
GALA: A High Performance Graph Neural Network
Acceleration LAnguage and Compiler

DAMITHA LENADORA, University of Illinois at Urbana-Champaign, USA
NIKHIL JAYAKUMAR, University of Texas at Austin, USA
CHAMIKA SUDUSINGHE, University of Illinois at Urbana-Champaign, USA
CHARITH MENDIS, University of Illinois at Urbana-Champaign, USA

Multiple frameworks and optimizations have been proposed for accelerating Graph Neural Network (GNN)
workloads over the years, achieving sizable runtime performance improvements. However, we notice that exist-
ing systems usually explore optimizing either at the intra-operator level or at the inter-operator level, missing
synergies that exist due to their compositions. Further, most existing works focus primarily on optimizing the
forward computation of GNNs, often overlooking opportunities for training-speci!c optimizations.

To exploit these missed optimization opportunities, we introduce GALA, a domain-speci!c language (DSL)
and a compiler that allows composing optimizations at di"erent levels. The GALA DSL exposes intra-operator
transformations as scheduling commands, while we introduce novel inter-operator transformations as part
of the compiler. The composition of these transformations is made possible through the introduction of two
novel intermediate representations (IR) in the GALA compiler that tracks and composes transformations
at both the intra- and inter-operator levels. Further, the IRs maintain a global view of the GNN program,
including its training process. This allows us to introduce training-speci!c transformations to aggressively
optimize GNN training. Our evaluations show that GALA achieves a geo-mean speedup of 2.55→ for inference
and 2.52→ for training across multiple systems, graphs, and GNN models. We also show that GALA performs
well across di"erent graph sizes and GNN model con!gurations, as well as allows users to explore di"erent
methods of performing similar optimizations leading to di"erent tradeo" spaces.

CCS Concepts: • Computing methodologies↑ Neural networks; • Software and its engineering↑
Domain speci!c languages; Compilers.

Additional Key Words and Phrases: Graph Neural Networks, Intermediate Representations

ACM Reference Format:
Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis. 2025. GALA: A High
Performance Graph Neural Network Acceleration LAnguage and Compiler. Proc. ACM Program. Lang. 9,
OOPSLA2, Article 335 (October 2025), 29 pages. https://doi.org/10.1145/3763113

1 Introduction
Graph neural networks have shown superior prediction performance on graph-structured data
that occur in multiple domains, including cosmology [17], biochemistry [7], social networks [57],
and !nance [43]. GNNs bene!t from the relations of the input data represented by the input graph,
which is fed as part of the input to a neural network-based machine learning model.

GNN computations are usually expressed as a mix of dense- and sparse-matrix operations.
Dense matrix operations are used to perform standard neural network computations. An example

Authors’ Contact Information: Damitha Lenadora, University of Illinois at Urbana-Champaign, Urbana, USA, damitha2@
illinois.edu; Nikhil Jayakumar, University of Texas at Austin, Austin, USA, nikhiljayakumar@utexas.edu; Chamika Sudus-
inghe, University of Illinois at Urbana-Champaign, Urbana, USA, chamika2@illinois.edu; Charith Mendis, University of
Illinois at Urbana-Champaign, Urbana, USA, charithm@illinois.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART335
https://doi.org/10.1145/3763113

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

https://orcid.org/0000-0002-9804-3994
https://orcid.org/0009-0002-0826-3553
https://orcid.org/0000-0002-2161-2212
https://orcid.org/0000-0002-8140-2321
https://doi.org/10.1145/3763113
https://orcid.org/0000-0002-9804-3994
https://orcid.org/0009-0002-0826-3553
https://orcid.org/0000-0002-2161-2212
https://orcid.org/0000-0002-2161-2212
https://orcid.org/0000-0002-8140-2321
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763113
https://www.acm.org/publications/policies/artifact-review-and-badging-current

335:2 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

Table 1. Comparing GALA against other systems. Categories: 1) Sparse tensor systems, 2) GNN frameworks
and compilers, 3) The system presented by this paper: GALA. (→- Not supported, ⊋- Fully supported)

Ca
te
go

ty

Examples
Intra Inter Operator Optimizations 1→ Explore both 3→ Di"erent

Operator Operator Reorder & 2→ Training Inter- and Intra Op. Implementations
Optimizations Selection Speci!c Optimizations of Transformations

1 SparseTIR, dgSparse, TACO ⊋ → → → →
2 DGL, Graphiler, WiseGraph → ⊋ → → →
3 GALA ⊋ ⊋ ⊋ ⊋ ⊋

is generalized matrix-matrix multiplication (GEMM), which is used when updating a node or
an edge embedding, using learned weights. Sparse matrix operations are used to perform graph
computations, such as aggregating features of nodes in the graph. [45] showed that these operations
can be lowered down to generalized sparse-matrix dense-matrix multiplications (SpMM) or sampled
dense-densematrix multiplications (SDDMM). As these sparse operations are not natively supported
by generic deep-learning (DL) frameworks (such as PyTorch [38]), researchers have developed
specialized frameworks on top of them to perform GNN computations. Popular examples include
PyTorch Geometric (PyG) [18] and Deep Graph Library (DGL) [45]. These frameworks directly
map operations written using the message-passing abstraction [45] to sparse primitives. Although
these allow users to easily implement GNNs, many optimization gaps still remain.

Thus, many subsequent works have been proposed to improve the runtime performance of GNNs.
We summarize these approaches, comparing the optimizations they propose in Table 1. We broadly
categorize them into two classes: ones that perform optimizations within individual operators
(intra-operator, e.g., within an SpMM) and ones that perform optimizations between operators
(inter-operator). Tensor compilers such as TACO [30] and SparseTIR [54] are pro!cient in producing
highly e#cient sparse operations (intra-operator) to enable GNN acceleration. Frameworks such
as dgSparse [56] also optimize at an intra-operator level, as they select the best execution for a
sparse operation among multiple implementations. In comparison, specialized GNN compilers
such as Graphiler [51] perform operator-selection optimizations (inter-operator) that eliminate
redundancies. Although these existing systems provide notable speedups, we observe that they
miss the following optimization opportunities that lead to substantial performance improvements.
Opportunity 1→: Synergistic Optimization at both Inter-operator and Intra-operator

Levels. Composing optimizations that function on di"erent levels of a GNN computation leads to
a much larger optimization space that can yield signi!cant and synergistic performance bene!ts.
For example, manipulating the underlying sparse representation while also changing the workload
per thread for an aggregation operation (intra-operator) and then selecting the order of operations
(inter-operator) for an end-to-end GNN computation lead to sizable performance improvements
(more than 1.67→ speedup compared to the application of each transformation class in isolation as
seen in Figure 3(b)). However, existing GNN or sparse tensor compilers do not enable compositions
at both the intra-operator and inter-operator levels, as their intermediate representations (IRs)
do not capture a holistic view of a GNN model. For example, the iteration graphs of TACO [30]
can generate a primitive for di"erent sparse formats but cannot perform operator reordering and
selection optimizations that the SeaStar representation of [50] enables, and vice-versa. To go beyond
existing systems, an ideal GNN system should capture program information at di"erent levels.

Opportunity 2→: Optimizations Speci!c for Training.Most optimizations proposed for GNNs
[19, 24, 41, 47, 50, 60] only consider the forward pass and do not perform targeted optimizations for
the backward pass necessary for training. For example, consider a scenario of training on a directed
graph input. The backward pass does not use the same graph as the forward pass, but rather, its
transpose. This results in a graph with a di"erent non-zero distribution and, thus, di"erent optimal

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:3

optimization choices due to the input-sensitive nature of graphs [58]. Further, optimizations such
as moving invariant computations out of the model training loop (e.g. graph aggregations) are
typically not enabled by other systems (leading to speedups of 1.71→ over optimizations applicable
to the forward pass as seen in Figure 4). Automatically enabling these and other novel training
optimizations (Section 6.2.1) requires a GNN system to have a representation that captures an
end-to-end global view of the model unrolled across layers and its surrounding training code.

Opportunity 3→: Selecting between Di"erent Methods of Implementing a Transforma-
tion. There can be di"erent methods for implementing the same optimization transformation. For
example, consider neighborhood sampling in a graph, where some number of neighbors are selected
for each node. This transformation can be performed by either preprocessing the underlying graph
to create a subgraph (data-sampling) or altering the underlying kernel to sample the graph on the
$y (kernel-sampling). The former transforms the underlying data with an additional preprocessing
overhead and memory, while the latter directly transforms a GNN’s computations. The former is
suitable for faster GNN training, while the latter is suitable under memory-constrained scenarios.
The existing GNN systems do not provide $exibility in selecting such alternative transformations.
To explore di"erent trade-o" spaces, an ideal GNN system should expose such choices to the user.

Our Solution. To exploit the above opportunities, we introduce GALA, a domain-speci!c
language (DSL) and compiler for programming and optimizing GNNs. We use GALA’s language
as a means of obtaining the necessary information to populate the two novel IRs (Data-IR and
Compute-IR) that we introduce as part of GALA for a given GNN model. These separate IRs enable
the tracking of transformations that mutate either data or computations separately to exploit
Opportunity 3→. The IRs themselves and the di"erent types of relations we track between the IR
nodes (Section 6.1) facilitate performing compositions at di"erent levels to exploit Opportunity
1→. Furthermore, the IRs allow GALA’s compiler to maintain a global view of both the forward
and the backward pass to enable context-aware training optimizations to exploit Opportunity
2→. This enables the GALA compiler to perform novel global optimizations (e.g., context-aware
optimizations, Section 6.2.1) not possible with existing GNN frameworks. In addition, note that we
design GALA’s language with a separate (a) algorithm (which speci!es the execution logic and
is similar to common GNN APIs [18, 45]) and (b) schedule (to expose optimizations) for better
exploration of transformation choices across di"erent graph inputs. In addition to the automatic
inter-operator optimizations that GALA can perform using its IRs, the schedules of GALA expose
intra-operator optimizations with complex input-sensitive behavior for users to optimize. We make
the following contributions in this paper.

• We present GALA, a DSL and compiler to implement and optimize GNNs. The GALA lan-
guage is used to specify the computations (algorithm) of a GNN and any intra-operator
optimizations (schedule) applied (Section 5). The GALA compiler composes both intra- and
inter-optimizations when producing the !nal executable.

• We introduce two novel IRs as part of the GALA compiler – Data-IR and Compute-IR –
to separately track data-level and compute-level transformations at di"erent granularities
(inter-operator and intra-operator). (Section 6.1)

• We introduce novel compiler-driven GNN optimizations (e.g. training-aware subgraphs) and
provide algorithms for transforming the IRs to enable these optimizations, other optimizations
speci!ed by the scheduling language, and compositions amongst them. (Section 6.2)

• We perform extensive evaluations against four state-of-the-art frameworks and compilers,
four GNN models, and six graph datasets to show that GALA achieves geo-mean speedups
of 2.55→ for inference and 2.52→ for training across multiple systems. (Section 8)

GALA is publicly available at https://github.com/ADAPT-uiuc/GALA-GNN-Acceleration-LAnguage.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

https://github.com/ADAPT-uiuc/GALA-GNN-Acceleration-LAnguage

335:4 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

2 Background
1

Node

Node Features

Node Aggregation

2 3
Node Update

4

Neural
Network

GNN Model Computation

B
ackw

ard P
assUnderlying Primitive

×
SpMM

Output

Fig. 1. GNN model computations, primi-
tives, and backward pass

This section describes GNNs and their computations, in-
cluding the backward pass and a brief overview of appli-
cable optimizations. We then present the computation of
a Graph Convolutional Network (GCN), a popular GNN
model we use as our running example.
2.1 Graph Neural Network Computations
Graph Neural Networks (GNNs) combine graph operations
with established neural network operations. Figure 1 shows
the basic building blocks of a GNN model computation.
Typically, inputs to a GNN (1→) are the input graph and
its node features. These features are usually represented
as low-dimensional vectors, which are called embeddings. In 1→, the node features for each node
are represented with matching colors. Next, GNNs use these node features in graph operations,
such as the node feature aggregation shown by 2→. During this process, node features are passed
along as messages from source to destination and aggregated into a single message using some
aggregation function. Finally (3→), these aggregated messages are passed through neural network
operations (e.g., a fully connected feedforward layer) to arrive at the !nal updated messages, which
are used to update the corresponding nodes’ features. This process of aggregation and update
can be applied multiple times, leading to a multi-layer GNN. In addition to aggregate and update
operations, certain GNN models can require other operations. These include edge-based attention
calculation operations and normalization operations.
Kernels and Representations. GNNs use sparse matrix representations and operations to

perform the relevant graph operations. For example, the aggregation operation in 2→ is lowered to
a sparse matrix dense matrix multiplication (SpMM) [45]. This is essentially matrix multiplication,
with one input matrix being sparse. Multiple formats, including compressed sparse row (CSR) and
Ellpack (ELL), can be used to represent the adjacency matrix of the input graph as a sparse matrix.
In addition to SpMM, another matrix primitive commonly found in GNNs is sampled dense-dense
matrix multiplication (SDDMM). SDDMM is used for edge-based aggregations and is intuitively
a matrix multiplication between two matrices, where the output is masked by a sparse matrix to
produce only a subset of the total multiplication. The generalized versions of these two operations
can be used to perform a majority of the graph operations in GNNs, as shown by [45]. In addition
to graph operations, GNNs also contain standard neural network operations. For example, the
update operation in 3→, is lowered to a general matrix multiplication (GEMM) between the said
node features and the corresponding learned weights. Broadcasting values of a vector along the
row-dimensions of a matrix (which we term as row broadcast) can be taken as another example,
where it is the lowered operation for certain node feature normalizations.

Backward Pass. As GNNs are machine learning models, they must undergo a training process
where their learned weights are updated. This process uses a backward pass over the model, which
computes a gradient to update the model’s learned weights. Note that a graph operation in the
forward pass has a corresponding graph operation in the backward pass. For example, the backward
pass of SpMM(𝐿, 𝑀) must compute SpMM(𝐿𝐿 , 𝑁𝑂) to get the derivative relative to the input node
features. Here, 𝐿 represents the adjacency matrix of the input graph, 𝐿𝐿 represents the transposed
input graph (to emulate the message traveling backward),𝑀 represents the input node features, and
𝑁𝑂 is the derivative of the output. This computation is depicted in Figure 1, where the backward
pass operation for the node aggregation in 2→ involves sending the derivative in reverse of the
initial communication between nodes.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:5

2.2 Example Optimizations and Transformations Used in GNNs
This section gives examples of di"erent transformations common in the GNN domain. Figure 2
depicts the transformations we list below. We reiterate that these optimizations are commonplace,
and we introduce them as background to facilitate the discussions in the rest of the paper.

