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The uninterpretability of Deep Neural Networks (DNNs) hinders their use in safety-critical applications. Ab-
stract Interpretation-based DNN certi!ers provide promising avenues for building trust in DNNs. Unsoundness
in the mathematical logic of these certi!ers can lead to incorrect results. However, current approaches to
ensure their soundness rely on manual, expert-driven proofs that are tedious to develop, limiting the speed
of developing new certi!ers. Automating the veri!cation process is challenging due to the complexity of
verifying certi!ers for arbitrary DNN architectures and handling diverse abstract analyses.

We introduce P!"#$S"%&’, a novel veri!cation procedure that automates the soundness veri!cation of
DNN certi!ers for arbitrary DNN architectures. Our core contribution is the novel concept of a symbolic
DNN, using which, P!"#$S"%&’ reduces the soundness property, a universal quanti!cation over arbitrary
DNNs, to a tractable symbolic representation, enabling veri!cation with standard SMT solvers. By formalizing
the syntax and operational semantics of C"&()!*+&)F,"-, a DSL for specifying certi!ers, P!"#$S"%&’
e"ciently veri!es both existing and new certi!ers, handling arbitrary DNN architectures.

Our code is available at https://github.com/uiuc-focal-lab/constraint#ow.git
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1 Introduction
While DNNs can achieve impressive performance, there is a growing need for their safety and
robustness in safety-critical domains like autonomous driving [8], healthcare [2], etc., due to their
susceptibility to environmental and adversarial noise [31, 68]. Formal certi!cation of DNNs can be
used to assess their performance on a large, potentially in!nite set of inputs, thereby providing
guarantees on DNN behavior. Abstract Interpretation-based DNN certi!ers are used widely for
formally certifying DNNs, balancing cost and precision tradeo$s [3, 5–7, 9, 15, 16, 18, 20, 30, 32, 34,
37, 39, 43–46, 49, 51, 52, 54–57, 60–64, 66, 67, 70, 72, 73].

Abstract Interpretation-based DNN certi!ers must satisfy the over-approximation-based soundness
property to ensure correctness. Currently, when a new DNN certi!er is proposed, its soundness is
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provedmanually using arduous pen-and-paper proofs. These proofs show that the outputs computed
by abstract transformers over-approximate the outputs of the DNN on concrete inputs. Developing
these proofs demands an expert-level understanding of abstract interpretation and substantial
experience in proving mathematical lemmas and theorems. Consequently, the development of
DNN certi!ers is often con!ned to a small group of experts. Automating the veri!cation of DNN
certi!ers would signi!cantly reduce these barriers, enabling more widespread development of
reliable certi!ers. However, this automation presents several challenges, which we outline below.
Challenge 1: Imperative Programming.While one approach to verifying the mathematical

soundness of DNN certi!ers could be to use program veri!ers such as Dafny [26], they are unsuitable
because the commonly-used libraries implementing the DNN certi!ers, such as auto_LiRPA [69],
ELINA [48], and ERAN [45], are extensive code-bases in general-purpose programming languages,
employing complex imperative programming paradigms, such as pointer arithmetic. Verifying the
soundness of these libraries would require isolating the mathematical logic from their implementa-
tion and modeling the algorithm’s behavior on an arbitrary DNN.
Challenge 2: Universal Quanti!cation. Since a DNN is an input to a DNN certi!er, the

over-approximation-based soundness of the certi!er is a universally quanti!ed assertion over all
possible DNNs, which signi!cantly complicates its veri!cation. To illustrate this, consider verifying
the certi!er for a !xed DNN, where the architecture is known. In this case, the soundness can
be veri!ed by representing all neurons and edges in the DNN (represented as a Directed Acyclic
Graph) using symbolic variables and then executing the certi!er symbolically. The di"culty arises
when the input DNN is arbitrary and so, cannot be directly represented symbolically. A DNN might
be a simple fully-connected network with ReLU activations, or a more complex architecture such as
ResNet, with arbitrary residual connections and activations. These DNNs have drastically di$erent
architectures, and the DNN certi!er may have di$erent execution traces for them. So, verifying the
soundness of the certi!er for one architecture does not guarantee soundness for arbitrary DNNs.
Challenge 3: Complex DNN Certi!ers. Popular DNN certi!ers like [45, 65, 73] associate

polyhedral bounds with each neuron, which makes it di"cult to naively model the certi!er behavior
using symbolic execution. For example, a polyhedral lower bound for a neuron 𝐿 might be expressed
as 𝐿 ↑ 5𝐿1 +𝐿2, where the neurons 𝐿1,𝐿2 are neurons located anywhere in the DNN, independent of
the DNN architecture. This adds a structure over the neurons (beyond the DNN architecture) that
is unknown before executing the certi!er. Further, 𝐿,𝐿1,𝐿2, · · · are symbolic variables even during
a concrete execution of the certi!er. So, modeling the certi!er behavior using symbolic execution
entails modeling the symbolic variables (neurons) as SMT symbolic variables. The correctness of
this modeling is unclear and is not explored in existing work [4, 53].

Challenge 4: Huge Query Size. One approach would be to represent a DNN as a complete DAG
where each neuron is a vertex, but this results in massive graphs (i.e. 104 neurons in a modest-size
DNN will have around (104)2 edges), with a weight of zero in the DAG representing the absence
of an edge in the DNN. However, a complete DAG would lead to a huge query, which would
overwhelm current SMT solvers, making them either fail or take an impractically long time. So,
naively modeling arbitrary DNNs as a complete DAG is impractical for realistic-size DNNs.
To the best of our knowledge, no existing technique can automatically verify the soundness of

abstract interpretation-based DNN certi!ers while accommodating a diverse range of certi!ers,
ensuring soundness for arbitrary DNNs, and maintaining e"ciency and scalability.
This work. We design a novel automated bounded veri!cation procedure—P!"#$S"%&’—

which can verify the soundness of DNN certi!ers for arbitrary DNNs. P!"#$S"%&’ is based on the
novel concept of a symbolic DNN—an abstract neural network that represents all subgraphs of any
arbitrary DNN on which a DNN certi!er can be applied (§ 5). By leveraging symbolic DNNs, we
transform the universally quanti!ed soundness conditions into a tractable symbolic representation,
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verifying which is su"cient to prove the certi!er’s soundness on arbitrary DNNs. We o%oad
the veri!cation of this tractable symbolic representation to o$-the-shelf SMT solvers. Recently, a
preliminary design of a Domain Speci!c Language (DSL)—C"&()!*+&)F,"-—was proposed for
specifying the core mathematical logic of abstract interpretation-based DNN certi!ers decoupling
it from any implementation details [42]. However, its syntax and semantics are not formalized. So,
we design a BNF grammar, type-system, and operational semantics for C"&()!*+&)F,"-, which
enables P!"#$S"%&’ to verify the soundness of certi!er speci!cations within C"&()!*+&)F,"-.

Main contributions.
• We develop a type-system for ensuring well-typed programs in C"&()!*+&)F,"- and also
provide operational semantics. We also develop symbolic semantics for C"&()!*+&)F,"-
and a novel concept of a symbolic DNN to devise a veri!cation procedure—P!"#$S"%&’—to
automatically !nd bugs or verify the soundness of the speci!ed DNN certi!ers.

• We establish formal guarantees and provide proofs that include type-soundness, and the
soundness of the automated veri!cation procedure, P!"#$S"%&’, w.r.t. the operational
semantics of C"&()!*+&)F,"-.

