΘ𝑇𝑖 ∼𝑝 (Θ)E𝑡

[
𝑒2(|D

𝑇𝑖 |−1) (ΔL)2
]
, (12)

the order of expectations is swapped as 𝑝 (Θ) is independent toD𝑇𝑖
.

Next, based on Hoeffding’s inequality, we have:

𝑝 (ΔL > 𝜖) ≤ 𝑒−2|D
𝑇𝑖 |𝜖2 , (13)

and we can further derive the following inequality:

E𝑡

[
𝑒 𝑓 (D

𝑇𝑖)
]
≤ EΘ𝑇𝑖 ∼𝑝 (Θ)E𝑡

[
𝑒2(|D

𝑇𝑖 |−1) (ΔL)2
]
≤ |D𝑇𝑖 |. (14)

Combining Eq. 14 and Eq. 10, we get:

𝑝 (𝑓 (D𝑇𝑖) > 𝜖) ≤ |D
𝑇𝑖 |
𝑒𝜖

= 𝛿, (15)

where 𝛿 = |D𝑇𝑖 |/𝑒𝜖 . Therefore, with probability of at least 1 − 𝛿 ,
we have that for all Θ𝑡

:

𝑓 (D𝑇𝑖) = 2(|D𝑇𝑖 | − 1)EΘ𝑇𝑖 ∼𝑝 (Θ𝑇𝑖)
[
(ΔL)2

]
− KL(𝑝 (Θ𝑇𝑖) ∥𝑝 (Θ))

≤ log |D𝑇𝑖 |
𝛿

.

(16)

Further, by utilizing Jensen’s inequality again, we have:(
EΘ𝑇𝑖 ∼𝑝 (Θ𝑇𝑖) [(ΔL)]

)
2

≤ EΘ𝑇𝑖 ∼𝑝 (Θ𝑇𝑖)
[
(ΔL)2

]
≤
KL(𝑝 (Θ𝑇𝑖) ∥𝑝 (Θ)) + log |D𝑇𝑖 |

𝛿

2(|D𝑇𝑖 | − 1

.

(17)

Substituting the definition of ΔL in Eq. 17, we prove the PAC-

Bayes Bound on the newly collected data with unknown distribu-

tion. □

A.2 Baseline Setup
We compare retraining all the previous data and fine-tuning the

new snapshot for MF method when testing online in the last ten

periods, and preserve the strategy with better performance. As for

SPMF, SML, and IGC, we perform online update on the last 10 time

steps. For GRU4Rec and JODIE, we follow the similar procedure.

To implement full retraining strategy, we concatenate all action

sequences from all time periods together for model training. And

we only consider the sequence happened within the last time pe-

riod to train model, as the fine-tuning implementation. We tuned

the learning rate in {1, 0.5, 0.1, 0.05, 0.01, 5𝑒 − 3, 1𝑒 − 3, ..., 1𝑒 − 8}.
Particularly for SML, we tuned transfer learning rate in {1𝑒 −1, 1𝑒 −
2, 1𝑒 − 3, 1𝑒 − 4, 1𝑒 − 5, 1𝑒 − 6}.

For other baselines, we use the first 30 periods for offline train-

ing. When evaluating each online period, all baselines are trained

using both fine-tuning strategy on the last snapshot and full-retrain

strategy on all the previous ones. Specifically for static baselines,

we merge all historical time steps as one graph via or operation to

implement the full retraining strategy. Notably, several baselines

easily encounter out-of-memory (OOM) issue on large graphs, e.g.,
DySAT, EGCN, Euler, JODIE, etc. We use the following ways to

try to deal with the OOM issue: 1. we adopt edge sampling tech-

nique instead of full graph training to reduce the training samples

and graph size; 2. we devide the time steps into groups and only

consider the temporal dependency within each group to save GPU

memory. Each group contains 𝐾 = {3, 10} consecutive time steps.

1667

SIGIR ’24, July 14–18, 2024, Washington, DC, USA Ruijie Wang et al.

REFERENCES
[1] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. Translating embeddings for modeling multi-relational data. In

Advances in Neural Information Processing Systems, 2013.
[2] Avishek Joey Bose, Ankit Jain, Piero Molino, and William L. Hamilton. Meta-

graph: Few shot link prediction via meta learning. CoRR, 2019.
[3] Sihao Ding, Fuli Feng, Xiangnan He, Yong Liao, Jun Shi, and Yongdong Zhang.

Causal incremental graph convolution for recommender system retraining. IEEE
Transactions on Neural Networks and Learning Systems, 2022.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning

for fast adaptation of deep networks. In Proceedings of the 34th International
Conference on Machine Learning, 2017.

[5] Derek Greene, Donal Doyle, and Padraig Cunningham. Tracking the evolution

of communities in dynamic social networks. In 2010 international conference on
advances in social networks analysis and mining, pages 176–183. IEEE, 2010.

[6] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield,

Mingyuan Zhou, and Xiaoning Qian. Variational graph recurrent neural networks.

In Advances in Neural Information Processing Systems, pages 10700–10710, 2019.
[7] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation

learning on large graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, page 1025–1035, 2017.