__global__ kernel(...){
 C[...] = C[...] + A[...] * B [...]
}

Aggregation kernel - GPU

Graph

__global__ kernel(...){
 C[...] = C[...] + A[...] * B [...]
 C[... + 32] = C[... + 32] + A[...] * B [... + 32]
}

A C

B

Column tiling Sampling

Thread
coarsening

Un-transformed data and code

Fig. 2. GNN transformations

Transforming the Underlying Data: Column Tiling A→.
We de!ne the column tiling transformation as a pre-processing
step that transforms a graph into a set of sub-graphs. Each sub-
graph only contains edges where the nodes represented by the
columns of its adjacency matrix fall within a speci!c range. For
example, as shown by A→ in Figure 2, the adjacency matrix of the
original untransformed graph is broken down into sub-graphs,
each containing two columns. This transformation results in
better data access patterns, similar to [22].

Transforming Computation Kernels: Thread Coarsening
B→. Thread coarsening is a common GPU optimization where
more work is assigned to a single thread than an operation’s
parallelizability. For example, in B→ in Figure 2, the transformed kernel aggregates two values
instead of one, improving memory access patterns and reducing multi-threading overheads.
Graph Sampling C→. Sampling is an approximate transformation regularly used in the GNN

domain that enables better performance and signi!cant accuracy boosts [20] (also shown by our
results in Section 8.5.4). The latter is especially true for better generalization when performing
inductive learning, where a GNN model is trained without utilizing the full graph. Note that there
are di"erent methods of performing this transformation, such as changing the underlying graph
as shown by C→ in Figure 2 or even by changing the kernel operating on the graph to limit its
computation to the sampled number of edges per node.
2.3 Graph Convolutional Network (GCN)
Graph Convolutional Network (GCN) [29] is a simple yet popular GNN model. The inference
computation for the (𝑃)𝑀𝑁 GCN layer is presented by the equation, 𝑀 (𝑂)=𝑄 (𝑅̃↓ 1

2 ·𝐿̃·𝑅̃↓ 1
2 ·𝑀 (𝑂↓1) ·𝑆 (𝑂)).

We use this model as our running example in Section 3. Here, 𝐿̃ represents the input graph with
self-edges as an adjacency matrix. 𝑅̃ represents the degree matrix of the input graph. 𝑀 (𝑂) ,𝑆 (𝑂)

represent the node feature embeddings and the learning weights for the 𝑃𝑀𝑁 layer in the GNNmodel.
3 Motivation for a Compiler-Based Solution
GALA was motivated by two observations: (a) the composition of optimizations at di"erent levels
leads to better GNN performance, and (b) context-aware global optimization leads to better end-to-
end GNN executions. These opportunities, missed by prior work, can be captured by GALA’s DSL
and compiler-based approach through its novel IR and transformations. In the remainder of this
section, we describe these points and show their bene!ts through the speedups observed in GALA.
3.1 Compositions of Optimizations at Di!erent Levels
GALA can compose GNN optimizations at both the (a) intra-operator level and the (b) inter-operator
level. Intra-operator optimizations focus on improving the speedup of a single operator. An example
of this is applying thread coarsening for a node-aggregation operator (SpMM) on GPUs. On the
other hand, inter-operator optimizations, such as operator reordering and selection, focus on
improving the end-to-end speedups of an entire program. Composing these optimizations can lead
to signi!cant speedups unseen in isolation.

The synergistic bene!t of performing both intra-operator (thread coarsening, column tiling) and
inter-operator optimizations (operator reordering) is shown in Figure 3 for two graph datasets:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

335:6 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

Unoptimized Intra-operator optimization Inter-operator optimization Fully optimized for inference

0 20 40 60
Runtime(ms)[Speedup over UO]

UO

A1

A2

A3

E1

FO

O
pt

im
iz

at
io

n [0.9×]

[1.3×]

[1.6×]

[5.0×]

[10.3×]

(a) Reddit

0 10 20 30 40
Runtime(ms)[Speedup over UO]

UO

A1

A2

A3

E1

E2

FO

O
pt

im
iz

at
io

n [0.9×]
[1.0×]

[1.3×]
[1.4×]

[1.5×]
[2.5×]

(b) OGBN-Products
Fig. 3. Graph’s adjacency matrix, and runtime breakdown with optimizations. We use a 2-layer GCN with a
hidden dimension of 32 for our evaluation. Breakdown of the optimizations applied - (UO):unoptimized and
using library-based implementations (cuSparse) for sparse operations, (A1):generate sparse kernels that have
thread coarsening, (A2):A1+column tiling, (A3):A2+augment the sparse kernels to operate on unweighted
graphs (as the input graph is unweighted), (E1):Reordering operations to have be!er algorithmic complexity
(applied to UO), (E2):E1+sparse operator rewrites (Section 6.2.2), (FO):Fully optimized for inference with all
beneficial optimizations applied. A1 to A3 are intra-operator optimizations, and E1 and E2 are inter-operator.
Note that we only apply transformations that result in a speedup. This is why E2 is not applied for Reddit.

(a) Reddit and (b) OGBN-Products. Here, UO is an unoptimized 2-layer GCN inference (forward
pass only) execution. A1 to A3 are gradual additions of intra operator optimizations, while E1
and E2 are inter operator optimizations. FO is the execution with all intra- and inter-operator
optimizations combined and stands as evidence of the synergistic bene!ts of combining both types
of optimizations. For example, the intra-operator optimizations (A3) achieve a speedup of 1.3→ on
the OGBN-Products dataset, while the inter-operator optimizations (E2) achieve a speedup of 1.5→.
When both optimizations are combined (FO), the result (2.5→) is greater than the product of both
types of optimizations individually (1.95→). Observations such as these motivated us to create a
language and compiler that can generate e#cient code composed of optimizations at di"erent levels.
These compositions are enabled in GALA by its two intermediate representations (IRs) (Section 6.1)
and how they interact with one another. This is not achievable in existing systems as they either
optimize a single operator and do not retain information about all computations in a GNN (sparse
tensor systems such as TACO [30] and SparseTIR [54]), or they use static implementations of
primitives without performing any operator optimizations (GNN systems such as Graphiler [51]).
In addition, by generating compositions of di"erent optimization classes, GALA increases the

total optimization space beyond what sparse tensor or GNN systems can do in isolation. This
increased search space enables more optimization opportunities that existing systems overlook.

0 25 50 75 100 125
Runtime(ms)[Speedup over UO]

UO

FO

T1

T2O
pt

im
iz

at
io

n

[7.0×]

[11.0×]

[12.0×]

Unoptimized
Fully optimized for inference

Training optimization

Fig. 4. Speedups of training optimizations
for (Reddit). Optimizations-(UO): Unopti-
mized, (FO): Optimized for inference, (T1):
FO+training invariant code motion (Sec-
tion 6.2.3), (T2):T1+sub-graph for training
(Section 6.2.1)

To explore this optimization space e#ciently, we de-
signed our language as separate algorithm- and schedule-
languages, inspired by works such as Halide [40] and TACO
[30]. This is necessary as the optimal optimization param-
eters can di"er from input to input. The executions of the
two graph datasets in Figure 3 are examples, as the input-
sensitive optimization parameters, such as the column-
tiling factor, di"ered.

3.2 Context-Aware Global Optimizations
GALA can generate code optimized explicitly for an exe-
cution context (training, inference) of a GNN. This is es-
pecially true when generating code for training as opti-
mizations such as moving invariant computations across training iterations out of the training

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:7

loop (Section 6.2.3) and computing on the sub-graph with only the training data (Section 6.2.1)
can be applied. Figure 4 shows the example when training-speci!c optimizations are applied to
the Reddit graph dataset’s execution in Figure 3. The optimizations applicable irrespective of the
context (in Figure 3) can speed up training the GNN model by 7→. However, this can be further
improved by 1.71→, giving a total speedup of 12→ over an unoptimized implementation. Existing
GNN systems cannot perform such optimizations, as they build on DNN system pipelines and
ignore optimizations speci!c to GNNs that require knowing the execution context. GALA’s ability
to have the global view of the entire GNN program through its IRs enables these optimizations.

4 Overview of GALA

GALA IR
with schedule transformations

(Section 6.1)

Automatic Compiler
Transformations

(Section 6.2)

...

Executable
Code

GALA Language
(Section 5)

Front-end
Lowering

Code
Generation

Data IR

Compute IR

training invariant
code motion

Algorithm

Schedule

Data IR

Compute IR

operator
reordering

Torch

Data IR

Compute IR

col_tile, sample, ...

coarsen, ...

GALA Compiler
(Section 6)

Fig. 5. Overview of the GALA’s lowering process.

Figure 5 shows the overview of GALA, a domain-speci!c language and compiler. The lat-
ter is where the main innovations lie, while the language is used as a means of generating
the intermediate representations (IR) necessary for the compiler. We design the GALA Lan-
guage taking inspiration from the popular algorithm-schedule separation popularized by Halide
[40], and subsequently used in languages such as TACO [30] and Graphit [58]. GALA’s algo-
rithm language (Section 5.1) speci!es the GNN computation, while the scheduling language
Section 5.2) speci!es a subset of optimization transformations (mostly intra-operator) applied
to this computation when creating the !nal executable. When generating the !nal executable,
GALA !rst lowers the front-end language’s algorithm and schedules (detailed in Section 6.1.4)
into GALA’s novel IRs: (a) Data-IR (DIR, Section 6.1.1) and (b) Compute-IR (CIR, Section 6.1.2).

1 G = load_dataset(!...!)
2 aggrFn = dsl.get_aggregate(fn = dsl.fn.mul_sum)
3 L1 = layer(G, hs, nonln_fn, aggregate_fn){
4 deg = G.graphs.degrees()
5 norm = dsl.fn.pow(deg, -0.5)
6 res = norm * G.node.feats
7 res = aggregate_fn(G.graphs, res)
8 res = dsl.nn.ffn(res, out=hs)
9 res = norm * res
10 G.node.feats = nonln_fn(res)
11 }
12 M1 = model(G, nonln_fn, aggregate_fn){
13 l1 = L1(G,32,nonln_fn,aggregate_fn)
14 l2 = L1(l1,G.labels.size(),null,aggregate_fn)
15 }
16 m1 = M1(G, dsl.nln.ReLU, aggrFn)
17 m1.train(loss=dsl.nn.RMSE, optimizer=dsl.nn.

ADAM, iters=100, test_step=5)

Fig. 6. Implementation of a 2-layer GCN model in
GALA’s algorithm language

The former tracks data dependencies and trans-
formations, while the latter tracks the order of
computations and transformations on compute
operations. Any transformation speci!ed in the
schedules of GALA is directly represented in ei-
ther of the two IRs after the front-end lowering.
Following the initial lowering, GALA performs
automatic novel inter-operator transformations
on these IRs based on the information of the
GNN retained by the IRs (Section 6.2). The bur-
den on the user is reduced by this hybrid ap-
proach of GALA as it can perform automatic
domain-speci!c transformations that are known
to be bene!cial. In the end, GALA generates
the target code with composed intra- and inter-
operator optimizations based on the fully trans-
formed IRs (Section 6.3).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

335:8 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

5 The GALA Domain Specific Language
In this section, we elaborate on the (a) Algorithm and (b) Schedule languages of GALA.

Table 2. A subset of the programming API for GALA’s algorithm language
Syntax Description
Graph dataset operations
· load_dataset(path) Load the graph dataset in path. Assumes input is multiple independent graphs.
· degrees Get the degrees of nodes in the graphs from the dataset, as a tensor.
GNN computations
· get_aggregate(semi) Gets the aggregate function based on the semiring function passed by semi.
· aggr_fn(g, mtx) Performs aggregation on the input graph list g and tensor mtx.
· non_lnl(inp) Performs the non-linear function on inp.
· pow(mtx, p) Get the p power of the tensor mtx.
Modeling a GNN and executions
· layer(....) De!nes a composition of GNN operations. (e.g. GCN [29] or GAT [44])
· model(....) De!nes an end-to-end GNN model, which is composed of GNN layers.

(e.g. a 2-layer GNN model made up of 2 GCN layers)
· train(lossFn, opt, epochs, Trains the GNN model using the loss function lossFn, and optimizer opt for
val_step, test_step) epochs number of epochs. Only compute the validation and test sets of

the model at steps de!ned by val_step and test_step.

5.1 Algorithm Language
The syntax of GALA’s algorithm language augments the syntax found in traditional DNN sys-
tems with graph syntax in the form of the message-passing paradigm. We show a subset of the
language constructs of GALA’s algorithm language in Table 2. An example of a 2-layer GCN model
implemented using GALA’s algorithm language is shown in Figure 6. The initial 2 lines in this
!gure perform the initializations necessary for executing the GNN model: (a) loading the input
graph and (b) initializing the aggregate function used in the model. Lines 3 ↓ 11 de!ne a GCN
layer (Section 2.3), while lines 12 ↓ 15 de!ne the end-to-end model. Both layers and models are
parameterized, allowing con!gurability while minimizing code repetition. For example, instead of
the single aggregation function (aggrFn) passed to the model in Figure 6, two separate aggregation
functions that perform di"erent computations could be passed through the model to its underlying
layers (which also enables layer-wise optimization through GALA’s schedules). The !nal 2 lines
initialize and then train the model.

GALA’s language follows the GNN model implementation style of DGL [45] with subtle dif-
ferences. One key di"erence is how the steps for computing test set results are speci!ed. For
example, in Figure 6, the results of the test set are only calculated at every 5𝑀𝑁 epoch when training.
This allows for GALA to optimize the execution by only computing a subset of the total graph
computation, unlike existing systems (detailed in Section 6.2.1).