• We provide an extensive evaluation to demonstrate that P!"#$S"%&’ enables proving the
correctness or detecting bugs in existing and new abstract transformers for contemporary
DNN certi!ers and new DNN certi!ers with new abstract domains. Using P!"#$S"%&’, for
the !rst time, we can automatically verify the soundness of DNN certi!ers for DNNs with an
arbitrary number of layers, each with millions of learned parameters.

2 Background
In this section, we provide the necessary background needed for abstract interpretation-based DNN
certi!ers. While the concepts introduced are relevant to a broad range of certi!ers, we describe the
widely used DeepPoly certi!er [45] and use it as our running example throughout the paper.

2.1 Abstract Interpretation-Based DNN Certifiers
We use a de!nition of DNNs similar to the one used in [42]. A DNN is represented as a Directed
Acyclic Graph (DAG) with neurons as the vertices and edges corresponding to the non-zero weights
in the DNN architecture. The value of each neuron is determined by a DNN operation 𝑀 , which
receives as input a set of neurons, referred to as the previous neurons 𝑁 . DNN operations can be
categorized into two categories: (i) primitive operations and (ii) composite operations. Primitive
operations include the addition and multiplication of two neurons as well as non-linear activations
like ReLU, sigmoid, etc. Composite operations are operations that can be expressed as combinations
of primitive functions. Examples include a"ne transformation of neurons (fully connected layers
or convolution layers) or activations like maxpool ,etc.
For a given DNN operation 𝑀 , the input consists of𝑂 neurons, where𝑂 denotes the arity of

𝑀 (e.g., 𝑀𝐿𝑀𝑀 : R ↓ R → R has 𝑂 = 2). Let x represent an 𝑂-dimensional input to a layer, with
each dimension corresponding to a neuron. DNN certi!ers take a potentially in!nite set of inputs,
represented as 𝑃 = {xi} and 𝑃 ↔ C, where C is the concrete domain. Concrete elements 𝑃1, 𝑃2 ↔ C are
ordered by subset inclusion ↗. Certi!cation involves de!ning an abstract domain A and abstract
transformers 𝑀 𝐿 for each 𝑀 . The DNN certi!ers map concrete inputs to abstract elements via an
abstraction function 𝑄 and propagate these through the network using abstract transformers.
Abstract elements 𝑅 ↔ A can be mapped back to concrete values using a concretization function 𝑆 .

D$.+&+)+"& 2.1. An abstract transformer 𝑀 𝐿 is sound w.r.t. the DNN operation 𝑀 if ↘𝑅 ↔ A · ↘𝑃 ↔

C · 𝑃 ↗ 𝑆 (𝑅) =≃ 𝑀 (𝑃) ↗ 𝑆 (𝑀 𝐿 (𝑅)), where the semantics of 𝑀 are lifted to the natural set semantics.
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2.2 DeepPoly DNN Certifier
We focus on abstract domains that associate !elds with each neuron 𝐿 to impose constraints on
their values. These !elds form an abstract shape 𝑇 with corresponding constraints denoted as
P(𝑇,𝐿). Popular abstract interpretation-based certi!ers, including DeepPoly, use such domains.
In the DeepPoly abstract domain, an abstract element 𝑅 ↔ A is represented as a conjunction of
constraints over the neurons’ abstract shapes, i.e., 𝑅 = (𝑇1, . . . , 𝑇𝑁 ), where 𝑈 is the total number of
neurons. For each neuron 𝐿, its abstract shape is 𝑇𝑂 = ⇐𝑉𝑂,𝑊𝑂, 𝑋𝑂,𝑌𝑂⇒, where 𝑉𝑂,𝑊𝑂 ↔ R ⇑ {⇓⇔,⇔},
and 𝑋𝑂,𝑌𝑂 are a"ne expressions of neurons in the DNN. The associated over-approximation-based
constraints are P(𝑇,𝐿) ⊋ (𝑉𝑂 ↖ 𝐿 ↖ 𝑊𝑂) ↙ (𝑋𝑂 ↖ 𝐿 ↖ 𝑌𝑂). Thus, the concretization function
𝑆 (𝑅) = {(𝐿1, . . . ,𝐿𝑃) ↔ R𝑃

| ↘𝑍 ↔ [𝑂], (𝑉𝑂𝐿 ↖ 𝐿𝑄 ↖ 𝑊𝑂𝐿 ) ↙ (𝑋𝑂𝐿 ↖ 𝐿𝑄 ↖ 𝑌𝑂𝐿 )}

An abstract transformer updates the abstract shape of the output neuron based on the concrete
operation 𝑀 while leaving the others unchanged. For the A"ne operation, the updated abstract
shape is 𝑇∝𝑂 = ⇐𝑉 ∝𝑂,𝑊

∝
𝑂, 𝑋

∝
𝑂,𝑌

∝
𝑂⇒, where 𝑋∝𝑂 = 𝑌 ∝

𝑂 = 𝑎 +
∑𝑅

𝑄=1𝑏𝑄𝐿𝑄 , where the bias (𝑎) and the weights
(𝑏𝑄 ) are the DNN’s learned parameters. To compute the lower concrete bound (𝑉 ∝𝑂), DeepPoly
performs a backsubstitution step which starts with the lower polyhedral expression, 𝑐 = 𝑋∝𝑂 . At
each step, 𝑐 = 𝑃∝0 +

∑𝑅
𝑄=1 𝑃

∝

𝑄𝐿𝑄 , each 𝐿𝑄 in 𝑐 is replaced with its own lower or upper polyhedral bound
depending on the sign of the coe"cient 𝑃∝𝑄 , i.e., 𝑐 ′ 𝑃∝0 +

∑𝑅
𝑄=1 (𝑃

∝

𝑄 ↑ 0 ? 𝑃∝𝑄𝑋𝑂𝐿 : 𝑃
∝

𝑄𝑌𝑂𝐿 ). This step
is repeated until all the neurons in 𝑐 are in the input layer, after which the constituent neurons
are replaced with their respective lower or upper concrete bounds, i.e., if 𝑐 = 𝑃∝∝0 +

∑𝑅
𝑄=1 𝑃

∝∝

𝑄 𝐿𝑄 , then
𝑉 ∝𝑂 = 𝑃∝∝0 +

∑𝑅
𝑄=1 (𝑃

∝∝

𝑄 ↑ 0 ? 𝑃∝∝𝑄 𝑉𝑂𝐿 : 𝑃
∝∝

𝑄 𝑊𝑂𝐿 ). The upper concrete bound 𝑊
∝
𝑂 is also computed similarly.

3 Overview
We !rst provide an overview of DNN certi!er speci!cation in C"&()!*+&)F,"- using the DeepPoly
speci!cation from [42] as a running example, followed by the novel type-system and semantics for
C"&()!*+&)F,"-. Finally, we show the soundness veri!cation of the certi!er speci!cation.

3.1 C!"#$%&’"$F(!)
C"&()!*+&)F,"- introduces datatypes speci!c to DNN certi!ers including Neuron, PolyExp, and Ct.
Neurons are represented as Neuron. The type PolyExp represents a"ne expressions over neurons and
Ct represents symbolic constraints. Since some DNN certi!ers use symbolic variables to specify
constraints over the neuron values [44, 46, 55], we introduce the sym construct to declare a symbolic
variable of the type Sym. We also introduce SymExp to capture symbolic expressions over these
symbolic variables. By treating polyhedral and symbolic expressions as !rst-class members, we
can de!ne the operational semantics of constructs that can directly operate on these new types.
These include (i) binary arithmetic operations like ‘+’, (ii) map, which applies a function to each
constituent neuron or symbolic variable in a polyhedral or symbolic expression, and (iii) traverse,
which repeatedly applies map to a polyhedral expression until a termination condition is met. The
formal semantics (discussed in detail in § 4.3) enable automated reasoning and veri!cation.
In C"&()!*+&)F,"-, a DNN certi!er is speci!ed through three main steps: (i) specifying the

abstract shape for each neuron along with its soundness constraints, (ii) de!ning the abstract
transformers for each DNN operation, and (iii) determining how constraints propagate through the
network. We illustrate the di$erent steps of specifying a DNN certi!er in C"&()!*+&)F,"- using
the DeepPoly speci!cation in Fig. 1.