[8] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, pages 639–648, 2020.

[9] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

Session-based recommendations with recurrent neural networks. arXiv preprint
arXiv:1511.06939, 2015.

[10] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a

neural network, 2015.

[11] Petter Holme and Jari Saramäki. Temporal networks. Physics Reports, 519(3):97–
125, 2012.

[12] Kexin Huang and Marinka Zitnik. Graph meta learning via local subgraphs.

NeurIPS, 2020.
[13] Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. Recurrent event network:

Autoregressive structure inference over temporal knowledge graphs. In EMNLP,
2020.

[14] Isaiah J King and H Howie Huang. Euler: Detecting network lateral movement

via scalable temporal link prediction. ACM Transactions on Privacy and Security,
2022.

[15] Thomas N Kipf and MaxWelling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[16] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph

Convolutional Networks. In ICLR ’17, 2017.
[17] Xiaoyu Kou, Yankai Lin, Shaobo Liu, Peng Li, Jie Zhou, and Yan Zhang.

Disentangle-based continual graph representation learning. arXiv preprint
arXiv:2010.02565, 2020.

[18] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding

trajectory in temporal interaction networks. In KDD ’19, 2019.
[19] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding

trajectory in temporal interaction networks. In Proceedings of the 25th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,

2019.

[20] Jinning Li, Huajie Shao, Dachun Sun, Ruijie Wang, Yuchen Yan, Jinyang Li,

Shengzhong Liu, Hanghang Tong, and Tarek F. Abdelzaher. Unsupervised be-

lief representation learning in polarized networks with information-theoretic

variational graph auto-encoders. CoRR, 2021.
[21] Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen,

Yuanzhuo Wang, and Xueqi Cheng. Temporal knowledge graph reasoning based

on evolutional representation learning. In SIGIR, 2021.
[22] Huihui Liu, Yiding Yang, and XinchaoWang. Overcoming catastrophic forgetting

in graph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 8653–8661, 2021.

[23] Lihui Liu, Boxin Du, Jiejun Xu, Yinglong Xia, and Hanghang Tong. Joint knowl-

edge graph completion and question answering. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, page

1098–1108, New York, NY, USA, 2022. Association for Computing Machinery.

[24] H. Lium, Y. Yang, and X Wang. Overcoming catastrophic forgetting in graph

neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 8653–8661, 2021.

[25] David A. McAllester. Pac-bayesian model averaging. In Proceedings of the Twelfth
Annual Conference on Computational Learning Theory, COLT ’99, pages 164–170.

ACM, 1999.

[26] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,

Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn:

Evolving graph convolutional networks for dynamic graphs. In Proceedings of
the AAAI conference on artificial intelligence, volume 34, pages 5363–5370, 2020.

[27] Steffen Rendle and Lars Schmidt-Thieme. Online-updating regularized kernel

matrix factorization models for large-scale recommender systems. In Proceedings
of the 2008 ACM conference on Recommender systems, pages 251–258, 2008.

[28] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico

Monti, and Michael Bronstein. Temporal graph networks for deep learning on

dynamic graphs. In ICML 2020 Workshop on Graph Representation Learning, 2020.
[29] Aravind Sankar, YanhongWu, Liang Gou,Wei Zhang, and Hao Yang. Dysat: Deep

neural representation learning on dynamic graphs via self-attention networks. In

Proceedings of the 13th International Conference on Web Search and Data Mining,
pages 519–527, 2020.

[30] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,

Ivan Titov, and Max Welling. Modeling relational data with graph convolutional

networks. In ESWC, pages 593–607, 2017.
[31] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning -

From Theory to Algorithms. Cambridge University Press, 2014.

[32] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[33] Chen Wang, Yuheng Qiu, Dasong Gao, and Sebastian Scherer. Lifelong graph

learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 13719–13728, 2022.

[34] Haiwen Wang, Ruijie Wang, Chuan Wen, Shuhao Li, Yuting Jia, Weinan Zhang,

and Xinbing Wang. Author name disambiguation on heterogeneous information

network with adversarial representation learning. In AAAI ’20, 2020.
[35] Ruijie Wang, Zijie Huang, Shengzhong Liu, Huajie Shao, Dongxin Liu, Jinyang

Li, Tianshi Wang, Dachun Sun, Shuochao Yao, and Tarek Abdelzaher. Dydiff-

vae: A dynamic variational framework for information diffusion prediction. In

Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’21, 2021.

[36] Ruijie Wang, Baoyu Li, Yichen Lu, Dachun Sun, Jinning Li, Yuchen Yan,

Shengzhong Liu, Hanghang Tong, and Tarek Abdelzaher. Noisy positive-

unlabeled learning with self-training for speculative knowledge graph reasoning.

In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of the
Association for Computational Linguistics: ACL 2023, pages 2440–2457, Toronto,
Canada, July 2023. Association for Computational Linguistics.