5.2 Scheduling Language 1 //Set meta-data
2 G=G.set_undirected(true)
3 G=G.set_unweighted(true)
4 G=G.feature_size(605)
5 G=G.label_size(41)
6 //Compute Transformation
7 aggrFn=aggrFn.coarsen(2)
8 //Data Transformations
9 G=G.col_tile(37000)

(a) Reddit

1 //Set meta-data
2 G=G.set_undirected(true)
3 G=G.set_unweighted(true)
4 G=G.is_sparser(true)
5 G=G.feature_size(100)
6 G=G.label_size(47)
7 //Compute Transformation
8 aggrFn=aggrFn.coarsen(2)
9 //Data Transformations
10 G=G.col_tile(1400000)

(b) OGBN-Products
Fig. 7. Schedules used to optimize for results in Figure 3

The scheduling language of GALA ful-
!lls two purposes: (a) it allows users to
specify intra-operator transformations
and (b) aids the compiler to perform
inter-operator transformations by allow-
ing users to pass meta-data of the GNN
and its input. We list a subset of sched-
uling commands of GALA in Table 3.
These scheduling commands can be ap-
plied to variables de!ned in the algorithm of the model (e.g. G, aggrFn, res, M1 etc. in Figure 6).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:9

Table 3. A subset of schedule commands provided by GALA’s scheduling language. Brackets in the top-right
corner of each row indicate whether it is a data-intra-operator transformation, a compute-intra-operator
transformation, or meta-data.

coarsen(factor) [comp]
Gives the maximum thread coarsening factor GALA should generate for the compute kernel speci!ed.
sample(size) [data,comp]
Transforms either a graph (i.e. data) into a sampled sub-graph, or alters a compute kernel to sample during execution.
This transformation is not semantically equivalent and is completely optional.
col_tile(number) [data]
Column tile a given input based on the number given. This can be speci!c to the data used by a single operator.
set_undirected(bool) / set_unweighted(bool) [meta]
Set if a given graph is undirected/unweighted.
is_sparser(bool) [meta]
Set if a given graph is comparatively sparser. GALA uses this to perform automatic transformations (Section 6.2.2)

Figure 7 shows the schedules we used to achieve the speedups observed in Figure 3. Note that the
two schedules result in two di"erent executions at the lower level, where applying the schedule in
Figure 7(a) to the OGBN-Products graph results in an execution that takes 4.2→ longer than 7(b). In
this particular scenario, the schedule of 7(a) applies a more aggressive tiling factor, which increases
the overhead of tiling to outweigh its bene!ts.
The intra-operator transformations enabled by GALA are common optimizations (Section 2.2)

with complex input-sensitive behavior (e.g. col_tile with di"erent optimal tiling factors that
depend on the input). Thus, we decided to expose these transformations at the language level to
allow customizations per graph input (e.g. di"erent col_tile factors for Reddit and OGBN-Products
in Figure 7). In addition, the schedule also allows users to pass meta-data of the GNN and its input to
the compiler (e.g. input feature and label sizes as in Figure 7). The compiler uses this information to
aid its automatic transformations, which are always bene!cial in terms of runtime. GALA composes
both of these transformations (schedule-applied intra-operator and automatic inter-operator) to
expose a large optimization space and generate the !nal executable binary. Next, we discuss some
intriguing details of GALA’s scheduling language.

Data vs. Compute Transformations. We classify the intra-operator transformations exposed
through the schedules of GALA into two categories based on what they impact: (a) data transforma-
tions and (b) compute transformations. We use this categorization when designing GALA’s IRs that
enable e#cient code generation and di"erent methods for implementing the same transformation.
Data transformations modify the underlying data structure (col_tile the input graph), while
compute transformations alter the underlying kernels of operations (coarsen the kernel used for
node aggregation). Note that certain optimizations can be either data or compute transformations.
An example would be sample, where you can either implement sampling by creating a sampled
sub-graph (data transformation) or by altering sparse matrix primitives to function on a subset of
edges in the input graph (compute transformation).

Keyword backward - We introduce the backward keyword in the scheduling language to allow
users to optimize data structures and operations in the backward pass of a GNNmodel independently
from their counterparts used in the forward pass. This is necessary when operating on GNNs, as
the behavior of the components (data and operations of the model) used in the forward pass can be
signi!cantly di"erent from the backward pass (detailed in Section 2.1). To maintain transparency,
we do not perform any transformations on the components of the backward pass unless speci!ed
or always bene!cial. Thus, we introduce the backward keyword to allow a user to tap into and
transform a component’s backward-pass counterparts without explicitly writing custom operators
and data structures.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

335:10 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

6 The GALA Compiler
This section details the components of the GALA compiler.We !rst introduce our novel intermediate
representations, followed by our novel automatic inter-operator optimizations, and then by the
!nal target code generation.

6.1 Intermediate Representations and their Generation
GALA’s separate IRs, Data-IR (DIR) and Compute-IR (CIR), enable more global high-performance
optimizations (Section 6.2) and e#cient code generation (Section 6.3) without complex analysis.
GALA’s IRs store the GNN model unrolled across layers to enable optimizations that are aware of
the execution context and span multiple layers. These global domain-speci!c optimizations set
GALA’s IRs apart from other Sparse Tensor IRs [2, 30] and GNN IRs [49–51]. When generating
code, GALA only needs to traverse through the IR in two passes, as the IRs store all the necessary
transformations and information for optimizations.

We use the GNN algorithm code written in GALA in Figure 6 along with the schedule for Reddit
in Figure 7(a) as the running example to describe the compilation process. Figures 8(a) and 8(b)
represent a part of the DIR and CIR that GALA lowers to from this example. In the rest of this
section, we will !rst introduce each IR, elaborate on their design and interactions, and !nally detail
how they are generated during the lowering process from the front-end code.

rows(4):rows(4)

cols(2):
rows(5)

all(4):all(6)

id - G.graphs_src
data -
 format - csr
 opt - []
 directed - true
 weighted - true
independent - true

set_undirected(true)
set_unweighted(true)

col_tile(37000)

all(3):all(5)

rows:rows

id - deg
data -
 format - rowMajor
 opt - []
 dimension - N×1
independent - true

id - norm
data -
 format - rowMajor
 opt - []
 dimension - N×1
independent - true

id - G.graphs,
 G.graphs.T
data -
 data -
 format - csr
 opt - [col_tile:37000]
 directed - false
 weighted - false
 independent - false
independent - true

id - G.node.feats
data -
 format - rowMajor
 opt - []
 dimension - N×605
independent - true

id - res
data -
 format - rowMajor
 opt - []
 dimension - N×605
independent - true

2

id - G.graphs_src.T
data -
 ...
 opt - []
 directed - false
 weighted - true ...

backward(G.graphs_src)

...

1

3

4

56

(a) Data-IR

G = load_dataset("....")
 in: [], out: [G.graph_src, G.node.feats],
 type: pointwise, op: load

deg = G.graphs.degrees()
 in: [G.graphs], out: [deg],
 type: aggregate-edge, op: graph-degrees

1

4

norm = deg.pow(-0.5)
 in: [deg], out: [norm], type: pointwise,
 op: pow(-0.5)

5

6

7

Line in
Fig. 6

training-loop:
 iterations: 100, test-step: 5, optimizer: ...

La
ye

r

l1

l1

l1

l1

res = norm * G.node.freats
 in: [norm, G.node.feats(in)], out: [res(in)],
 type: update-node, op: mul

res = aggregate_fn(G.graphs, res)
 in: [G.graphs, res(in)], out: [res(in)],
 type: aggregate-node, op: mul-sum,
 opt: [coarse:4]
backward:
 in: [G.graphs.T, ...],

...

4l2
deg = G.graphs.degrees()
 in: [G.graphs], out: [deg],
 type: aggregate-edge, op: graph-degrees

...

iii

... ...

ii

i

(b) Compute-IR. Left columns are the model’s
layer, and the line in the code in Figure 6

Fig. 8. Intermediate Representations for GALA. Shown for a subset of computations/data in Figure 6 with
the scheduling transformations for the Reddit Graph in Figure 7(a) (running example)

6.1.1 Data-IR (DIR). DIR is a directed acyclic graph (DAG) with nodes that track (1) information
of data objects (e.g., the input graph being undirected), (2) transformations on the data objects
speci!ed by the scheduling language of GALA (e.g., performing column tiling on a graph), and
edges that track (3) relationships between data objects. The data objects are either sparse or dense
tensors used in the GNN execution (e.g., the input graph is a sparse tensor and the node feature
tensor is a dense tensor).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:11

Table 4. Edge types and a!ributes of DIR
Edge Type Attribute Description

↓↑ Dependency relation Input to output dependency
=↔ Transformation transforms Original to transformed data
· · · Association relation Associations between data
Edge attributes

relation Relation between data in DIR nodes
Can be between rows, columns or all data

transforms Data transformations performed on a dir-node

Table 5. DIR node grammar
DIR node grammar
<dir-node> ::= <dir-id>

<data-level>
<data-level> ::= <data>

<is-independent>
<data> ::= <data-level> |

<data-attributes>

We list the grammar of a DIR node in Table 5 and explain important components as follows.
• data-level - This contains the data non-terminal and is-independent $ag as components. Note that
data can become another data-level, leading to a hierarchical structure. This hierarchy allows
GALA to represent stacks of transformations that create sub-components within the same
dir-node. An example of this is applying col_tile to a dataset with multiple graphs (PPI dataset
in [20]). All the graphs of this dataset can be directly loaded by the load_dataset operation
as it assumes that the initial input can be a list of independent graphs. When col_tile is
applied to these graphs, dependent sub-graphs must be created within each graph independent
of others. Here, the hierarchical structure of data in dir-nodes can represent these details.

• is-independent - Independent graphs and dependent sub-graphs (from col_tile) have di"erent
behaviors during execution. If graphs depend on one another, any operation that uses this data
must aggregate all the dependent results to get the !nal output. Otherwise, any computation
can function independently. The is-independent attribute tracks this dependency and is used
during the !nal code generation.

• data - This stores attributes of the data represented by the dir-node. These attributes include
information such as the underlying data format (necessary for code-generation), the trans-
formations performed (in blue in 2→ in Figure 8(a)), and if the dir-node represents a graph,
information such as the graph being un-directed or un-weighted. GALA uses this informa-
tion for optimizations. For example, GALA can use the same graph in both the forward and
backward computations without transposing for operations such as node aggregation when
the directed attribute is false as in 2→ (Figure 8(a)).

Graph
Node

Features

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

columns of the graph's

adjacency matrix

row
s of the node

feature tensor

Fig. 9. Relation between the adja-
cencymatrix of a graph and tensor
representing node features

The nodes in the DIR are connected through various edge types
to help reduce analysis during later transformations. We list the
edge types in Table 4 with examples from Figure 8(a),
• Data dependencies between the data represented by DIR nodes
(in red). For example, using 2→ as an input to create 4→.

• Data transformations (in blue). E.g., transforming the original
input graph (1→) to 2→. The transformations are shown in blue.

• Association relations between DIR nodes (a dotted black line).
For example, the relation between the graph, represented by
2→, and the node features of the graph, represented by 5→. Each
row of 5→ corresponds to a column in 2→ when both are used by iii→’s aggregation operation.
In addition to the edge type, we encode information on how the related data in these DIR

nodes map to one another as an edge attribute. Data transformations can have the transformations
performed from the source to the target as edge attributes, while both data dependencies and
associations can have relations between connected DIR nodes as edge attributes.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

335:12 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

These relations are between the matrix dimensions of the data objects represented by the con-
nected DIR nodes. Valid dimensions include rows, columns, or all (i.e. both rows and columns).
The relations are represented as <node-1-dimension>(<node-1-id>):<node-2-dimension>(<
node-2-id>) in the DIR representation. For example, the relation between the graph (DIR node
2→) and its node features (DIR node 5→) is represented as cols(2):rows(5). We use Figure 9 to
elaborate on this. When the graph and its node features are used as inputs of an aggregation opera-
tion (iii→ in Figure 8(b)), the columns in the graph’s adjacency matrix correspond to the rows in the
node features tensor. Thus, the relation between the DIR nodes 2→ and 5→ is an cols:rows relation.
GALA’s compiler uses the computation operations speci!ed in GALA’s algorithm language and
a set of rules to determine the relations between di"erent DIR nodes connected via dependency
and association edge types. We detail this in Appendix A. These relations aid in downstream
transformations, such as reordering the node features if the graph is reordered.

<gnn-execution> ::= <gnn-oplist> | <gnn-oplist> <training-loop>
<training-loop> ::= <training-con!gs> <gnn-oplist>

<gnn-oplist> ::= <cir-node> <gnn-oplist> | <cir-node>
<cir-node> ::= <forward-op> | <forward-op> <backward-op>

<forward-op>
<backward-op>

{
Stores the operation’s type (type), specialization (op), transformations (opt),
and maps to DIR nodes of inputs and outputs (in and out).

Fig. 10. GALA’s Compute-IR Grammar

6.1.2 Compute-IR (CIR). The CIR of GALA stores the computations and their compute transfor-
mations as speci!ed by the GALA language. The CIR also tracks the input and output data objects
of computations by mapping them to their corresponding DIR nodes. We list the grammar of CIR
in Figure 10 with an example in Figure 8(b). The CIR consists of,
• gnn-oplist - A list of cir-nodes that represents a set of computations in a GNN. Note that this list
stores the computations of the GNN model in an unrolled view. This allows GALA to perform
optimization and transformation across layers.

• training-loop (ii→) - This stores training-con!gs which are the con!gurations for training, such as
the loss function (necessary for the !nal code generation), and the gnn-oplist of the model when
training. Knowing the con!gurations of training enables GALA to perform a novel optimization
when training (Section 6.2.1).

Components of a cir-node. iii→ is an example for a cir-node in Figure 8(b). In this particular example,
GALA maps this CIR node to the DIR nodes 2→ and 5→ in Figure 8(a), as they are inputs for
iii→’s forward pass. A CIR node also stores, (a) the operator type (type), which can either be a
pointwise, aggregate, or update operation a"ecting either node or edge values (e.g. update-node,
aggregate-edge), (b) its specializations (op, e.g. pointwise with add, aggregation with the multiply-
sum semiring [15] i.e. mul-sum, update with ReLU [1]), and (c) the transformations on the operator
(opt) which were speci!ed in the schedule (e.g. coarse, sample). GALA’s compiler determines a
cir-node’s operation type and specialization using rules, where we present a subset in Appendix
B. For iii→, which is an aggregation operation on node features, initialized in line 2 (with the
mul_sum function) and used in line 7 of Figure 6, the operation type is node-aggregation, with the
multiply-sum semiring and the thread coarsening transformation (from Figure 7(a)).
Knowing the operation type is necessary for optimizations that perform rewrites using these

operation types. In addition, this type information and transformations on compute operations can
be used to identify any GNN computation not naturally supported by LibTorch [38] (used by GALA
as a backbone to implement models). For these operations, GALA must generate the necessary

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:13

AutoGrad function that contains a backward pass. Thus, when necessary, GALA separately stores
information related to the backward pass in the same cir-node. This separation between the
backward and the forward pass allows GALA to optimize computations in the backward pass inde-
pendently from the forward pass. This is necessary as the underlying data (especially for directed
graphs) and the operation used to compute the result of the backward pass can be signi!cantly
di"erent from the forward pass. During code generation, GALA uses the transformations and the
detailed operation stored in the cir-nodes to generate the !nal code.