3.1.1 Abstract Domain. The speci!cation of a DNN certi!er starts by de!ning the abstract domain
used by the certi!er (Line 1 of Fig. 1). In C"&()!*+&)F,"-, this is done by de!ning the abstract
shape (𝑇) associated with each neuron and the constraints de!ning the over-approximation-based
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1 Def shape as (Real l, Real u, PolyExp L, PolyExp U) {(curr[l] <= curr) and (curr[u] >= curr)

and (curr[L] <= curr) and (curr[U] >= curr)};

2 Func priority(Neuron n) = n[layer];

3 Func concretize_lower(Neuron n, Real c) = (c >= 0) ? (c * n[l]) : (c * n[u]);

4 Func concretize_upper(Neuron n, Real c) = (c >= 0) ? (c * n[u]) : (c * n[l]);

5 Func replace_lower(Neuron n, Real c) = (c >= 0) ? (c * n[L]) : (c * n[U]);

6 Func replace_upper(Neuron n, Real c) = (c >= 0) ? (c * n[U]) : (c * n[L]);

7 Func backsubs_lower(PolyExp e, Neuron n) = (e.traverse(backward,priority,false,replace_lower)

{e <= n}).map(concretize_lower);

8 Func backsubs_upper(PolyExp e, Neuron n) = (e.traverse(backward,priority,false,replace_upper)

{e >= n}).map(concretize_upper);

9 Transformer DeepPoly{

10 Affine -> (backsubs_lower(prev.dot(curr[w]) + curr[b], curr),

11 backsubs_upper(prev.dot(curr[w]) + curr[b], curr),

12 prev.dot(curr[w]) + curr[b],

13 prev.dot(curr[w]) + curr[b]);

14 Relu -> prev[l] > 0 ?

15 (prev[l], prev[u], prev, prev) :

16 (prev[u] < 0 ?

17 (0, 0, 0, 0) :

18 (0, prev[u], 0, ((prev[u] / (prev[u] - prev[l])) * prev) - ((prev[u] * prev[l])

/ (prev[u] - prev[l]))));

19 }

20 Flow(forward, -priority, false, DeepPoly);

Fig. 1. DeepPoly specification in C!"#$%&’"$F(!)

soundness condition (P). These are speci!ed for the curr neuron, which serves as a syntactic
placeholder for all neurons in the DNN. For example, the DeepPoly abstract shape and its constraints
can be de!ned in C"&()!*+&)F,"- as illustrated in Fig. 1, where 𝑉,𝑊, 𝑋,𝑌 are user-de!ned members
of the abstract shape, accessed via square bracket notation (curr [·]). The DeepPoly soundness
condition is encoded as: (𝑉 ↖ 𝐿) ↙ (𝑊 ↑ 𝐿) ↙ (𝑋 ↖ 𝐿) ↙ (𝑌 ↑ 𝐿).
We formalize the syntax for C"&()!*+&)F,"- (§ 4.1), allowing the users to de!ne arbitrary

abstract shapes. For instance, abstract domains can combine polyhedral and novel symbolic ex-
pressions. Symbolic variables (𝑑) are subject to default constraints, ⇓1 ↖ 𝑑𝑄 ↖ 1, de!ning multi-
dimensional polyhedra. The constraint curr <> curr[𝑒 ] indicates that curr is embedded in the
polyhedron de!ned by curr[𝑒 ], meaning there exists an assignment to the symbolic variables in
curr[𝑒 ] such that curr = curr[𝑒 ]:

Def shape as (Real l, Real u, PolyExp L, PolyExp U, SymExp Z) {curr[l] <= curr, curr[u] >= curr,

curr[L] <= curr, curr[U] >= curr, curr <> curr[Z]};

3.1.2 Abstract Transformers. After de!ning the abstract domain, the second step is to specify
the abstract transformers for di$erent DNN operations. In Fig. 1, lines 2-8 show the user-de!ned
functions used within the transformer de!nitions in lines 9-19 within the Transformer construct.
The implicit inputs to the Transformer construct are curr, representing the current neuron, and prev,
representing the previous neurons. prev is a list for DNN operations with multiple inputs, like
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Affine, and a single neuron in case of operations with a single input, like ReLU. The transformer
for each DNN operation speci!es the computations for updating the four !elds of the abstract
shape: 𝑉 , 𝑊, 𝑋, and𝑌 . The transformers for Affine and ReLU operations are shown in Fig. 1 in lines 10
and 14 respectively. Using the semantics of the C"&()!*+&)F,"- constructs, we show how the
DeepPoly speci!cation in Fig. 1 simulates the mathematical logic of DeepPoly (explained in § 2).
The C"&()!*+&)F,"- semantics also allow us to explore variants of DeepPoly.

In the DeepPoly Affine transformer, the polyhedral bounds (𝑋 and𝑌 ) are given by prev.dot (curr
[w]) + curr [b]. There are many ways to compute the concrete lower 𝑉 and upper bounds𝑊. Consider
concretize_lower and replace_lower functions from Fig. 1 that respectively replace a neuron with
its lower or upper concrete and polyhedral bounds based on its coe"cient. We can compute the
lower concrete bound for curr, by applying the concretize_lower to all the neurons in the lower
polyhedral expression, i.e., (prev.dot (curr [w]) + curr [b]).map (concretize_lower). We can compute a
more precise polyhedral lower bound by !rst applying replace_lower to each constituent neuron,
i.e., (prev.dot (curr [w]) + curr [b]).map (replace_lower). We can repeat this several times, following
which, we can apply concretize_lower to concretize the bound. In the standard implementation,
the number of applications of replace_lower is unknown because it is applied until the polyhedral
bound only contains neurons from the input layer of the DNN. Although this is precise, it might be
costly to perform this computation until the input layer is reached. So, custom stopping criteria
can be decided, balancing the tradeo$ between precision and cost. Note that the order in which the
neurons are substituted with their bounds also impacts the output’s precision.
To specify arbitrary graph traversals succinctly, we provide the traverse construct, which de-

couples the stopping criterion from the neuron traversal order. traverse operates on polyhedral
expressions and takes as input the direction of traversal and three functions—a user-de!ned stop-
ping function, a priority function over neurons specifying the order of traversal and a neuron
replacement function. In each step, traverse applies the priority function to each constituent neuron
in the polyhedral expression. Then, it applies the neuron replacement function to each constituent
neuron with the highest priority among the neurons on which the stopping condition evaluates
to false. The outputs are then summed up to generate a new polyhedral expression. This process
continues until the stopping condition is true on all the constituent neurons or all the neurons are
in the input or output layer depending on the traversal order. We can use traverse to specify the
backsubstitution step and hence the DeepPoly Affine transformer as shown in Fig. 1.