[37] Ruijie Wang, Zheng Li, Jingfeng Yang, Tianyu Cao, Chao Zhang, Bing Yin, and

Tarek Abdelzaher. Mutually-paced knowledge distillation for cross-lingual tem-

poral knowledge graph reasoning. In Proceedings of the ACM Web Conference
2023, WWW ’23, page 2621–2632. Association for Computing Machinery, 2023.

[38] Ruijie Wang, Zheng Li, Danqing Zhang, Qingyu Yin, Tong Zhao, Bing Yin, and

Tarek Abdelzaher. Rete: Retrieval-enhanced temporal event forecasting on unified

query product evolutionary graph. In Proceedings of the ACM Web Conference
2022, WWW ’22, page 462–472, 2022.

[39] Ruijie Wang, Yuchen Yan, Jialu Wang, Yuting Jia, Ye Zhang, Weinan Zhang, and

Xinbing Wang. Acekg: A large-scale knowledge graph for academic data mining.

In CIKM ’18, 2018.
[40] Ruijie Wang, zheng li, Dachun Sun, Shengzhong Liu, Jinning Li, Bing Yin, and

Tarek Abdelzaher. Learning to sample and aggregate: Few-shot reasoning over

temporal knowledge graphs. InAdvances in Neural Information Processing Systems,
2022.

[41] WeiqingWang, Hongzhi Yin, Zi Huang, QinyongWang, Xingzhong Du, and Quoc

Viet Hung Nguyen. Streaming ranking based recommender systems. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval, pages 525–534, 2018.

[42] Yufeng Wang and Charith Mendis. Tgopt: Redundancy-aware optimizations for

temporal graph attention networks. In Proceedings of the 28th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel Programming, PPoPP ’23,

page 354–368, 2023.

[43] Da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and kannan achan.

Inductive representation learning on temporal graphs. In International Conference
on Learning Representations (ICLR), 2020.

[44] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are

graph neural networks? arXiv preprint arXiv:1810.00826, 2018.
[45] Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, and Mark

Coates. Graphsail: Graph structure aware incremental learning for recommender

systems. In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management, CIKM ’20, page 2861–2868, 2020.

[46] Yuchen Yan, Baoyu Jing, Lihui Liu, Ruijie Wang, Jinning Li, Tarek Abdelzaher,

and Hanghang Tong. Reconciling competing sampling strategies of network

embedding. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[47] Yuchen Yan, Qinghai Zhou, Jinning Li, Tarek Abdelzaher, and Hanghang Tong.

Dissecting cross-layer dependency inference on multi-layered inter-dependent

networks. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, CIKM ’22, page 2341–2351, New York, NY, USA, 2022.

Association for Computing Machinery.

[48] Chaoqi Yang, Jinyang Li, Ruijie Wang, Shuochao Yao, Huajie Shao, Dongxin

Liu, Shengzhong Liu, Tianshi Wang, and Tarek F. Abdelzaher. Hierarchical

overlapping belief estimation by structured matrix factorization. In ASONAM’20,

1668

TGOnline: Enhancing Temporal Graph Learning with Adaptive Online Meta-Learning SIGIR ’24, July 14–18, 2024, Washington, DC, USA

2020.

[49] Chaoqi Yang, Ruijie Wang, Shuochao Yao, and Tarek F. Abdelzaher. Hypergraph

learning with line expansion. CoRR, abs/2005.04843, 2020.
[50] Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek F. Abdelza-

her. Revisiting "over-smoothing" in deep gcns. CoRR, abs/2003.13663, 2020.
[51] Cheng Yang, Chunchen Wang, Yuanfu Lu, Xumeng Gong, Chuan Shi, Wei Wang,

and Xu Zhang. Few-shot link prediction in dynamic networks. In WSDM ’22,
2022.

[52] Huaxiu Yao, YingWei, Junzhou Huang, and Zhenhui Li. Hierarchically structured

meta-learning. In Proceedings of the 36th International Conference on Machine
Learning, pages 7045–7054, 2019.

[53] Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: Graph learning framework

for dynamic graphs, 2022.

[54] Qiao Yuan, Sheng-Uei Guan, Pin Ni, Tianlun Luo, Ka Lok Man, Prudence

Wong, and Victor Chang. Continual graph learning: A survey. arXiv preprint
arXiv:2301.12230, 2023.

[55] Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan Li, and

Yongdong Zhang. How to retrain recommender system? a sequential meta-

learning method. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’20, page 1479–1488,

2020.

[56] Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu

Zhu. Dynamic graph neural networks under spatio-temporal distribution shift.

In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,

Advances in Neural Information Processing Systems, 2022.

1669

	Abstract
	1 Introduction
	2 Preliminary
	3 TGOnline Framework
	3.1 Framework Overview
	3.2 Distillation-Guided Online Model Updates
	3.3 Temporal Meta Training
	3.4 The Attentive Temporal Module
	3.5 Acceleration for Online Update

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Main Results
	4.4 Performance of Diverse Node Groups
	4.5 Ablation Study
	4.6 Efficiency Analysis

	5 Related Work
	6 Conclusion
	A Appendix
	A.1 Proof of Theorem 3.1
	A.2 Baseline Setup

	References