6.1.3 IR Design and Interactions. The nodes in the two IRs of GALA were designed to separately
capture the supported intra-operator transformations (enabled by the scheduling language of GALA)
for both computations (in cir-node), and the underlying data (in dir-node). This separation avoids
unnecessary analysis across both computations and the underlying data, focusing instead on one for
intra-operator transformations. However, these IRs heavily interact when performing inter-operator
transformations (Section 6.2) as well as the !nal code generation (Section 6.3). This is where the
edges between these IR nodes, as well as compute operations to input/output data mapping from
the CIR to the DIR are used. Concretely, we highlight a few examples of these interactions.
• In order to carry out the training-aware subgraph transformation (Section 6.2.1), GALA must
traverse the CIR to identify the number of aggregation operations performed from the !nal
result (across GNN model layers) to create the necessary dir-nodes for the subgraphs.

• The sparse rewrite transformation (Section 6.2.2), which changes the CIR, will respect the data
dependencies of a GNN program tracked by the DIR. This is done by inspecting the mapped
input and output dir-nodes of a cir-node, and edges in the DIR.

• When generating a kernel in the !nal code generation, GALA uses both the information on the
compute operation captured by the CIR, and the information on the underlying data captured by
the DIR. For example, di"erent kernels will be generated depending on the underlying format
being COO or CSR, or the input graph being column tiled or not. (Section 6.3.1)

6.1.4 IR Generation. Using a syntactic and semantic parser, GALA lowers the front-end language
to an abstract syntax tree (AST). GALA then performs a pre-order traversal on this AST while
generating a cir-node for each operation in the original front-end algorithm of GALA. At each
operation, GALA checks their outputs and creates a corresponding dir-node in the DIR. During this
process, GALA creates the edges in the DIR using the data transformations in the schedule (for
transformations), the inputs and outputs of operations (for dependencies), as well as operation-
speci!c knowledge (for associations). This is a rule-based process, which we detail in Appendix A.
To give an example, GALA creates 1→ and 3→ in Figure 8 from the compute operation i→. These
dir-nodes have no relation between them. However, the aggregation operation iii→ would add a
cols(2):rows(5) associative edge between the dir-nodes 2→ and 5→, as they are the graph and
node-feature inputs to it. Once the AST has traversed the algorithm of the GNN model, GALA
then adds the scheduling transformations for each corresponding dir-node or cir-node as attributes.
Note that for data transformations, GALA creates a new dir-node and updates all existing relations
between other dir-nodes as well as mappings to cir-nodes.

6.2 Automatic Domain-Specific Transformations
GALA’s IRs and the information they track allow GALA’s compiler to perform novel, domain-
speci!c, inter-operator optimization transformations automatically. These transformations are
guaranteed to bene!t performance (i.e. runtime) while lessening the user’s burden when creating
schedules. The GALA compiler automatically composes these transformations along with intra-
operator transformations speci!ed in the schedule when generating the !nal executable code.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

335:14 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

Aggregation 2Aggregation 1
(iii) in Fig 8(b)

Part of the current training set
Training M

ask

1
0
0
0
0
0
0
1

Unnecessary for current aggregation
Aggregates to the training set

Necessary for
current aggregation

...

Node
aggregation

Fig. 11. Sub-graphs calculated in re-
verse from the training mask

6.2.1 Training-Aware Subgraph Creation. In machine learn-
ing, the training set is a subset of the dataset used to train
a model. In addition to the training set, the validation and
test sets are respectively used to validate and test the model.
Generally, in machine learning, you only need to compute
the training set when training a model. However, in GNNs,
aggregation operations prevent training on the training set in
isolation. This is because each aggregation operation expands
the training set to include the dependent nodes of the training
set up till that point. This expansion happens in reverse, starting from the !nal result of the model.
This is depicted in Figure 11, where the training set (in purple) grows with each dependent node
(in green). Thus, regardless of whether only 10% of the entire dataset (e.g. OGBN-Products) is used
for training, the standard practice in existing GNN systems is to compute using the entire graph
dataset and then calculate the loss on the training set. This leads to unnecessary computations
that are not used for any outcome (in grey in Figure 11). They can be removed by computing on
the sub-graph that only contributes to the !nal result. Creating the corresponding sub-graph for
each aggregation requires knowing the total number of aggregation operations performed from the
result up to that point. Thus, lacking this information, existing GNN systems cannot automatically
support this optimization.

GALA’s IR enables this optimization as it allows GALA to know the context of the workload
through the training loop and can track the total number of aggregations across all model layers.
This is done by traversing the CIR nodes (which stores the GNN model unrolled across layers) in
reverse while checking their operation types. Considering the running example, for the aggregation
operation iii→ in Figure 8(b), GALA is aware of a second node-aggregation operation that occurs
later on through the CIR. Thus, it creates a sub-graph that includes the dependent nodes of a single
aggregation, as shown in Figure 11. The sub-graphs created by GALA in this manner are added
to the DIR as additional nodes and linked to the related aggregation operations in the CIR. Note
that this optimization creates two sets of sub-graphs (for the forward and backward pass) for each
aggregation in the model. As this results in additional memory consumption, GALA exposes an
optimization knob to turn o" this transformation when operating on limited memory.

6.2.2 Sparsity-Aware Rewrite Rules. In GNNs, there can be di"erent methods of computing a
mathematically equivalent result using di"erent compositions of operations due to the associativity
of certain computations. These compositions can result in optimizing sparse tensor computations
(graph operations) at the cost of more dense tensor computations and vice-versa. If a graph is
comparatively denser, then it is bene!cial to optimize its sparse tensor computations (or use fewer of
them) due to the higher non-zero-to-node ratio, which makes graph operations more signi!cant to
the total runtime. Thus, the most performant among these compositions for a given GNN, depends
on the input graph. More speci!cally, on its sparsity. To exploit this optimization opportunity, we
create a transformation pass in GALA to perform peephole-style (local to a speci!c scope, and thus,
only requiring analysis of a sequence of operations via the CIR) operator composition selections,
which are simply di"erent associative choices for the same !nal result. This transformation is
applied using the information passed to GALA via the is_sparser scheduling command.

GALA uses the operator type and specialization stored in the cir-nodes and information of
its inputs and outputs from the mapped dir-nodes, such as their tensor dimensions, to perform
novel sparsity-aware rewrites not enabled in other systems. Equations 1 to 2 are example rewrite
rules currently used in GALA. On the left-hand side of the equations, we show the equivalent
set of operations for comparatively denser graphs, while on the right-hand side, we show the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:15

set of operations for comparatively sparser graphs. Note that in the equations, operator types
are listed in order of execution (with ↑) with the specialization itself added as a subscript (e.g.
update_noderow broadcast refers to an update_node operation that uses row broadcast as the
specialization for the update process). In addition, the rewrites require the inputs and outputs of
the operations to match certain conditions. These include the operation increasing the dimensions
of the output (𝑇 → 𝑈2) from the input (where the tensor dimension is 𝑇 → 𝑈1), and the graph input
to the operation being weighted or unweighted. These details are obtained from dir-nodes and
are added in the rules within ’()’. For example, aggregate-node(weighted, 𝑈1) performs node
aggregation using a weighted graph where the node features are of 𝑈1 size. When performing the
rewrite, GALA replaces the cir-nodes matching to a pattern with nodes corresponding to the
resulting rewrite and links the relevant dir-nodes.

[𝑁𝑉𝑇𝑊𝑉]update-noderow broadcast ↑ aggregate-node+(unweighted) ↑ update-noderow broadcast

= update-edge→ ↑ aggregate-node(→,+) (weighted) [𝑊𝑋𝑌𝑍𝑊𝑉] (1)

[𝑁𝑉𝑇𝑊𝑉]update-nodelearn (𝑎𝑇:𝑁𝑎𝑍1𝑃→𝑄1,𝑏𝑐𝑑 :𝑁𝑎𝑍2𝑃→𝑄2,𝑈1<𝑈2) ↑ ..(other operations) ↑
aggregate-node(→,+) (𝑎𝑇:𝑁𝑎𝑍1𝑃→𝑄1,𝑏𝑐𝑑 :𝑁𝑎𝑍3𝑃→𝑄1)↑update-nodelearn (𝑎𝑇:𝑁𝑎𝑍3𝑃→𝑄1,𝑏𝑐𝑑 :𝑁𝑎𝑍4𝑃→𝑄2,𝑈1<𝑈2) =
update-nodelearn (𝑎𝑇:𝑁𝑎𝑍1𝑃→𝑄1,𝑏𝑐𝑑 :𝑁𝑎𝑍2𝑃→𝑄2,𝑈1<𝑈2)↑..↑aggregate-node(→,+) (𝑎𝑇:𝑁𝑎𝑍2𝑃→𝑄2) [𝑊𝑋𝑌𝑍𝑊𝑉]

(2)
We now present concrete examples of when these rewrites are applicable. In addition, for each

rewrite, we use an applicable example to demonstrate the equivalence of LHS and RHS IR sequences.
Equation (1). Graph convolution-based models such as GCN [29], SGC [48], and TAGCN [16]

are examples where this rewrite is applied. Taking GCN as a concrete example, the subset of its
computation that corresponds to the rewrite in matrix form is 𝑅̃↓ 1

2 ·𝐿̃·𝑅̃↓ 1
2 ·𝑀 (complete computation

detailed in Section 2.3). Note that while 𝑅̃ is originally a diagonal matrix (i.e. of 𝑒→𝑒 size, where
𝑒 is the number of nodes), it can be compressed to a vector (i.e. of 𝑒→1 size) as it only contains a
single value per row. This computation can be performed in the following ways using di"erent
mathematically equivalent associative choices matching the LHS and RHS of Equation (1).

• LHS. Associative choice: 𝑅̃↓ 1
2 ·(𝐿̃·(𝑅̃↓ 1

2 ·𝑀)). Compute 𝑓1=𝑅̃↓ 1
2 ·𝑀 by broadcasting the values of

the 𝑅̃↓ 1
2 vector along the rows of 𝑀 . This is an update-node operation type with a row broadcast

specialization. Use the result in an aggregate-node (SpMM) operation with 𝐿̃ and a sum special-
ization (sum node features over all incoming edges). This is applicable, as edge values are all 1
in an unweighted graph. This produces, 𝑓2 = 𝐿̃·𝑓1 Compute the !nal result 𝑓3 = 𝑅̃↓ 1

2 ·𝑓2 using
another update-node operation type with a row broadcast specialization.

• RHS. Associative choice: (𝑅̃↓ 1
2 ·𝐿̃·𝑅̃↓ 1

2)·𝑀 . Compute 𝑔1 = 𝑅̃↓ 1
2 ·𝐿̃·𝑅̃↓ 1

2 using an update-edge oper-
ation with a multiplication(→) specialization. This can be lowered to an SDDMM (detailed in
Appendix C), where 𝑅̃↓ 1

2 is used as both of the dense inputs. This results in a sparse matrix
that represents the adjacency matrix of a weighted graph. Using this graph with 𝑀 for an
aggregate-node operation with a multiplication-sum specialization (multiply node features
with edge value and sum over all incoming edges), results in, 𝑔2 = 𝑔1·𝑀 .

While 𝑓𝑀𝑕 uses more dense computations, and 𝑔𝑀𝑕 uses more sparse computations, they both
produce the same result with di"erent associative choices. Thus, mathematically, the !nal results
of both 𝑓𝑀𝑕 and 𝑔𝑀𝑕 are equivalent.

Equation (2). A matching set of operations necessary for this rewrite is seen in graph attention-
based models such as GAT [44] and its derivatives (GATv2 [8] etc.) Taking GAT as a concrete
example, the subset of its computation that matches the rewrite is 𝐿·𝑀 ·𝑆 . Here,𝑆 is a matrix
representing the learned weights in a neural network, and 𝑀 ·𝑆 (node-update) has already been
computed prior to reaching this point in the computation. Considering the associative property of

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

335:16 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

the operations in this computation, it is possible to compute this result in the following two ways,
each matching the LHS and RHS of Equation (2).
• LHS. Associative choice: 𝐿·(𝑀 ·𝑆). Compute 𝐿·(𝑀 ·𝑆) (node-aggregation) by reusing the pre-
computed (𝑀 ·𝑆).

• RHS. Associative choice: (𝐿·𝑀)·𝑆 Compute (𝐿·𝑀) (node-aggregation), and then multiply the
result with𝑆 (node-update).

Thus, mathematically 𝑓𝑀𝑕 = 𝑔𝑀𝑕 . In this scenario, if the node feature size increases with the
multiplication by𝑆 , LHS would make the 𝐿·(𝑀 ·𝑆) computation more computationally expensive.
Meanwhile, RHS would perform a considerably less computationally expensive (𝐿·𝑀) operation,
but would require an additional multiplication with𝑆 .
6.2.3 Training Invariant Code Motion. Certain operations in GNNs may produce results that are
invariant across training iterations. These operations can be signi!cant, taking a majority of the
total execution time of a model. An example is the GCN model’s !rst layer’s aggregation and
normalization calculations, as seen in Figure 8(a) (till iii→). The output for this computation does not
change across training epochs as no learning weights are involved in the calculations up to this
point. GALA can move computations like these out of the training loop, similar to loop-invariant
code motion commonly found in the domain of compilers. However, existing GNN systems cannot
automatically perform this optimization as it requires the unrolled view of the entire GNN model.
This is because this optimization can only be applied to the !rst layer’s operations that do not
depend on any learned weights, while the operations in the later layers would depend on the results
from learned weights in layers before it. GALA performs this optimization by traversing the CIR
nodes in the training loop, marking down computations that use learned weights or are dependent
on results of computations that use learned weights (tracked by the dependency relations in the
DIR). The CIR nodes that do not use or depend on learned weights are then moved before the
training loop in the CIR. Note that for this optimization, information about the workload (training
or just inference) of the model implemented in GALA is necessary. This is a detail that GALA
tracks, while existing GNN systems do not.

res = aggregate ...
 in:[dir0..],out:[dir1]

res = dsl.nn.ffn ...
 in: [dir1, dir2] ..