3.1.3 Flow of Constraints. Existing DNN certi!ers propagate constraints from the input to the
output layer or in reverse [58, 65, 71]. Further, the order in which abstract shapes of neurons
are computed impacts analysis precision. In C"&()!*+&)F,"-, the speci!cation of the order of
application is decoupled from the actual transformer speci!cation, so the soundness veri!cation of
the transformer remains independent of the traversal order. We formalize this syntax and semantics
to provide adjustable knobs to de!ne custom #ow orders, using a direction, priority function, and a
stopping condition. The user speci!es these arguments and the transformer using the Flow construct,
as demonstrated in Fig. 1, Line 20, for the DeepPoly certi!er. This code assigns higher priority to
lower-layer neurons, resulting in a BFS traversal. The stopping function is set to false, stopping
only when reaching the output layer. We verify the soundness of all speci!ed transformers in the
Transformer construct. Based on the DNN operation, Flow applies the corresponding transformer,
ensuring a composition of only sound transformers.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 144. Publication date: April 2025.



Automated Verification of Soundness of DNN Certifiers 144:7

3.2 P%!*+S!,"-: Automated Bounded Verification of the DNN Certifier
To establish the soundness of a certi!er, it is necessary to verify the soundness of each abstract
transformer 𝑀 𝐿 w.r.t. its concrete counterpart 𝑀 , i.e.,

↘𝑅 ↔ A · ↘𝑃 ↔ C · 𝑃 ↗ 𝑆 (𝑅) =≃ 𝑀 (𝑃) ↗ 𝑆 (𝑀 𝐿 (𝑅)) (1)

Equation 1 is universally quanti!ed over both the abstract element 𝑅 and the concrete element
𝑃 . The abstract element, a tuple of abstract shapes, over-approximates the values of neurons in
the DNN, while the concrete element represents speci!c valuations for the neurons. Since the
DNN architecture—its topology, number of neurons, and consequently the number of abstract
shapes—can vary, the universal quanti!cation in equation 1 presents a challenge for veri!cation.
So, we introduce the concept of a Symbolic DNN to represent an arbitrary DNN and the corre-

sponding abstract shapes symbolically. The symbolic DNN is an abstract neural network repre-
senting all subgraphs of any arbitrary DNN on which the speci!ed transformer can be applied. It
consists of symbolic values representing only the necessary neurons for executing the transformer
speci!cation. So, verifying the soundness of the speci!ed transformer on a !nite symbolic DNN is
su"cient to prove its soundness on an arbitrarily large DNN with any topology.

The symbolic DNN is initialized only with curr and prev, along with their abstract shapes so the
speci!ed abstract transformer can be symbolically executed. However, in some cases, the symbolic
execution of a transformer requires more neurons to be initialized in the symbolic DNN. We do
so by a Symbolic DNN Expansion, where we statically analyze the transformer and only introduce
neurons and their abstract shapes necessary for the symbolic execution. We explain these steps
using an example in § 3.2.1, § 3.2.2. After the creation and expansion steps, we have a symbolic
representation of the DNN and corresponding abstract shapes su"cient for symbolic execution to
generate the !nal veri!cation query which can be o$-loaded to an o$-the-shelf SMT solver (§ 3.2.3).
To better illustrate these steps, we introduce a new DeepPoly transformer for ReLU which has a

better runtime than the original transformer but is slightly less precise. We then show the above-
mentioned steps for the veri!cation of the new transformer. As introduced in § 2, the DeepPoly
abstract shape consists of 4 !elds—𝑉,𝑊, 𝑋,𝑌 , where 𝑉,𝑊 are the concrete bounds and 𝑋,𝑌 are the
polyhedral bounds of the neuron. Consider the DeepPoly ReLU transformer. It takes in as input
the abstract shape of the prev neuron and computes the new abstract shape for curr neuron. It
has 3 cases based on the values prev[𝑉], prev[𝑊] of the input abstract shape - (i) prev[𝑉] ↑ 0, (ii)
prev[𝑊] ↖ 0, and (iii) prev[𝑉] < 0 < prev[𝑊]. We focus only on the !rst case for illustration. In
this case, the concrete bounds are set to the input concrete bounds, i.e., curr[𝑉] ′ prev[𝑉] and
curr[𝑊] ′ prev[𝑊]. Both the lower and upper polyhedral bounds are set to prev, i.e., curr[𝑋] ′ prev

and curr[𝑌 ] ′ prev. In the new transformer for ReLU, instead of setting the polyhedral bounds of
curr in terms of the neurons of the previous layer, i.e., prev, we set them using the lower and upper
polyhedral bounds of prev, which are prev[𝑋] and prev[𝑌 ] respectively. In C"&()!*+&)F,"-, these
polyhedral bounds can be computed using map(replace_lower) and map(replace_upper) respectively.
The user-de!ned functions replace_lower and replace_upper replace a neuron with its lower or upper
polyhedral bounds based on its coe"cient. The map construct applies a function to all neurons in a
polyhedral expression. So, the expression for the upper polyhedral bound (and similarly for lower)
can thus be written as 𝑐 ∞ prev[𝑌 ] .map(replace_upper).

3.2.1 Symbolic DNN Creation. For each DNN operation 𝑓 (e.g., ReLU in this case), given the abstract
transformer, we create a symbolic DNN (Fig. 2a) with neurons representing prev and curr that
are respectively the input and output of 𝑓. These neurons are associated with symbolic variables
𝑔𝑆 and 𝑔𝑇 representing their valuations respectively. The edges are only between curr and prev

neurons representing the ReLU operation. Here, prev represents only a single neuron. However,
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curr∈→

𝑔𝑇

prev∈→

𝑔𝑆

𝑉 ∈→ 𝑔𝑅𝑇

𝑊 ∈→ 𝑔𝑈𝑇

𝑋 ∈→ 𝑔𝑉𝑇

𝑌 ∈→ 𝑔𝑊𝑇

𝑔𝑅𝑆 ′ ! 𝑉
𝑔𝑈𝑆 ′ ! 𝑊

𝑔𝑉𝑆 ′! 𝑋
𝑔𝑊𝑆 ′ ! 𝑌

P(curr) = (𝑔𝑅𝑇 ↖ 𝑔𝑇 ↖ 𝑔𝑈𝑇 ) ↙ (𝑔𝑉𝑇 ↖ 𝑔𝑇 ↖ 𝑔𝑊𝑇 )

P(prev) = (𝑔𝑅𝑆 ↖ 𝑔𝑆 ↖ 𝑔𝑈𝑆 ) ↙ (𝑔𝑉𝑆 ↖ 𝑔𝑆 ↖ 𝑔𝑊𝑆 )

C𝑋 = (𝑔𝑆 ↖ 0 =≃ 𝑔𝑇 = 0) ↙ (𝑔𝑆 > 0 =≃ 𝑔𝑇 = 𝑔𝑆 )

C = P(curr) ↙ P(prev) ↙ C𝑋

(a)

ReLU

D𝑌

curr∈→

𝑔𝑇

prev∈→

𝑔𝑆

𝑉 ∈→ 𝑔𝑅𝑇

𝑊 ∈→ 𝑔𝑈𝑇

𝑋 ∈→ 𝑔𝑉𝑇

𝑌 ∈→ 𝑔𝑊𝑇

𝑔𝑅𝑆 ′ ! 𝑉
𝑔𝑈𝑆 ′ ! 𝑊

𝑔𝑉𝑆 ′! 𝑋
𝑔1𝑍 + 𝑔2𝑍 ∋ 𝜴𝜴1 + 𝑔3𝑍 ∋ 𝜴𝜴2 ′ ! 𝑌

D
∝

𝑌

𝐿2∈→

𝜴𝜴2

𝐿1∈→

𝜴𝜴1

𝑔𝑅𝑂1 ′! 𝑉
𝑔𝑈𝑂1 ′! 𝑊

𝑔𝑉𝑂1 ′ ! 𝑋
𝑔𝑊𝑂1 ′! 𝑌

𝑉 ∈→ 𝑔𝑅𝑂2

𝑊 ∈→ 𝑔𝑈𝑂2

𝑋 ∈→ 𝑔𝑉𝑂2

𝑌 ∈→ 𝑔𝑊𝑂2

P(prev) = (𝑔𝑅𝑆 ↖ 𝑔𝑆 ↖ 𝑔𝑈𝑆 ) ↙ (𝑔𝑉𝑆 ↖ 𝑔𝑆 ↖ (𝑔1𝑍 + 𝑔2𝑍 ∋ 𝑔𝑂1 + 𝑔3𝑍 ∋ 𝑔𝑂2 ))

C = P(curr) ↙ P(prev) ↙ C𝑋 ↙ P(𝐿1) ↙ P(𝐿2)

(b)

ReLU

!