Complexity

n×n×605

n×605x32

res = dsl.nn.ffn ...
 in: [dir0, dir2] ..

n×605x32

res = aggregate ...n×n×32

n = # of nodes

Fig. 12. Operator
reordering in GALA

6.2.4 Complexity-Based Operator Re-ordering. This optimization performs
peephole-like, semantically equivalent reorderings to reduce the overall
complexity of a GNN program. Thus, we do not reorder operations that are
not associative. For example, reordering non-linear operations such as ReLU
can result in a di"erent !nal output. This optimization is found in existing
work where it was introduced to GNNs in [53] and to general sparse tensor
computations in [3]. An example is given in Figure 12, where the update
operation (dsl.nn.ffn) reduces the node feature embeddings from 605
to 32. By moving this operation before aggregation, the aggregation can
then execute on node embeddings of size 32 instead of 605. GALA performs this transformation
by traversing the CIR in order, considering adjacent pairs of CIR nodes that would still produce
semantically equivalent results when re-ordered. If they can be reordered, GALA checks their
computational complexity using the dimension information of the DIR nodes of their inputs. If
reordering the operations can reduce the overall computation of both operations, GALA swaps
their order in the CIR list as shown in Figure 12, and updates the relevant DIR nodes. This process
continues iteratively until no reordering is performed.

6.3 Code Generation
GALA e#ciently generates C++ code with LibTorch and CUDA, using the information speci!ed
in the CIR and DIR. GALA does this code generation using two passes over the IR: (a) the custom

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:17

kernel generation pass and (b) the end-to-end code generation pass. Note that we use LibTorch
as the underlying ML framework to use the existing infrastructure for training machine learning
models and to implement the Neural Network operations of GNNs. We generate custom CUDA
kernels whenever we cannot use an existing operation from LibTorch.

6.3.1 Custom Kernel Operations. The !rst pass of GALA’s code generation process generates
custom kernels not supported by the underlying ML framework. GALA does this by !rst traversing
the entire CIR node list from end-to-end and identifying all the custom compute kernels necessary
throughout the GNN program, including those necessary for the backward pass. GALA identi!es the
kernels necessary for a backward pass through a rule-based identi!cation that uses the information
stored in the CIR nodes and information in the input and output DIR nodes. For example, iii→ in
Figure 8, which performs node-aggregation on 2→ using 3→ in the forward pass, would also perform a
node-aggregation on 2→ (no need to transpose as 2→ is undirected) using the derivatives of the output
in the backward pass. Thus, the same kernel used in the forward pass can be used in the backward
pass if no special transformations are speci!cally made for the backward computation or its inputs.

Algorithm 1: GALA’s Code Generation
Input: Data-IR (𝑅𝑆𝑇), Compute-IR (𝑈𝑆𝑇)
Output: Torch/Cuda executable (𝑈𝑉𝑅𝑊)

1 Function generateExecutable(𝑅𝑆𝑇, 𝑈𝑆𝑇):
/* 1𝐿𝑀 pass: Custom kernels */

2 𝑈𝑋𝑌𝑀𝑉𝑍𝑎𝑊𝑏𝑃𝑌 ↗ [];
3 foreach 𝑃𝑉𝑅𝑊 ↘ 𝑈𝑆𝑇 do
4 if needCustomKernel(𝑃𝑉𝑅𝑊 .𝑐 𝑉𝑏𝑑𝑒𝑏𝑅) and not in

𝑈𝑋𝑌𝑀𝑉𝑍𝑎𝑊𝑏𝑃𝑌 then
5 𝑈𝑋𝑌𝑀𝑉𝑍𝑎𝑊𝑏𝑃𝑌 .𝑒𝑅𝑅 (𝑃𝑉𝑅𝑊 .𝑐 𝑉𝑏𝑑𝑒𝑏𝑅)
6 end
7 if needCustomKernel(𝑃𝑉𝑅𝑊 .𝑓𝑒𝑈𝑄𝑑𝑒𝑏𝑅) and not in

𝑈𝑋𝑌𝑀𝑉𝑍𝑎𝑊𝑏𝑃𝑌 then
8 𝑈𝑋𝑌𝑀𝑉𝑍𝑎𝑊𝑏𝑃𝑌 .𝑒𝑅𝑅 (𝑃𝑉𝑅𝑊 .𝑓𝑒𝑈𝑄𝑑𝑒𝑏𝑅)
9 end

10 end
11 𝑔𝑊𝑃𝑊𝑏𝑒𝑀𝑊𝑎𝑊𝑏𝑃𝑊𝑂𝑌 (𝑈𝑋𝑌𝑀𝑉𝑍𝑎𝑊𝑏𝑃𝑌, 𝑈𝑉𝑅𝑊) ;

/* 2𝑁𝑂 pass: End-to-end */

12 foreach 𝑃𝑉𝑅𝑊 ↘ 𝑈𝑆𝑇 do
13 if needCustomKernel(𝑃𝑉𝑅𝑊 .𝑐 𝑉𝑏𝑑𝑒𝑏𝑅) then
14 𝑔𝑊𝑃𝑊𝑏𝑒𝑀𝑊𝑕𝑋𝑀𝑉𝑔𝑏𝑒𝑅 (𝑃𝑉𝑅𝑊, 𝑈𝑉𝑅𝑊) ;
15 end
16 𝑔𝑊𝑃𝑊𝑏𝑒𝑀𝑊𝑖𝑉𝑅𝑊 (𝑃𝑉𝑅𝑊, 𝑈𝑉𝑅𝑊) ;
17 if node is dataload then
18 𝑔𝑊𝑃𝑊𝑏𝑒𝑀𝑊𝐿𝑏𝑒𝑃𝑌 𝑐 𝑉𝑏𝑍𝑌 (𝑃𝑉𝑅𝑊, 𝑈𝑉𝑅𝑊) ;
19 end
20 end
21 𝑈𝑉𝑃𝑐 𝑗𝑔 ↗ 𝑔𝑊𝑀𝐿𝑏𝑒𝑗𝑃𝑗𝑃𝑔𝑖𝑉𝑃𝑐 𝑗𝑔 (𝑈𝑆𝑇) ;
22 𝑔𝑊𝑃𝑊𝑏𝑒𝑀𝑊𝐿𝑏𝑒𝑗𝑃𝑗𝑃𝑔 (𝑈𝑉𝑃𝑐 𝑗𝑔, 𝑈𝑉𝑅𝑊) ;

During the traversal of the CIR, GALA
ensures that no duplications or kernels
already supported in the underlying ma-
chine learning system are added to this
list. GALA achieves this by using the
information in the computation’s CIR
node and its inputs’ and outputs’ DIR
nodes. For example, even if the underly-
ing system supports a node-aggregation
operation (underlying kernel is SpMM)
needed for iii→ in Figure 8, because 2→
is unweighted, it can use a kernel for
node-aggregation that does not read the
edge values of the graph. This would
require GALA to generate a custom
kernel di"erent from a generic node-
aggregation kernel. In this instance, the
relevant kernel must be added to the cus-
tom kernel list. After completing this
list by traversing the entire CIR, GALA
generates the necessary custom kernels
with the transformations speci!ed in
the relevant CIR nodes and the DIR
nodes. For example, using 2→ and iii→
in Figure 8, GALA generates a node-
aggregation kernel (SpMM), that does
not read the edge values of the graph,
operates on a column tiled graph, and
has a thread coarsening factor of 2.

6.3.2 End-to-End Code Generation. GALA’s second pass over its IR generates end-to-end code for
the GNN program. In this stage, GALA traverses the CIR, generating the code for the computation
of each traversed node. For each dataset loading (loads to memory) or data generation operation
encountered, GALA adds the data transformations performed on the outputs of these operations.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

335:18 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

These transformations can be identi!ed from the DIR nodes of the outputs in the CIR nodes of the
data-loading operations. For example, in Figure 8, i→ loads 1→ and 3→ on to memory. GALA further
transforms 1→ through the col_tile operation to produce 2→ (represented as transformation
relation in the DIR). Note that GALA performs these transformations on CPU instead of GPU. After
the transformation has been performed, GALA adds the necessary memory transfer operations
to copy the now transformed data from host memory (CPU) to device memory (GPU). GALA can
then use this data in subsequent computations that it encounters while traversing the CIR. GALA
uses the custom kernels that it generated, along with existing kernels of the underlying system, for
the code generation of these computations. Note, for compute operations in the training loop that
use custom kernels, GALA must additionally generate Autograd functions with both forward and
backward operations. After traversing through the entire CIR and generating the relevant code,
GALA generates the code necessary for training based on training con!gurations. GALA stores
this information in the training loop node in the CIR. This is a straightforward code generation
that uses the built-in functions of LibTorch.

7 Implementation
7.1 Compiler
We developed the GALA compiler in C++ with LibTorch and CUDA as the target languages. We
build the front-end parser using Flex and Bison [33], which lowers the front-end language to an
AST. We use this AST to generate the two IRs of GALA for a given GNN program (Section 6.1.4).
We use the code generation process detailed in Section 6.3 to generate an executable based on
LibTorch and CUDA. Note that we only generate primitive kernel code in CUDA for the kernels
of computation operations we intrusively optimize. For other instances, we use cuSparse [37] for
sparse computations and LibTorch [38] for dense DNN computations. In addition, we store input
datasets in a binary representation to make data loading faster.

7.2 Input-Aware Compilation 1 G=G.opt_input(!/path/to/dataset!);

Fig. 13. Schedule for input-aware code genera-
tion in GALA

The input sensitivity of optimizations is a prop-
erty inherent in any graph-based sparse computa-
tion. As GNNs have irregular sparsity due to their
graph input, !nding the best schedule in GALA for a particular input would be challenging for a
user. As a solution, we provide an additional feature for GALA, which can inspect the input dataset
to predict the best schedule. This is done using the scheduling command, opt_input, as shown
in Figure 13. Through this, GALA can know the input dataset at compile time and perform an
𝑖 (𝑗) (𝑗 is the number of edges in the graph) analysis on the graph of the dataset to predict the
best scheduling parameters. GALA predicts these parameters using heuristic rules. For example,
by inspecting the input graph, the compiler can know its sparsity (𝑗/𝑒 2, 𝑒 being the number of
nodes in the graph) and use it to determine if to apply GALA’s sparse rewrite rules. We show a
quick evaluation of this feature of GALA in Section 8.5.5.

8 Evaluation
This section evaluates the performance of GNN models implemented in GALA in comparison with
multiple existing works. We conduct these evaluations separately for GNN inference and training,
and perform further ablations as well as sensitivity studies to demonstrate the capabilities of GALA.

8.1 Research"estions
(1) How much faster are GNN models implemented in GALA compared to existing systems for,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:19

(a) Inference: optimizing only the forward pass (Section 8.3)
(b) Training: optimizing the GNN model for training, which includes both the forward pass

and the backward pass (Section 8.4)
(2) How does each IR of GALA contribute to the overall speedup a GNN? (Section 8.5.1)
(3) How well does GALA scale? Speci!cally, when the number of hidden layers and hidden dimen-

sions of the GNNs change, as well as when the graph scales? (Section 8.5.2)
(4) What is the memory consumption of GALA compared to existing systems? Do di"erent opti-

mization choices of GALA also a"ect memory consumption? (Section 8.5.3)
(5) How do GALA’s data and compute transformation for sampling perform? (Section 8.5.4)

8.2 Experimental Setup
GNN Models and Hyper-parameter Con!gurations. - We evaluate GALA using 4 GNN

models. For the main evaluations, we use Graph Convolutional Networks (GCN), Graph Attention
Network (GAT) [44], Graph Isomorphism Network (GIN) [52], and GraphSAGE (SAGE) with the
mean aggregation [20]. We selected these four models due to their ubiquitous use in recent studies
[14, 21, 23, 28, 34, 36, 46] as well as in the evaluation of multiple GNN systems, including our
baselines [19, 24, 45, 50, 51, 54, 56, 60]. We use two layers for all models with a hidden feature
dimension of 32. We believe this is a representative con!guration as it is used in prior work [29, 59]
to achieve high levels of accuracy, with similar con!gurations used by our baselines for their
evaluations [24, 45, 50]. However, we conduct a further study with varying layers and hidden
feature dimensions in Section 8.5.2 to show GALA’s performance with varying hyper-parameter
con!gurations. In addition, to showcase sampling in GALA, we evaluate the e"ect of node sampling
on a GraphSage model with the GCN pooling strategy.

Datasets. - We list the graphs used for our evaluation in Table 6. We source these graphs from
two widely used sources: (a) from DGL’s graph datasets and (b) from Open Graph Benchmark’s
(OGB) node property prediction datasets. We made this selection as these graph datasets cover
various sizes and non-zero distributions while being used for evaluation in other GNN systems
[45, 50, 51, 54, 56, 60]. For our graph scalability analysis in Section 8.5.2, we use the OGBN-
papers100M dataset with node sampling.

Table 6. Graphs used for evaluation

Graph #Nodes #Edges #Features #Classes Source Train:Val:Test
Cora 2,708 10,556 1,433 7 DGL 9:30:61
Pubmed 19,717 88,651 500 3 DGL 4:32:64
CoraFull 19,793 126,842 8,710 70 DGL 70:15:15 1

Reddit 232,965 114,615,892 602 41 DGL 66:10:24
ogbn-arxiv 169,343 1,166,243 128 40 OGB 54:17:29
ogbn-products 2,449,029 126,167,053 100 47 OGB 8:2:90

TestbedMachines. - Machine learning models are typically run on a GPU. Thus, we perform our
evaluations on two GPU machines, which used (a) an NVIDIA H100 GPU with 94 GB of memory,
the host being an AMD EPYC 9454 CPU with a RAM of 377GB and (b) an NVIDIA A100 GPU with
80 GB of memory, the host being an Intel Xeon Platinum 8358 CPU with a RAM of 256GB.
Baselines. - We use multiple baselines to show that GALA can achieve signi!cant speedups

compared to existing systems by composing multiple optimizations at di"erent levels in a GNN
model. We make comparisons against both (a) GNN systems: DGL (v2.4, commit #7738, released
1We performed a 𝑀𝑏𝑒𝑗𝑃 : 𝑘𝑒𝑂𝑗𝑅𝑒𝑀𝑗𝑉𝑃 : 𝑀𝑊𝑌𝑀 set split at a 70 : 15 : 15 ratio for this graph dataset as it did not have any
inherent dataset separation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

335:20 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

2024) [45], SeaStar [50], and WiseGraph [24], as well as (b) Sparse Tensor systems: SparseTIR
[54]. In their evaluations, SparseTIR and WiseGraph compare against other GNN systems, such
as GNNAdvisor[47] and dgSparse[25], showing speedups over them. Note that we did not extend
the existing implementations of primitives within these baselines. Thus, we only have evaluations
for a subset of the models for certain baselines. For example, we only compare GCN, GIN, and
SAGE for SparseTIR, as the released artifact does not have the primitives necessary for GAT. To
show GALA’s usability, we conducted a simple line-number study. To implement an optimized
GCN model for the Reddit dataset, GALA only requires 23 lines of code, while DGL requires 323
(with the necessary optimizations added as custom kernels) and SparseTIR requires 91 lines of code.
Note that this is only a proxy for a proper usability study.

As a sanity check to ensure that GALA’s and the baselines’ results were accurate, we compared
the test accuracy of all evaluations. This led us to discover a bug in the artifact of WiseGraph for
GAT. We resolved this issue after discussions with the authors and presented results after the !x
(where the authors suggested an alternative code). We discovered a similar issue with SeaStar for
GAT, speci!cally on the H100 machine. In this instance, we avoided reporting the numbers as the
issue seemed to be hardware-speci!c, and our best e"orts did not yield a !x.

8.3 GNN Inference Runtime Performance

0.5
1
2
4
8

16

G
A

L
A

S
pe

ed
up

(w
rt

ba
se

lin
es

)

model
graph Cora

GC
N

GA
T

GI
N

SA
GE

PubMed
GC

N
GA

T
GI
N

SA
GE

CoraFull
GC

N
GA

T
GI
N

SA
GE

Reddit
GC

N
GA

T
GI
N

SA
GE

OGBN-Arxiv
GC

N
GA

T
GI
N

SA
GE

OGBN-Products
GC

N
GA

T
GI
N

SA
GE

Systems: DGL SeaStar SparseTIR WiseGraph

(a) H100

0.5
1
2
4
8

16

G
A

L
A

S
pe

ed
up

(w
rt

ba
se

lin
es

)

model
graph Cora

GC
N

GA
T

GI
N

SA
GE

PubMed
GC

N
GA

T
GI
N

SA
GE

CoraFull
GC

N
GA

T
GI
N

SA
GE

Reddit
GC

N
GA

T
GI
N

SA
GE

OGBN-Arxiv
GC

N
GA

T
GI
N

SA
GE

OGBN-Products
GC

N
GA

T
GI
N

SA
GE

(b) A100
Fig. 14. Speedup of GALA over baselines for model inference. Here, a speedup > 1 indicates GALA outperforms
a baseline. The 𝑘 ↓ 𝑌𝑙𝑎𝑊 is in 𝑃𝑏𝑚2.

Figure 14 shows the speedups of GALA compared to the baselines evaluated. We observe signi!-
cant speedups against the majority of the baselines evaluated. We observed the execution times for
GALA (as well as in our baselines) varied signi!cantly based on the graph dataset: 0.26𝑛𝑊 for Cora,
and 14.85𝑛𝑊 for ogbn-products, as well as the GNN model: for Reddit, 5.62𝑛𝑊 for GCN, 17.73𝑛𝑊 for
GAT. Results below the dotted red line at 1.0 indicate that the baseline performs better than GALA,
while higher values indicate that GALA outperforms the respective baseline.

For GALA, we observe geo-mean speedups of 2.74→ over DGL, 1.97→ over SeaStar, 3.43→ over
SparseTIR, and 2.37→ over WiseGraph. Model-wise, we observe geo-mean speedups of 2.4→ for
GCN, 2.63→ for GAT, 3.12→ for GIN, and 2.16→ for SAGE when averaging across all four baselines
and two machines. Machine-wise, we observe geo-mean speedups of 2.62→ for H100, and 2.48→ for
A100 when averaging across all our four baselines and models. Considering the example for the
Reddit Dataset for GCN on the H100 in Figure 3(a), each of the intra-operator optimizations, column-
tiling and using operators specialized for unweighted graphs, results in speedups of 1.3→. When

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:21

combined, the total speedup achieved through intra-operator optimizations is 1.6→. However, when
composed with the operator reordering inter-operator optimization (5→ speedup), the composition
achieves a synergistic speedup greater than the product of their independent speedups in isolation
(10.3→ > (8→ = (1.6 ≃ 5)→)). This ability to compose inter- and intra-operator optimizations makes
GALA a powerful tool to achieve signi!cant speedups for GNNs over existing systems.
We observed slowdowns compared to the baseline systems on only a few occasions (12 out of

174 in Figure 14). These slowdowns were mainly observed in smaller (PubMed) or sparser (OGBN-
Products) graphs but were inconsistent across baselines and models. For these datasets, we noticed
that the specialized optimizations applied by some of our baselines were bene!cial. For example,
the load-balancing optimization for sparse operations that Seastar applies. However, GALA still
achieves considerable speedups overall, being close to or over 2→ for each baseline.

8.4 GNN Training Runtime Performance

0.5
1
2
4
8

16
32
64

G
A

L
A

S
pe

ed
up

(w
rt

ba
se

lin
es

)

model
graph Cora

GC
N

GA
T

GI
N

SA
GE

PubMed
GC

N
GA

T
GI
N

SA
GE

CoraFull
GC

N
GA

T
GI
N

SA
GE

Reddit
GC

N
GA

T
GI
N

SA
GE

OGBN-Arxiv
GC

N
GA

T
GI
N

SA
GE

OGBN-Products
GC

N
GA

T
GI
N

SA
GE

Systems: DGL SeaStar SparseTIR WiseGraph

(a) H100

0.5
1
2
4
8

16

G
A

L
A

S
pe

ed
up

(w
rt

ba
se

lin
es

)

model
graph Cora

GC
N

GA
T

GI
N

SA
GE

PubMed
GC

N
GA

T
GI
N

SA
GE

CoraFull
GC

N
GA

T
GI
N

SA
GE

Reddit
GC

N
GA

T
GI
N

SA
GE

OGBN-Arxiv
GC

N
GA

T
GI
N

SA
GE

OGBN-Products
GC

N
GA

T
GI
N

SA
GE

(b) A100

Fig. 15. Speedup of GALA over baselines for model training for 100 epochs. Here, a speedup > 1 indicates
GALA outperforms a baseline. The 𝑘 ↓ 𝑌𝑙𝑎𝑊 is in 𝑃𝑏𝑚2.

Figure 15 shows the speedups of GALA compared to the baselines when training GNNmodels for
100 epochs. Results below the dotted red line at 1.0 indicate that the baseline performs better than
GALA, while higher values indicate that GALA outperforms the respective baseline. We observe
geo-mean speedups of 2.1→ over DGL, 3.83→ over SeaStar, 2.69→ over SparseTIR, and 2.01→ over
WiseGraph, when training. Model-wise, we observe geo-mean speedups of 2.97→ for GCN, 1.9→ for
GAT, 2.64→ for GIN, and 2.44→ for SAGE. Machine-wise, we geo-mean speedups of 3.35→ for the
H100 machine and 1.94→ for the A100 machine. As Figure 4 shows, a 7→ speedup can be achieved
for training a GCN model for the Reddit dataset with only inference optimizations. However, this
can be increased signi!cantly to 12→ by training speci!c optimizations such as training-mask-based
sub-graph creation (Section 6.2.1) and training invariant code motion (Section 6.2.3). These training-
speci!c optimizations allowed GALA to achieve a geo-mean speedup of 2.52→ over other baselines,
compared to the geo-mean speedup of 2.08→ achievable with only optimizations for inference.

We observe a comparatively lesser speedup for GAT, as optimizations such as training-invariant
code motion (Section 6.2.3) cannot be performed as the aggregation operation involves learned
weights. The few slowdowns we observed (20 out of 174 in Figure 15) were mainly against SeaStar
and WiseGraph for smaller graphs (Cora). However, we observed signi!cant speedups for larger
graphs (Reddit). This points to these systems being more optimized for smaller graphs.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

335:22 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

8.5 Ablation and Sensitivity Studies Table 7. Speedup from CIR and DIR separately, only from
both CIR and DIR, and combining all for Reddit(RD) and
OGBN-Products(OP) (2-layer GCN, hidden dim. of 32)

IRs used Speedup Transformations appliedRD OP
Only CIR 0.9→ 0.9→ Thread coarsening

Only DIR 1.36→ 1.26→ Column tiling, unweighted
graph kernels

CIR and DIR 5→ 1.5→ Inter-operator transformations
Combining all 10.3→ 2.5→ Combining all transformations

8.5.1 Isolated Contributions of IRs. We
use Table 7 to showcase the importance
of each IR in GALA and the bene!t of
their combination. Note that we designed
our IRs to be heavily interconnected.
Isolating each IR limits the transforma-
tions that are applied to just one type of
intra-operator transformation. With only
CIR, transformations are limited to intra-
operator compute transformations (e.g.
thread coarsening), while with only DIR, transformations are limited to intra-operator data trans-
formations (e.g. column tiling). Using both CIR and DIR simultaneously allows for inter-operator
transformations (Section 6.2) but still falls short of the speedup achievable when all transformations
are combined. With this, we again see the synergy of applying multiple types of transformations
leading to higher speedups (For RD, 10.3>(0.9→1.36→5)), similar to what we observed in Section 3.

32 64 128 256 512 1024
Hidden dimensions

2
3

4
8

La
ye

rs
2.9 2.6 2.4 2.3 2.2 2.0

3.1 2.7 2.4 2.2 2.2 2.0

3.3 2.8 2.4 2.3 2.1 2.1

3.5 3.0 2.5 2.3 2.3 2.3
2.0

2.5

3.0

3.5

Fig. 16. Heatmap of speedups over
WiseGraph for GALA with varying
number of layers and hidden dimen-
sions (Reddit,GCN).

8.5.2 Scalability. Figure 16 shows the speedups of GALA
against WiseGraph across 2, 3, 4, and 8 layers and hidden
dimensions varying from 32 to 1024. For this evaluation, we
tested the GCN model for the Reddit dataset. We observe
that the speedups generally increase as the number of lay-
ers increases. This stands as evidence of GALA’s capability
to optimize each layer of a given GNN model to contribute
to the !nal overall speedup. We also observe a decrease in
speedup as the hidden dimension size increases. This is due
to the greater increase in the overall runtime of the update
operations (GEMM primitive) where we use the same imple-
mentation as the baseline (Torch, which WiseGraph also uses), compared to the sparse operations,
such as aggregate, which GALA optimizes more compared to the baseline. To elaborate, given that
𝑒 is the number of nodes in the graph, 𝑗 is the number of edges, and 𝑜 is the hidden dimension
size (assuming both input and output sizes are same for simplicity), the complexity of the update
operation is𝑖 (𝑒 ·𝑜2), while the aggregate operation is𝑖 (𝑗 ·𝑜) (growing at𝑜2 vs. 𝑜). Nonetheless,
we still observed signi!cant speedups across all the layers and hidden dimensions we evaluated.

Table 8. Runtimes for OGBN-papers100M with node sampling

Sample #Nodes #Edges GALA DGL WiseGraph
1 % 1.11M 1.31M 3.11 4.19 3.56
2 % 2.22M 3.01M 6.07 7.64 6.81
5 % 5.55M 9.73M 15.62 18.75 16.9
10 % 11.11M 29M 31.61 39.63 41.85
20 % 22.21M 49.77M 62.98 94.52 𝑖𝑖𝑝

Weuse theOGBN-papers100M dataset
with node sampling to show GALA’s
scalability with increasing graph sizes.
Here, we sample the !rst 𝑇% of nodes
when performing the node sampling.
Figure 16 shows the results of this eval-
uation by presenting the runtimes of
GALA, DGL, and WiseGraph with dif-
ferent node-sampling percentages. We
observe that GALA consistently achieves the best runtimes across the di"erent graph sizes. These,
as well as the previous results with di"ering layers and hidden dimensions, show that GALA
achieves considerable speedups across di"erent layers, hidden dimensions, as well as graph sizes.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:23

DGL Wise-
Graph

GALA
memory

GALA
time

0

10

20

30

40

R
un

ti
m

e(
m

s)

0

2

4

6

8

10

M
em

or
y

U
se

d(
G

B
)

1.
22

×
fa

st
er

2.
03

×
le

ss
m

em
or

y

Time(ms)
Memory(GB)

Fig. 17. Memory use and run-
time of DGL, WiseGraph, and
GALA with memory and time op-
timized schedules (2-layer GCN)

8.5.3 E!ect of Memory Consumption on Di!erent Schedules. Fig-
ure 17 shows runtime and memory consumption when training a
2-layer GCN model, for the Reddit graph dataset, for DGL, Wise-
Graph, and two di"erent scheduling choices for GALA. The !rst
schedule optimizes for memory and then performance, while the
latter further optimizes performance at the cost of a higher memory
consumption (2.05→ more memory to run 1.23→ faster). This addi-
tional memory consumption comes from tiling the graph (which is
larger than the graph without tiling) and creating subgraphs based
on the training set (Section 6.2.1). By allowing the control of such
choices through a schedule, GALA can facilitate the execution of
larger graph datasets at the cost of performing sub-optimally (yet still faster than existing systems).

Table 9. Accuracy and inference times of di"erent sampling
methods in GALA for Reddit (RD) and OGBN-Products(OP)
(Sample size = 20, GCN)

Sampling Method Time(ms) Test Acc(%)
RD OP RD OP

No sampling 6.47 12.53 94.51 71.04
Data sampling 0.95 6.38 92.07 73.31Kernel sampling 1.07 7.26
Dynamic Kernel sampling 1.07 7.26 93.13 75.12

8.5.4 Sampling. We use neighborhood
sampling to inspect the impact of func-
tionally similar data and compute trans-
formations in GALA. We observe that the
di"erent methods of sampling result in
varying outcomes, especially with other
optimizations in play. The neighborhood
sampling methods in GALA are, (a) data
sampling - creates a sampled sub-graph
of the original input graph, and (b) kernel
sampling - samples during the kernel exe-
cution itself based on random values passed to the kernel. Table 9 shows the time and test accuracy
observed for a GraphSage model with GCN pooling, for GALA with (i) no sampling (best schedule),
(ii) with data sampling (e.g. G.sample(..)), (iii) with kernel sampling (e.g. aggr_fn.sample(..)),
and (iv) with dynamic kernel sampling (e.g. aggr_fn.sample(..).dynamic()). Note that in the
latter sampling method, the samples di"er across epochs (thus, dynamic) and are not semantically
the same as (ii) and (iii). As seen in Table 9, the di"erent sampling methods show speedups against
the model without sampling. Notably, sampling applied to OGBN-Products produced a higher
accuracy than the un-sampled execution due to inductive learning [20].