Fig. 2. Symbolic DNN creation and expansion for DeepPoly. P(𝐿) ∞ (𝑉 ↖ 𝐿 ↖ 𝑊) ↙ (𝑋 ↖ 𝐿 ↖ 𝑌 )

for DNN operations like Affine, the symbolic DNN is initialized with prev1, · · · prev𝑎 where 𝑕 is
a su"ciently large parameter. We do not make any assumptions about the DNN’s architecture,
resulting in the absence of any extra neurons or edges between prev𝑄 and prev𝑏 and thus, no additional
constraints over symbolic variables. Fig. 2a shows the symbolic DNN for the ReLU transformer for
the DeepPoly certi!er. The soundness property P for this certi!er is that for each neuron 𝐿,
(𝑉 ↖ 𝐿 ↖ 𝑊) ↙ (𝑋 ↖ 𝐿 ↖ 𝑌 ). Each shape member and metadata associated with these neurons is also
initialized with fresh symbolic variables. For instance, 𝑔𝑅𝑆 , 𝑔𝑈𝑆 represent the lower and upper concrete
bounds respectively, and 𝑔𝑉𝑆 , 𝑔𝑊𝑆 are the lower and upper polyhedral bounds of prev. The symbolic
DNN is associated with constraints representing the edge relations between the neurons and the
soundness property assumptions before applying the transformer. In Fig. 2a, these constraints are
presented as C = P(curr) ↙ P(prev) ↙ C𝑋 , where P(curr) and P(prev) represent the soundness
property over curr and prev respectively. C𝑋 represents the semantics of the ReLU operation, i.e.,
curr = 0 when prev < 0, and curr = prev otherwise. The formal de!nition and details of a symbolic
DNN can be found in § 5.1.

3.2.2 Symbolic DNN Expansion. Initially, polyhedral bounds such as prev[𝑋] and prev[𝑌 ] are
represented as single symbolic variables. However, for operations like map, the polyhedral values
need to be expanded into expressions of the form 𝑖0 + 𝑖1 · 𝐿1 + 𝑖2 · 𝐿2 . . ., where 𝑖𝑄 are coe"cients
and 𝐿𝑄 are neurons. This is necessary for the semantics of map, as functions like replace_upper are
applied to each constituent neuron and coe"cient within the polyhedral expression. For example,
consider 𝑐 ∞ prev[𝑌 ] .map(replace_upper). Initially, prev[𝑌 ] is a single symbolic variable 𝑔𝑊𝑆 (Fig. 2a),
but to symbolically evaluate 𝑐 , the expression must be expanded into its constituent terms, e.g.,
𝑔1𝑍 +𝑔

2
𝑍 ·𝑔𝑂1+𝑔

3
𝑍 ·𝑔𝑂2 , where 𝑔1𝑍 , 𝑔2𝑍 , and 𝑔3𝑍 are symbolic coe"cients, and 𝑔𝑂1 , 𝑔𝑂2 represent new neurons.

In this case, the expansion introduces two neurons, but in general, the number of neurons 𝐿𝑐𝑑𝑃 is a
su"ciently large parameter. No architectural assumptions are made about the new neurons, but they
must be added to the symbolic DNN along with their metadata, and the soundness property P must
be assumed for them. Fig. 2b shows the updated symbolic DNN after one expansion step. Similarly,
before executing the expression for the polyhedral lower bound 𝑐 ∞ prev[𝑋] .map(replace_lower), 𝑔𝑉𝑆
must also be expanded. This expansion is performed through static analysis of the transformer.
Once the symbolic DNN is expanded, the associated constraints C are updated to re#ect the new
neurons and the expanded values. Detailed steps for Symbolic DNN Expansion are in § 5.2.
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𝑒 (𝑓 𝐿 (𝐿) )

𝑓 (𝑇 )

𝑒 (𝐿)

𝑇

2

𝑓 𝐿 (𝐿)

𝐿

3

1

4

Fig. 3. Soundness of 𝑀 𝐿 w.r.t. 𝑀

𝑇 ↗ 𝑒 (𝐿)
?

=≃ 𝑓 (𝑇 ) ↗ 𝑒 (𝑓 𝐿 (𝐿) )

∞ 𝑇 ↗ 𝑒 (𝐿)
?

=≃
(
( ··,𝑆, 𝑇, · · ) ↔ 𝑓 (𝑇 ) =≃ ( ··,𝑆, 𝑇, · · ) ↔ 𝑒 (𝑓 𝐿 (𝐿) )

)

∞

(
𝑇 ↗ 𝑒 (𝐿) ↙ ( ··,𝑆, 𝑇, · · ) ↔ 𝑓 (𝑇 )

) ?
=≃

(
( ··,𝑆, 𝑇, · · ) ↔ 𝑒 (𝑓 𝐿 (𝐿) )

)

∞

(
P(𝑐𝑀 , 𝑇 ) ↙ P(𝑐𝑁 ,𝑆 ) ↙ 𝑇 = 𝑓 (𝑆 )

) ?
=≃

(
𝐿∝ = 𝑓 𝐿 (𝐿) =≃

(
P(𝑐∝𝑀 , 𝑇 )

) )

∞

(
𝑔0 ↙ 𝑔1 ↙ 𝑔2

) ?
=≃

(
𝑔3 =≃ 𝑔4

)

∞

(
𝑔0 ↙ 𝑔1 ↙ 𝑔2 ↙ 𝑔3

) ?
=≃ 𝑔4

Fig. 4. SMT query for Soundness of 𝑀 𝐿 w.r.t. 𝑀

Table 1. Generating SMT query for verifying one case of the ReLU transformer for DeepPoly certifier.

Steps in Fig. 3 DeepPoly Translation for ReLU Operation

Let 𝐿 = ( · · · , 𝑐𝑂1 , 𝑐𝑂2 , 𝑐𝑁 , 𝑐𝑀 , · · · ) Declare fresh symbolic variables for all neurons, metadata, and shape
!elds in the expanded symbolic DNN

(1) Let ( · · · ,𝑂1,𝑂2,𝑆, 𝑇, · · · ) = 𝑒 (𝐿) , 𝑇 ↗ 𝑒 (𝐿) 𝑔1 ∞ P(𝑐𝑂1 ,𝑂1 ) ↙ P(𝑐𝑂2 ,𝑂2 ) ↙ P(𝑐𝑁 ,𝑆 ) ↙ P(𝑐𝑀 , 𝑇 )

(2) Apply 𝑓 to 𝑇 𝑔2 ∞ 𝑇 = 𝑓𝑃 (𝑆 )

(3) Let 𝐿∝ = 𝑓 𝐿 (𝐿) Declare new symbolic variables for output:
𝑔3 ∞ (𝐿∝ == ( · · · , 𝑐𝑂1 , 𝑐𝑂2 , 𝑐𝑁 , 𝑐