The most suitable sampling method may di"er depending on the objective of executing the GNN
model. While data sampling has the fastest inference time per epoch, it incurs a pre-processing
overhead and consumes more memory. This overhead and memory consumption are dependent
on the graph and were 716MB (20% of the total memory consumption) and for 1.9 ms Reddit. In
situations with signi!cant constraints on memory or if the GNN model was only run for a single
pass, the kernel sampling approach would be more bene!cial. If the objective is accuracy, the more
advanced dynamic kernel sampling is the most suitable as it dynamically samples across epochs.
This is shown for the OGBN-Products dataset, where it achieves the highest accuracy.

0 5 10
Execution Time(ms)

Reddit

OGBN-
Products

Hand-select Input-aware

Fig. 18. GALA’s input-aware
code-generation compared to
hand-tuned schedules

8.5.5 Manual Schedules vs. Input-Aware Compilation. The input-
aware compilation (Section 7.2) found schedules that were within
10% of hand-tuned schedules. By inspecting the dataset, GALA
predicts the best con!guration for most schedules deterministically
(such as set_undirected). GALA predicts a parameter for other
non-trivial schedules such as col_tile using heuristics.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

335:24 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

8.5.6 Overheads. GALA’s compilation overhead is very minimal, averaging only 5𝑛𝑊 . In addition
to the compilation time, the data transformations of GALA also introduce preprocessing overheads
to the GNN program. Notably, col_tile can have a signi!cant overhead, especially for smaller
tiling factors. In our evaluations, we use col_tile only for Reddit. The sub-graph creation in
Section 6.2.1 also introduces an overhead when performing training. However, these overheads can
be amortized, especially when training, as a GNN model can train for a large number of epochs
[6]. The overall preprocessing overhead we observe for Reddit is approximately 25% of a training
execution with 1000 epochs. This overhead is justi!able as even with it added to the execution
time, we still see a speedup of 3.02→ over WiseGraph. Moreover, transformations such as these
that produce overheads can be turned o" through GALA’s scheduling language based on a user’s
need. In addition, although we observed signi!cant overheads (over 500s in certain instances) in
the other baseline systems, such as SparseTIR, we make comparisons purely on runtime.

9 Related Work
DNN Systems. Throughout the years, multiple systems have been developed to optimize deep
neural networks, which are primarily composed of dense operations. Compilers such as XLA [42]
and PyTorch 2 [4] have achieved signi!cant speedups through various compiler optimizations and
have enabled the e#cient execution of large DNN models such as Large-Language Models (LLMs).
However, DNN systems cannot e#ciently implement GNNs as they do not support irregular sparse
computations, which brings its own challenges to the table.

DSLs with Scheduling Languages. We draw inspiration from Halide [40], the work that !rst
popularized the separation of algorithms and schedules for generating optimized code and targeted
image processing applications. An extension of Halide also introduced the ability to schedule
computations of operations used in the backward pass [35] similar to GALA. However, it only
focused on the computations themselves, whereas in GALA, transformations can be performed
on both the computations and data used in the backward pass. Slapo [9] is another system that
uses Halide as inspiration and presents a scheduling language for Large Deep Learning Models.
Graphit [58], and TACO [30], are scheduling languages much closer to GNNs as they focus on
graphs and sparse tensors, respectively. Compared to these languages, GALA opts for a hybrid
scheduling-automatic optimization approach focusing on GNNs.
Sparse Tensor Systems. The irregularity of most sparse computations led to multiple works

that achieve optimizations through innovative techniques applicable beyond regular-dense compu-
tations. A classical optimization is changing the underlying sparse data format. Adaptive Sparse
Tiling [22] is a well-known work in this domain that tiles the adjacency matrix of a graph based on
the degree of a node. There have been other works that select the best sparse format based on the
input [55], with some among them speci!cally focusing on GNNs [39]. Considering input sensitivity,
there have been multiple works that achieve signi!cant speedups through inspector-executor-based
executions [10, 11]. TACO [30] is another milestone work in the domain of sparse computations, as
it produced a novel intermediate representation that allowed the general representation of multiple
sparse formats along with scheduling transformations. Many works have followed which improve
upon TACO, such as [3, 13, 27], which perform optimizations on loop ordering in sparse computa-
tions, and the fusion of kernels [12, 13]. In addition, going beyond traditional CPU implementations,
sparse tensor systems that function on GPUs, such as SparseTIR [54] and GSparse [26] have also
been developed. Systems such as SpEQ [31] and Mosaic [5] provide a new direction to lowering
sparse matrix operations by leveraging existing high-performance implementations whenever
possible. However, compared to the end-to-end GNN optimizations that GALA enables, most sparse
tensor systems focus on a single operator or a set of adjacent operators to improve performance for

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:25

general sparse computations. This leads to these systems missing domain-speci!c optimizations
explored under GALA.
GNN Systems. Multiple GNN systems, ranging from general-purpose GNN frameworks to

compilers targeting specialized GNN models, have been developed over the years. DGL [45], and
PyG [18] still stand as popular frameworks due to their programmability and regular updates that
continuously improve existing implementations. Graphiler [51] and SeaStar [50] are compilers
specialized for optimizing GNNs with user-de!ned functions. Hector [49] is a system that uses
a data layout and kernel IR separation similar to GALA to optimize for Relational GNNs. In
addition to these systems, there have been multiple works that achieve signi!cant speedups in
GNNs through various optimizations. [56] uses multiple optimization techniques, such as operator
reordering, kernel fusion, and re-computation of training results to achieve signi!cant speedups.
GNNAdvisor [47] exposes the importance of input aware-optimizations in GNNs, such as reordering.
uGrapher [60] is another input-aware system that optimizes GNNs by selecting through di"erent
parallelization schemes. WiseGraph [24] uses graph partitioning to accelerate GNN models. In
addition, operator fusion is another optimization commonly seen applied in the domain of GNNs
[19, 41]. Compared to these systems, GALA composes intra- and inter-operator optimizations to
achieve signi!cant speedups. Through GALA’s IR design, GALA can also retain a global view of
an entire GNN program to enable optimizations speci!c to the training context and enhance the
end-to-end performance of GNNs.
10 Limitations and Future Work
GALA shows the synergistic bene!ts of performing both intra- and inter-kernel optimizations in
GNNs while enabling novel automatic domain-speci!c optimizations. We believe that GALA can
be extended to include even more optimizations, which we consider as valuable future work. Here,
we list some of these along with potential methods to support them.
• GALA does not expose all possible schedule optimizations, such as !ne-grained control of
memory (in GPUs, storing and using in global or shared memory) and thread mapping. Speci!-
cally, these optimizations can be exposed to the user by extending the scheduling language and
storing the speci!ed transformations in the CIR or DIR.

• Operator fusion is a powerful technique that can be used to attain signi!cant speedups (e.g. one
of the techniques used by SeaStar to attain the speedups in Figure 14 for GAT). GALA can add
this transformation to its arsenal by adding a new transformation pass to fuse nodes in the CIR.

• GALA performs code transformations that are either (a) based on the input schedule (intra-
operator) or (b) are automatic transformations that always improve runtime (inter-operator).
However, more intricate transformations (such as operator fusion as described in the point
above) would require complex input-aware decisions to be made at both the intra- and inter-
operator levels. Extending the current transformation infrastructure to incorporate tools such
as cost models for simulating runtime costs would enable better search strategies and allow
such transformations to be supported by GALA.

11 Conclusion
In this work, we introduce GALA, a DSL and a compiler that optimizes both GNN inference
and training. GALA compiler composes optimizations at both intra- and inter-operator levels
by separately tracking the transformations using its compute and data IRs. This allows GALA to
exploit synergies between optimizations that happen at di"erent levels, leading to improved runtime
performance. Further, GALA’s IRs maintain a global view of the GNN computation, allowing it
to perform novel training-speci!c optimizations. Our evaluations show that GALA outperforms
state-of-the-art GNN inference and training systems across widely used GNN models and graphs.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

335:26 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

Data-Availability Statement
Our artifact [32], evaluated and freely available, is a C++ code repository that implements a DSL
compiler that lowers GNN models written in the GALA language to CUDA and LibTorch. When
compiled, this repository would generate the compiler as an executable. The datasets used for the
artifact are well-known in the GNN domain and are publicly available at https://ogb.stanford.edu/
docs/nodeprop/ and https://www.dgl.ai/dgl_docs/api/python/dgl.data.html.

Acknowledgments
We thank the anonymous reviewers for their constructive feedback and our shepherd for their
guidance. We would also like to thank Sameh Gobriel for all the guidance given, Vimarsh Sathia
for the support in the early stages of the project, as well as Wanyu Zhao, Stefanos Baziotis, and Jai
Arora for their feedback on drafts of this paper. This work was supported in part by ACE, one of
the seven centers in JUMP 2.0, a Semiconductor Research Corporation (SRC) program sponsored
by DARPA and by NSF under grant CCF-2316233.

References
[1] Abien Fred Agarap. 2018. Deep learning using recti!ed linear units (relu). arXiv preprint arXiv:1803.08375 (2018).
[2] WillowAhrens, Daniel Donenfeld, Fredrik Kjolstad, and SamanAmarasinghe. 2023. Looplets: A Language for Structured

Coiteration. In Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization
(Montréal, QC, Canada) (CGO ’23). Association for Computing Machinery, New York, NY, USA, 41–54. doi:10.1145/
3579990.3580020

[3] Willow Ahrens, Fredrik Kjolstad, and Saman Amarasinghe. 2022. Autoscheduling for sparse tensor algebra with an
asymptotic cost model. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY,
USA, 269–285. doi:10.1145/3519939.3523442

[4] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin Bao, Peter
Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban Desmaison, Zachary
DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar,
Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie
Pan, Christian Puhrsch, Matthias Reso, Mark Sarou!m, Marcos Yukio Siraichi, Helen Suk, Shunting Zhang, Michael
Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou, Xiaodong Wang, Ajit Mathews, William Wen,
Gregory Chanan, Peng Wu, and Soumith Chintala. 2024. PyTorch 2: Faster Machine Learning Through Dynamic
Python Bytecode Transformation and Graph Compilation. In Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2 (La Jolla, CA, USA) (ASPLOS ’24).
Association for Computing Machinery, New York, NY, USA, 929–947. doi:10.1145/3620665.3640366

[5] Manya Bansal, Olivia Hsu, Kunle Olukotun, and Fredrik Kjolstad. 2023. Mosaic: An Interoperable Compiler for Tensor
Algebra. Proceedings of the ACM on Programming Languages 7 (June 2023). Issue PLDI.

[6] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. 2020. Spectral Clustering with Graph Neural Networks
for Graph Pooling. arXiv:1907.00481 [cs.LG] https://arxiv.org/abs/1907.00481

[7] Pasquale Bove, Alessio Micheli, Paolo Milazzo, Marco Podda, et al. 2020. Prediction of Dynamical Properties of
Biochemical Pathways with Graph Neural Networks.. In Bioinformatics. 32–43.

[8] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph Attention Networks? arXiv:2105.14491 [cs.LG]
[9] Hongzheng Chen, Cody Hao Yu, Shuai Zheng, Zhen Zhang, Zhiru Zhang, and Yida Wang. 2024. Slapo: A schedule lan-

guage for progressive optimization of large deep learningmodel training. InASPLOS 2024. https://www.amazon.science/
publications/slapo-a-schedule-language-for-progressive-optimization-of-large-deep-learning-model-training

[10] Kazem Cheshmi, Zachary Cetinic, and Maryam Mehri Dehnavi. 2022. Vectorizing sparse matrix computations with
partially-strided codelets. In Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis (Dallas, Texas) (SC ’22). IEEE Press, Article 32, 15 pages.

[11] Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and MaryamMehri Dehnavi. 2017. Sympiler: transforming sparse
matrix codes by decoupling symbolic analysis. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Denver, Colorado) (SC ’17). Association for Computing Machinery, New
York, NY, USA, Article 13, 13 pages. doi:10.1145/3126908.3126936

[12] Kazem Cheshmi, Michelle Strout, and Maryam Mehri Dehnavi. 2023. Runtime Composition of Iterations for Fusing
Loop-carried Sparse Dependence. In Proceedings of the International Conference for High Performance Computing,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

https://ogb.stanford.edu/docs/nodeprop/
https://ogb.stanford.edu/docs/nodeprop/
https://www.dgl.ai/dgl_docs/api/python/dgl.data.html
https://doi.org/10.1145/3579990.3580020
https://doi.org/10.1145/3579990.3580020
https://doi.org/10.1145/3519939.3523442
https://doi.org/10.1145/3620665.3640366
https://arxiv.org/abs/1907.00481
https://arxiv.org/abs/1907.00481
https://arxiv.org/abs/2105.14491
https://www.amazon.science/publications/slapo-a-schedule-language-for-progressive-optimization-of-large-deep-learning-model-training
https://www.amazon.science/publications/slapo-a-schedule-language-for-progressive-optimization-of-large-deep-learning-model-training
https://doi.org/10.1145/3126908.3126936

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:27

Networking, Storage and Analysis (Denver, CO, USA) (SC ’23). Association for Computing Machinery, New York, NY,
USA, Article 89, 15 pages. doi:10.1145/3581784.3607097

[13] Adhitha Dias, Logan Anderson, Kirshanthan Sundararajah, Artem Pelenitsyn, and Milind Kulkarni. 2024. SparseAuto:
An Auto-Scheduler for Sparse Tensor Computations Using Recursive Loop Nest Restructuring. arXiv:2311.09549 [cs.PL]
https://arxiv.org/abs/2311.09549

[14] Changxu Dong, Dengdi Sun, Zhenda Yu, and Bin Luo. 2025. Multi-view brain network classi!cation based on
Adaptive Graph Isomorphic Information Bottleneck Mamba. Expert Systems with Applications 267 (2025), 126170.
doi:10.1016/j.eswa.2024.126170

[15] Manfred Droste, Werner Kuich, and Heiko Vogler. 2009. Handbook of Weighted Automata (1st ed.). Springer Publishing
Company, Incorporated.

[16] Jian Du, Shanghang Zhang, Guanhang Wu, Jose M. F. Moura, and Soummya Kar. 2018. Topology Adaptive Graph
Convolutional Networks. arXiv:1710.10370 [cs.LG]

[17] Farida Farsian, Federico Marulli, Lauro Moscardini, and Carlo Giocoli. 2023. New Applications of Graph Neural
Networks in Cosmology. In Machine Learning for Astrophysics, Filomena Bufano, Simone Riggi, Eva Sciacca, and
Francesco Schilliro (Eds.). Springer International Publishing, Cham, 35–38.

[18] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with PyTorch Geometric. In ICLR Workshop
on Representation Learning on Graphs and Manifolds.

[19] Zhangxiaowen Gong, Houxiang Ji, Yao Yao, Christopher W. Fletcher, Christopher J. Hughes, and Josep Torrellas. 2022.
Graphite: Optimizing Graph Neural Networks on CPUs through Cooperative Software-Hardware Techniques. In
Proceedings of the 49th Annual International Symposium on Computer Architecture (New York, New York) (ISCA ’22).
Association for Computing Machinery, New York, NY, USA, 916–931. doi:10.1145/3470496.3527403

[20] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Advances
in neural information processing systems. 1024–1034.

[21] Md Abul Hasnat, Somayeh Asadi, and Negin Alemazkoor. 2025. A graph attention network framework for generalized-
horizon multi-plant solar power generation forecasting using heterogeneous data. Renewable Energy 243 (2025), 122520.
doi:10.1016/j.renene.2025.122520

[22] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P. Sadayappan. 2019. Adaptive Sparse
Tiling for Sparse Matrix Multiplication. In Proceedings of the 24th Symposium on Principles and Practice of Parallel
Programming (Washington, District of Columbia) (PPoPP ’19). Association for Computing Machinery, New York, NY,
USA, 300–314. doi:10.1145/3293883.3295712

[23] Yang Hu, Wenxi Wang, Sarfraz Khurshid, Kenneth L. McMillan, and Mohit Tiwari. 2024. Fixing Privilege Escalations
in Cloud Access Control with MaxSAT and Graph Neural Networks. In Proceedings of the 38th IEEE/ACM International
Conference on Automated Software Engineering (Echternach, Luxembourg) (ASE ’23). IEEE Press, 104–115. doi:10.1109/
ASE56229.2023.00167

[24] Kezhao Huang, Jidong Zhai, Liyan Zheng, Haojie Wang, Yuyang Jin, Qihao Zhang, Runqing Zhang, Zhen Zheng,
Youngmin Yi, and Xipeng Shen. 2024. WiseGraph: Optimizing GNN with Joint Workload Partition of Graph and
Operations. In Proceedings of the Nineteenth European Conference on Computer Systems (Athens, Greece) (EuroSys ’24).
Association for Computing Machinery, New York, NY, USA, 1–17. doi:10.1145/3627703.3650063

[25] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng Shen. 2021. Understanding and Bridging the Gaps
in Current GNN Performance Optimizations. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Virtual Event, Republic of Korea) (PPoPP ’21). Association for Computing Machinery,
New York, NY, USA, 119–132. doi:10.1145/3437801.3441585

[26] Yue Jin, Chengying Huan, Heng Zhang, Yongchao Liu, Shuaiwen Leon Song, Rui Zhao, Yao Zhang, Changhua He,
and Wenguang Chen. 2023. G-Sparse: Compiler-Driven Acceleration for Generalized Sparse Computation for Graph
Neural Networks on Modern GPUs. In 2023 32nd International Conference on Parallel Architectures and Compilation
Techniques (PACT). 137–149. doi:10.1109/PACT58117.2023.00020

[27] Raghavendra Kanakagiri and Edgar Solomonik. 2024. Minimum Cost Loop Nests for Contraction of a Sparse Tensor
with a Tensor Network. In Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’24). ACM, 169–181. doi:10.1145/3626183.3659985

[28] Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip Roy, Amit Sabne, and Mike Burrows.
2021. A Learned Performance Model for Tensor Processing Units. In Proceedings of Machine Learning and Sys-
tems, A. Smola, A. Dimakis, and I. Stoica (Eds.), Vol. 3. 387–400. https://proceedings.mlsys.org/paper/2021/!le/
85d8ce590ad8981ca2c8286f79f59954-Paper.pdf

[29] Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classi!cation with Graph Convolutional Networks. CoRR
abs/1609.02907 (2016). arXiv:1609.02907 http://arxiv.org/abs/1609.02907

[30] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The Tensor Algebra
Compiler. Proc. ACM Program. Lang. 1, OOPSLA, Article 77 (Oct. 2017), 29 pages. doi:10.1145/3133901

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

https://doi.org/10.1145/3581784.3607097
https://arxiv.org/abs/2311.09549
https://arxiv.org/abs/2311.09549
https://doi.org/10.1016/j.eswa.2024.126170
https://arxiv.org/abs/1710.10370
https://doi.org/10.1145/3470496.3527403
https://doi.org/10.1016/j.renene.2025.122520
https://doi.org/10.1145/3293883.3295712
https://doi.org/10.1109/ASE56229.2023.00167
https://doi.org/10.1109/ASE56229.2023.00167
https://doi.org/10.1145/3627703.3650063
https://doi.org/10.1145/3437801.3441585
https://doi.org/10.1109/PACT58117.2023.00020
https://doi.org/10.1145/3626183.3659985
https://proceedings.mlsys.org/paper/2021/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.1145/3133901

335:28 Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis

[31] Avery Laird, Bangtian Liu, Nikolaj Bjørner, and Maryam Mehri Dehnavi. 2024. SpEQ: Translation of Sparse Codes
using Equivalences. Proc. ACM Program. Lang. 8, PLDI, Article 215 (June 2024), 24 pages. doi:10.1145/3656445

[32] Damitha Lenadora, Nikhil Jayakumar, Chamika Sudusinghe, and Charith Mendis. 2025. Artifact for OOPSLA 2025 Paper:
GALA: A High Performance Graph Neural NetworkAcceleration LAnguage and Compiler. doi:10.5281/zenodo.16923829

[33] John Levine and Levine John. 2009. Flex & Bison (1st ed.). O’Reilly Media, Inc.
[34] Guannan Li, Le Zhang, Lingzhi Yang, Hang Hu, Chengliang Xu, Liangzhen Jiao, Donghua Liu, Chenglong Xiong, and

Jiahui Deng. 2025. Model interpretation and interpretability performance evaluation of graph convolutional network
fault diagnosis for Air Handling Units. Journal of Building Engineering 103 (2025), 112048. doi:10.1016/j.jobe.2025.112048

[35] Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-Kelley. 2018. Di"erentiable pro-
gramming for image processing and deep learning in halide. ACM Trans. Graph. 37, 4, Article 139 (July 2018), 13 pages.
doi:10.1145/3197517.3201383

[36] Zhuoran Li, Lianshan Yan, Hua Li, and Yu Wang. 2025. Environmental factors-aware two-stream GCN for skeleton-
based behavior recognition. Mach. Vision Appl. 36, 2 (Jan. 2025), 12 pages. doi:10.1007/s00138-024-01656-7

[37] Maxim Naumov, L Chien, Philippe Vandermersch, and Ujval Kapasi. 2010. Cusparse library. In GPU Technology
Conference, Vol. 12.

[38] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic di"erentiation in PyTorch. (2017).

[39] Shenghao Qiu, Liang You, and Zheng Wang. 2022. Optimizing Sparse Matrix Multiplications for Graph Neural
Networks. In Languages and Compilers for Parallel Computing, Xiaoming Li and Sunita Chandrasekaran (Eds.). Springer
International Publishing, Cham, 101–117.

[40] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013.
Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines.
SIGPLAN Not. 48, 6 (June 2013), 519–530. doi:10.1145/2499370.2462176

[41] Md Rahman, Majedul Haque Sujon, Ariful Azad, et al. 2021. FusedMM: A Uni!ed SDDMM-SpMM Kernel for Graph
Embedding and Graph Neural Networks. In 35th Proceedings of IEEE IPDPS.

[42] Amit Sabne. 2020. XLA : Compiling Machine Learning for Peak Performance.
[43] Zixing Song, Yuji Zhang, and Irwin King. 2023. Towards fair !nancial services for all: A temporal GNN approach for

individual fairness on transaction networks. In Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management. 2331–2341.

[44] Petar Veli%kovi&, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph
Attention Networks. In International Conference on Learning Representations. https://openreview.net/forum?id=
rJXMpikCZ

[45] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue
Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander Smola, and Zheng Zhang. 2019. Deep
Graph Library: Towards E#cient and Scalable Deep Learning on Graphs. arXiv:1909.01315 [cs.LG]

[46] Wenxi Wang, Yang Hu, Mohit Tiwari, Sarfraz Khurshid, Kenneth McMillan, and Risto Miikkulainen. 2024. NeuroBack:
Improving CDCL SAT Solving using Graph Neural Networks. arXiv:2110.14053 [cs.AI] https://arxiv.org/abs/2110.14053

[47] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and Yufei Ding. 2021. GNNAdvisor: An
Adaptive and E#cient Runtime System for GNN Acceleration on GPUs. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association, 515–531. https://www.usenix.org/conference/
osdi21/presentation/wang-yuke

[48] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr. au2, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger. 2019.
Simplifying Graph Convolutional Networks. arXiv:1902.07153 [cs.LG]

[49] Kun Wu, Mert Hidayeto’lu, Xiang Song, Sitao Huang, Da Zheng, Israt Nisa, and Wen-Mei Hwu. 2024. Hector: An
E#cient Programming and Compilation Framework for Implementing Relational Graph Neural Networks in GPU
Architectures. In Proceedings of the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (La Jolla, CA, USA) (ASPLOS ’24). Association for Computing Machinery,
New York, NY, USA, 528–544. doi:10.1145/3620666.3651322

[50] Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chenguang Zheng, James Cheng, and Fan Yu. 2021. Seastar:
Vertex-Centric Programming for Graph Neural Networks. In Proceedings of the Sixteenth European Conference on
Computer Systems (Online Event, United Kingdom) (EuroSys ’21). Association for Computing Machinery, New York,
NY, USA, 359–375. doi:10.1145/3447786.3456247

[51] Zhiqiang Xie, Minjie Wang, Zihao Ye, Zheng Zhang, and Rui Fan. 2022. Graphiler: Optimizing Graph Neural Networks
with Message Passing Data Flow Graph. In Proceedings of Machine Learning and Systems, D. Marculescu, Y. Chi, and
C. Wu (Eds.), Vol. 4. 515–528. https://proceedings.mlsys.org/paper/2022/!le/a87"679a2f3e71d9181a67b7542122c-
Paper.pdf

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

https://doi.org/10.1145/3656445
https://doi.org/10.5281/zenodo.16923829
https://doi.org/10.1016/j.jobe.2025.112048
https://doi.org/10.1145/3197517.3201383
https://doi.org/10.1007/s00138-024-01656-7
https://doi.org/10.1145/2499370.2462176
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/2110.14053
https://arxiv.org/abs/2110.14053
https://www.usenix.org/conference/osdi21/presentation/wang-yuke
https://www.usenix.org/conference/osdi21/presentation/wang-yuke
https://arxiv.org/abs/1902.07153
https://doi.org/10.1145/3620666.3651322
https://doi.org/10.1145/3447786.3456247
https://proceedings.mlsys.org/paper/2022/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf

GALA: A High Performance Graph Neural Network Acceleration LAnguage and Compiler 335:29

[52] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful are Graph Neural Networks?. In
International Conference on Learning Representations. https://openreview.net/forum?id=ryGs6iA5Km

[53] Mingyu Yan, Zhaodong Chen, Lei Deng, Xiaochun Ye, Zhimin Zhang, Dongrui Fan, and Yuan Xie. 2020. Characterizing
and Understanding GCNs on GPU. IEEE Computer Architecture Letters 19 (2020), 22–25.

[54] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. 2023. SparseTIR: Composable Abstractions for Sparse
Compilation in Deep Learning. In Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). Association for
Computing Machinery, New York, NY, USA, 660–678. doi:10.1145/3582016.3582047

[55] Serif Yesil, Azin Heidarshenas, Adam Morrison, and Josep Torrellas. 2023. WISE: Predicting the Performance of Sparse
Matrix Vector Multiplication with Machine Learning. In Proceedings of the 28th ACM SIGPLAN Annual Symposium
on Principles and Practice of Parallel Programming (Montreal, QC, Canada) (PPoPP ’23). Association for Computing
Machinery, New York, NY, USA, 329–341. doi:10.1145/3572848.3577506

[56] Hengrui Zhang, Zhongming Yu, Guohao Dai, Guyue Huang, Yufei Ding, Yuan Xie, and Yu Wang. 2022. Understanding
GNN Computational Graph: A Coordinated Computation, IO, and Memory Perspective. 4 (2022), 467–484. https:
//proceedings.mlsys.org/paper/2022/!le/9a1158154dfa42caddbd0694a4e9bdc8-Paper.pdf

[57] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural networks. InAdvances in Neural Information
Processing Systems. 5165–5175.

[58] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman Amarasinghe. 2018. Graphit:
A high-performance graph dsl. Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1–30.

[59] Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. 2019. Auto-GNN: Neural Architecture Search of Graph
Neural Networks. arXiv:1909.03184 [cs.LG] https://arxiv.org/abs/1909.03184

[60] Yangjie Zhou, Jingwen Leng, Yaoxu Song, Shuwen Lu, Mian Wang, Chao Li, Minyi Guo, Wenting Shen, Yong Li, Wei
Lin, Xiangwen Liu, and Hanqing Wu. 2023. uGrapher: High-Performance Graph Operator Computation via Uni!ed
Abstraction for Graph Neural Networks. In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for
Computing Machinery, New York, NY, USA, 878–891. doi:10.1145/3575693.3575723

Received 2025-03-25; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 335. Publication date: October 2025.

https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/3582016.3582047
https://doi.org/10.1145/3572848.3577506
https://proceedings.mlsys.org/paper/2022/file/9a1158154dfa42caddbd0694a4e9bdc8-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/9a1158154dfa42caddbd0694a4e9bdc8-Paper.pdf
https://arxiv.org/abs/1909.03184
https://arxiv.org/abs/1909.03184
https://doi.org/10.1145/3575693.3575723

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Neural Network Computations
	2.2 Example Optimizations and Transformations Used in GNNs
	2.3 Graph Convolutional Network (GCN)

	3 Motivation for a Compiler-Based Solution
	3.1 Compositions of Optimizations at Different Levels
	3.2 Context-Aware Global Optimizations

	4 Overview of GALA
	5 The GALA Domain Specific Language
	5.1 Algorithm Language
	5.2 Scheduling Language

	6 The GALA Compiler
	6.1 Intermediate Representations and their Generation
	6.2 Automatic Domain-Specific Transformations
	6.3 Code Generation

	7 Implementation
	7.1 Compiler
	7.2 Input-Aware Compilation

	8 Evaluation
	8.1 Research Questions
	8.2 Experimental Setup
	8.3 GNN Inference Runtime Performance
	8.4 GNN Training Runtime Performance
	8.5 Ablation and Sensitivity Studies

	9 Related Work
	10 Limitations and Future Work
	11 Conclusion
	References