∝
𝑀 , · · · ) )

(4) Apply 𝑒 to 𝐿∝ 𝑔4 ∞ P(𝑐∝𝑀 , 𝑇 )

3.2.3 Generating the Verification!ery. Once the symbolic DNN is expanded, we can translate
the soundness check of a DNN certi!er (Formula 1) into a closed-form SMT query. In the case
of ReLU, the symbolic DNN corresponds to an abstract element 𝑅, a tuple of abstract shapes 𝑅 =
(· · · , 𝑇𝑂1 , 𝑇𝑂2 , 𝑇𝑆 , 𝑇𝑇 , · · · ), where 𝑇𝑂1 , 𝑇𝑂2 , 𝑇𝑆 , and 𝑇𝑇 represent the abstract shapes of 𝐿1, 𝐿2, prev, and
curr, respectively. As shown in Fig. 3, the veri!cation process consists of two steps (1, 2) to compute
𝑀 (𝑃), and two steps (3, 4) to compute 𝑆 (𝑀 𝐿 (𝑅)), starting from 𝑅. Table 1 outlines the computations
for each step, with an example for the !rst case of the DeepPoly ReLU transformer (𝑗0 ∞ prev[𝑉] ↑ 0).

1 𝑃 ↗ 𝑆 (𝑅), representing the set of neuron value tuples satisfying P. This is denoted by 𝑗1.
2 Applying 𝑀 to prev to compute curr. Any 𝑘 ↔ 𝑀 (𝑃), with 𝑘 = (· · · , 𝑁, 𝑃, · · · ), must satisfy
𝑗2 ∞ 𝑃 = 𝑀 (𝑁), where, in the case of ReLU, 𝑀𝑍 is de!ned as 𝑀𝑍 (𝑁) = max(𝑁, 0).

3 Applying 𝑀 𝐿 to 𝑅, updating only the abstract shape of curr: 𝑅∝ = (· · · , 𝑇𝑂1 , 𝑇𝑂2 , 𝑇𝑆 , 𝑇
∝
𝑇 , · · · ). The

new shape !elds 𝑉 , 𝑊, 𝑋, and 𝑌 are computed symbolically. For example, curr[𝑌 ] is set to
prev[𝑌 ] .map(replace_upper).We start this computation by computing prev[𝑌 ] as 𝑔1𝑍 + 𝑔2𝑍 ∋ 𝑔𝑂1 +

𝑔3𝑍 ∋ 𝑔𝑂2 . Then we apply replace_upper to each constituent summands to compute the !nal
value as 𝑔1𝑍 + 𝑙 𝑀 (𝑔2𝑍 ↑ 0, 𝑔2𝑍 ∋ 𝑔𝑊𝑂1 , 𝑔

2
𝑍 ∋ 𝑔

𝑉
𝑂1 ) + 𝑙 𝑀 (𝑔3𝑍 ↑ 0, 𝑔3𝑍 ∋ 𝑔𝑊𝑂2 , 𝑔

3
𝑍 ∋ 𝑔

𝑉
𝑂2 ). Here, 𝑙 𝑀 (𝑃, 𝑉, 𝑚 ) is a

Z3 construct. Similarly, the lower polyhedral bound is also computed.
4 Applying 𝑆 to 𝑅∝ results in 𝑗4 ∞ P(𝑇∝𝑇 , 𝑃).

The veri!cation reduces to checking if (𝑗0 ↙ 𝑗1 ↙ 𝑗2 ↙ 𝑗3) =≃ 𝑗4, as illustrated in Fig. 4. More
details on the symbolic semantics and the steps to generate the !nal query can be found in § 5.3, 5.4.

3.2.4 Soundness and Completeness of P!"#$S"%&’. The target of the veri!cation procedure is to
ensure that if using the operational semantics of C"&()!*+&)F,"-, the abstract transformer is
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⇐Expression⇒ 𝑐 ::= 𝑃 | 𝑖 | sym | 𝑐1 △ 𝑐2 | 𝑐 [𝑖] | 𝑀𝑇 (𝑐1, · · · ) | 𝑖 .traverse(𝑛, 𝑀𝑇1 , 𝑀𝑇2 , 𝑀𝑇3 ){𝑐} |
𝑐 .map(𝑀𝑇 ) | solver(minimize, 𝑐1, 𝑐2) | · · ·

⇐Shape-decl⇒ 𝑜 ::= Def shape as (𝑝1 𝑖1, 𝑝2 𝑖2, · · · ){𝑐}
⇐Function-def ⇒ 𝑀 ::= Func 𝑖 (𝑝1 𝑖1, 𝑝2 𝑖2, · · · ) = 𝑐
⇐DNN-operation⇒ 𝑓 ::= Affine | ReLU | MaxPool | DotProduct | Sigmoid | Tanh | · · ·
⇐Transformer-decl⇒ 𝑞𝑀 ::= Transformer 𝑖
⇐Transformer-ret⇒ 𝑞𝑍 ::= (𝑐1, 𝑐2, · · · ) | (𝑐 ? 𝑞𝑍1 : 𝑞𝑍2 )
⇐Transformer⇒ 𝑞 ::= 𝑞𝑀 {𝑓1 → 𝑞𝑍1 ;𝑓2 → 𝑞𝑍2 ; · · · }
⇐Statement⇒ 𝑇 ::= Flow(𝑛, 𝑀𝑇1 , 𝑀𝑇2 , 𝑞𝑇 ) | 𝑀 | 𝑞 | 𝑇1 ; 𝑇2
⇐Program⇒ ω ::= 𝑜 ; 𝑇

Fig. 5. A part of the BNF grammar for C!"#$%&’"$F(!). The complete grammar can be found in Appendix A

applied to any concrete DNN along with its abstract element that satis!es the speci!ed property,
the updated abstract element still maintains the over-approximation-based soundness. For this,
P!"#$S"%&’ creates a symbolic DNN and executes the speci!ed transformer using symbolic
semantics to generate an SMT query. We prove that verifying the transformer using symbolic
semantics over a symbolic DNN ensures the veri!cation using operational semantics over any
concrete DNN. We explain this in detail in § 5.5.

Soundness. We introduce the notion of a symbolic DNN over-approximating a concrete DNN
and symbolic semantics over-approximating the operational semantics. As a result, we use a
bisimulation argument to prove that if the transformer is veri!ed for a symbolic DNN, then it is
also veri!ed for all concrete DNNs that the symbolic DNN over-approximates.

Completeness. Symbolic execution is not complete for traverse because it involves loops with
input-dependent termination conditions. So, to verify programs using traverse, we check the
correctness and subsequently use the inductive invariant provided by the programmer. We also
provide a construct solver in C"&()!*+&)F,"- that can be used for calls to external solvers. For
example, !nding the minimum value of an expression 𝑐1 under some constraints 𝑐2 can be encoded
as solver(minimize, 𝑐1, 𝑐2). Since we do not have access to the solver, instead of symbolically executing
it, we use function contracts to represent the output, i.e., a fresh variable 𝑖 is declared that represents
the output. Under the conditions 𝑐2, the output 𝑖 must be less than 𝑐1, i.e., 𝑐2 =≃ 𝑖 ↖ 𝑐1. Due to
the invariants and contracts not being the strongest, the veri!cation is not complete. However, it is
complete for programs that do not use these constructs.

4 Formalising C!"#$%&’"$F(!)
We formally develop the syntax, type-system, and operational semantics of C"&()!*+&)F,"-.

4.1 Syntax
4.1.1 Statements. In C"&()!*+&)F,"-, a program ω starts with the shape declaration (𝑜) and is
followed by a sequence of statements (𝑇), i.e., ω ::= 𝑜 ; 𝑇 . As shown in Fig. 5, statements include
function de!nitions (𝑀 ) - speci!ed using Func construct, transformer de!nitions (𝑞 ) - speci!ed
using Transformer construct, the #ow of constraints - speci!ed using Flow construct, and sequence
of statements separated by ;. The output of a function is an expression 𝑐 , while the output of a
transformer (𝑞𝑍 ) is either a tuple of expressions 𝑝 ∞ (𝑐1, · · · ), where 𝑐𝑄 represents the output of each
member of the abstract shape, or (𝑐 ? 𝑞𝑍1 : 𝑞𝑍2 ), where _?_ : _ is the ternary operator.
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▽

Ct SymExp PolyExp

Real

Bool Sym Int Neuron

̸

Fig. 6. Subtyping La!ice

· ↦ ω : ε, 𝑟𝑐 · ↦ 𝑜 : 𝑟𝑐 ε, 𝑟𝑐 ↦ 𝑇 : ε∝

T/0!"1!*2
· ↦ 𝑜 : 𝑟𝑐 ·, 𝑟𝑐 ↦ 𝑇 : ε

· ↦ 𝑜 ; 𝑇 : ε, 𝑟𝑐

T/(3*0$
𝑟𝑐 = [𝑖1 ∈→ 𝑝1, · · · 𝑖𝑂 ∈→ 𝑝𝑂]

↘𝑍 ↔ [𝐿],̸ ⫅̸ 𝑝𝑄 ⫅̸ ▽

· ↦ Def shape as (𝑝1 𝑖1, · · · , 𝑝𝑂 𝑖𝑂) : 𝑟𝑐

T/)!*&(."!2$!
𝑖 ω ε ε∝ = ε [curr ∈→ Neuron)] [prev ∈→ Neuron]

↘𝑍 ↔ [𝑂], ε∝, 𝑟𝑐 ↦ 𝑞𝑍𝐿 : (𝑝
1
𝑄 , · · · , 𝑝

𝑂
𝑄 )

↘𝑠 ↔ [𝐿], 𝑝 𝑏 = ∀𝑄↔ [𝑃] (𝑝
𝑏
𝑄 ) ↘𝑠 ↔ [𝐿], 𝑝 𝑏 ∃ 𝑟 𝑏𝑐

ε, 𝑟𝑐 ↦ Transformer 𝑖 = {𝑓1 : 𝑞𝑍1 , · · · } :
ε [𝑖 ∈→ (Neuron ↓ Neuron) → (𝑝1, · · · )]

Fig. 7. Type-checking Rules (T )

4.1.2 Expressions. As shown in Fig. 5, apart from constants (𝑃) and variables (𝑖), sym is also an
expression, which can be used to declare a new symbolic variable 𝑑 . For every symbolic variable, we
implicitly add the constraint most commonly used in DNN certi!ers, i.e., ⇓1 ↖ 𝑑 ↖ 1. We allow the
standard binary operators, list operators, function calls, etc. Some operators like ‘+’ are overloaded
to also apply to polyhedral and symbolic expressions. Each neuron is associated with its abstract
shape and metadata, which can be accessed by square bracket notation, for instance - curr[𝑉]. The
map construct takes in a function name and an expression of type PolyExp (or SymExp). The function is
applied to all the constituent neurons (or symbolic variables) and adds the results to give a new
polyhedral (or symbolic) expression. traverse is applied to a variable (𝑖 ) representing a polyhedral
expression, and takes in the direction of traversal (𝑛), a priority function (𝑀𝑇1 ), a stopping function
(𝑀𝑇2 ), a replacement function (𝑀𝑇3 ), and a user-de!ned invariant (𝑐), needed for veri!cation. We also
provide the solver construct in P!"#$S"%&’, which allows calls to external solvers. For example,
minimizing an expression 𝑐1 under constraints 𝑐2 can be expressed as solver(minimize, 𝑐1, 𝑐2).

4.1.3 Specifying Constraints. To verify a DNN certi!er, one must provide the soundness property
(P) along the abstract shape. Also, for traverse, the programmer must provide an invariant. To
de!ne constraints in C"&()!*+&)F,"-, the operators ==, ↖, ↑ are overloaded and can be used to
compare polyhedral expressions as well as C"&()!*+&)F,"- symbolic expressions. For example,
the constraint 𝐿1 + 𝐿2 ↖ 𝐿3 means that for all possible values of 𝐿1,𝐿2, and 𝐿3 during concrete
execution, the constraint must be true. Further, the construct <> can be used to de!ne constraints
such as 𝑐1 <> 𝑐2, where 𝑐1 is a polyhedral expression, and 𝑐2 is a symbolic expression. Mathematically,
the constraint 𝐿1 +𝐿2 <> sym1 + 2 sym2 means ↘𝐿1,𝐿2 ·¬ sym1, sym2 ↔ [⇓1, 1], 𝑇 .𝑝 .,𝐿1 +𝐿2 = sym1 + 2 sym2.
In C"&()!*+&)F,"-, the constraints are expressions of type Ct. The binary operators like ↙,∅ are
also overloaded. For example, if 𝑐1 and 𝑐2 are of the type Ct, then 𝑐1 ↙ 𝑐2 is a constraint of type Ct.

4.2 Type Checking
We de!ne a subtyping relation ⫅̸ for the basic types in C"&()!*+&)F,"-, organized as a lattice
(Fig. 6). An expression is type-checked to ensure that it has a type other than ▽ or ̸. Type-
checking involves recording the types of the members of the abstract shape in a record 𝑟𝑐 (referred
to as T/(3*0$ in Fig. 7). A static environment ε maps program identi!ers to their respective
types, and the tuple (ε, 𝑟𝑐 ) forms the typing context in C"&()!*+&)F,"- (T/0!"1!*2). We utilize
standard function types of the form 𝑝1 ↓ · · · ↓ 𝑝𝑂 → 𝑝 , where 𝑝𝑄 are the argument types and 𝑝 is
the return type. The Transformer construct encapsulates the abstract transformers associated with
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⇐ω,D𝑕⇒ ℜ D
∝

𝑕 ⇐𝑇, 𝑡 ,ϑ,D𝑕⇒ ℜ 𝑡 ∝,ϑ∝,D∝

𝑕 ⇐𝑐, 𝑡 , 𝑢,D𝑕⇒ ℜ 𝑣

OP/2*0

⇐𝑐, 𝑡 , 𝑢,D𝑕⇒ ℜ 𝑃0 +
𝑄=𝑅∑
𝑄=0

𝑃𝑄 · 𝑘𝑄

↘𝑍 ↔ [𝑉], ⇐𝑀𝑇 (𝑘𝑄 , 𝑃𝑄 ), 𝑡 , 𝑢,D𝑕⇒ ℜ 𝑣𝑄

⇐𝑐 .map(𝑀𝑇 ), 𝑡 , 𝑢,D𝑕⇒ ℜ 𝑃0 +
𝑄=𝑅∑
𝑄=0

𝑣𝑄

OP/)!*#$!($/2
V∝ = P(V, 𝑀𝑇1 , 𝑡 , 𝑢,D𝑕 ) 𝑣 = 𝑃 + 𝑣V∝ + 𝑣V∝

⇐𝑣V∝ .map(𝑀𝑇3 ), 𝑡 , 𝑢,D𝑕⇒ ℜ 𝑣 ∝

𝑣 ∝∝ = 𝑃 + 𝑣 ∝ + 𝑣V∝

V∝∝ = Ft((V \ V∝
) ⇑ N(V∝, 𝑛), 𝑀𝑇2 , 𝑡 , 𝑢,D𝑕 )

⇐𝑣 ∝∝ .traverse, 𝑡 , 𝑢,D𝑕 ,V∝∝
⇒ ℜ 𝑣 ∝∝∝

⇐𝑣 .traverse(𝑛, 𝑀𝑇1 , 𝑀𝑇2 , 𝑀𝑇3 ), 𝑡 , 𝑢,D𝑕 ,V⇒ ℜ 𝑣 ∝∝∝

Fig. 8. Big-step Operational Semantics (OP) of C!"#$%&’"$F(!)

each DNN operation. In rule T/)!*&(."!2$!, the output of an abstract transformer 𝑞𝑍 is a tuple
of expressions that undergo recursive type-checking to ensure consistency with 𝑟𝑐 . The implicit
inputs to Transformer are curr and prev. For 𝐿 members in the user-de!ned abstract shape and𝑂
DNN operations, the corresponding abstract transformers yield tuples of types (𝑝1𝑄 , · · · , 𝑝

𝑂
𝑄 ). For

each abstract shape element, we de!ne the type 𝑝 𝑏 = ∀𝑄↔ [𝑃]𝑝
𝑏
𝑄 . The transformer type checks if

𝑠 ↔ [𝐿] and 𝑝 𝑏𝑄 ∃ 𝑟 𝑏𝑐 , where 𝑟
𝑏
𝑐 is the type of the 𝑠-th shape member. The type of curr is Neuron,

while the type of prev depends on the DNN operation; for simplicity, we assume prev is of type
Neuron. If all abstract transformers in the Transformer construct pass type-checking, a new binding is
created in ε mapping the transformer name to the type Neuron↓ Neuron → (𝑝1, · · · , 𝑝𝑃). The detailed
description of type-checking in C"&()!*+&)F,"- can be found in Appendix B.

4.3 Operational Semantics
The input concrete DNN is represented as a record D𝑕 that maps the metadata and abstract shape
members of all neurons to their respective values. While executing statements in C"&()!*+&)F,"-,
two stores are maintained: (i) 𝑡 , which maps function names to their arguments and return
expressions, and (ii) ϑ, which maps transformer names to their de!nitions. The general form for the
operational semantics of statements in C"&()!*+&)F,"- is given by: ⇐𝑇, 𝑡 ,ϑ,D𝑕⇒ ℜ 𝑡 ∝,ϑ∝,D∝

𝑕 .
Function de!nitions add entries to 𝑡 , while transformer de!nitions add entries to ϑ. The Flow

construct applies transformer 𝑞𝑇 to the neurons in the DNN D𝑕 , modifying it to D
∝

𝑕 .
Each expression in C"&()!*+&)F,"- evaluates to a value (𝑣), with the formal de!nition of values

provided in Appendix C. A record 𝑢 maps variables in C"&()!*+&)F,"- to concrete values. The
general form for the operational semantics of expressions in C"&()!*+&)F,"- is: ⇐𝑐, 𝑡 , 𝑢,D𝑕⇒ ℜ 𝑣 ,
with most operations, including unary and binary, following their natural operational semantics.

The operational semantics of map (OP/2*0 in Fig. 8) begins by recursively evaluating the input
expression 𝑐 , yielding a polyhedral or symbolic expression denoted as 𝑣𝑖 . The input function 𝑀 is
then applied to each component of 𝑣𝑖 , resulting in individual outputs 𝑣𝑄 that are summed to produce
the !nal output. For traverse, the input expression 𝑐 is !rst evaluated to yield a polyhedral value 𝑣 .
Then, an active vertex set V is established by retrieving constituent neurons from 𝑣 and !ltering
out neurons that satisfy the stopping condition 𝑀𝑇2 , i.e., V ′ Ft(neurons(𝑣), 𝑀𝑇2 , 𝑡 , 𝑢,D𝑕 ). This
set initializes V and is iterated upon until it is empty. In each iteration, shown in OP/)!*#$!($/2
(Fig. 8), the priority function 𝑀𝑇1 is applied to each neuron in V, selecting the highest-priority
neurons: V∝

′ P(V, 𝑀𝑇1 , 𝑡 , 𝑢,D𝑕 ). The value 𝑣 can be decomposed into three parts: a constant 𝑃 ,
the value associated with neurons in V∝, and the value for neurons not in V∝: 𝑣 = 𝑃 + 𝑣V∝ + 𝑣V∝ .
The replacement function 𝑀𝑇3 is applied only to 𝑣V∝ , retaining the coe"cients of the other neurons,
resulting in a new polyhedral value: 𝑣 ∝∝ = 𝑃 + 𝑣 ∝ + 𝑣V∝ . The active set is updated by removing
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neurons from V∝ and adding their neighbors, !ltered again to satisfy the stopping condition:
V∝∝ = Ft((V \ V∝

) ⇑ N(V∝, 𝑛), 𝑀𝑇2 , 𝑡 , 𝑢,D𝑕 ). This process continues until the !nal value is computed.
More detailed operational semantics for traverse and other constructs can be found in Appendix D.

4.4 Type Soundness
We demonstrate that if a program type-checks according to the rules of C"&()!*+&)F,"-, then
applying the program according to operational semantics produces an updated abstract element
for the input neural network (Theorem 4.1). Lemmas 4.1 and 4.2 establish that if an expression or
statement type-checks, it will evaluate according to operational semantics, with the output type
consistent with the type computed during type-checking. Detailed proofs are in Appendix E.

L$22* 4.1. Given (ε, 𝑟𝑐 ) and (𝑡 , 𝑢,D𝑕 ) with !nite D𝑕 such that (𝑡 , 𝑢,D𝑕 ) is consistent with
(ε, 𝑟𝑐 ), if ε, 𝑟𝑐 ↦ 𝑐 : 𝑝 and ̸ ⫅̸ 𝑝 ⫅̸ ▽, then ⇐𝑐, 𝑡 , 𝑢,D𝑕⇒ ℜ 𝑣 and ↦ 𝑣 : 𝑝 ∝ s.t. 𝑝 ∝ ∃ 𝑝 .

L$22* 4.2. Given (ε, 𝑟𝑐 ) and (𝑡 , 𝑢,D𝑕 ) with !nite D𝑕 such that (𝑡 , 𝑢,D𝑕 ) is consistent with
(ε, 𝑟𝑐 ), if ε, 𝑟𝑐 ↦ 𝑇 : ε∝, then ⇐𝑇, 𝑡 , 𝑢,D𝑕⇒ ℜ 𝑡 ∝, 𝑢 ∝,D∝

𝑕 s.t. (𝑡 ∝, 𝑢 ∝,D∝

𝑕 ) is consistent with (ε∝, 𝑟𝑐 ).

T3$"!$2 4.1. A well-typed program in C!"#$%&’"$F(!) successfully terminates according to the
operational semantics, i.e., T |= OP. Formally, if · ↦ ω : ε, 𝑟𝑐 then ⇐ω,D𝑕⇒ ℜ D

∝

𝑕

P!"". (4$)53. Theorem 4.1 follows directly from Lemmas 4.1 and 4.2. The lemmas are proved by
induction on the structures of 𝑐 and 𝑇 . For Lemma 4.1, the case where 𝑐 ∞ 𝑖 · traverse(𝑛, 𝑀1, 𝑀2, 𝑀3){_}
is particularly intricate as it involves traversing the DNN. We demonstrate this by constructing
a bit vector 𝑤 representing the neurons in the DNN, ordered topologically (as a DAG), where 1
indicates the presence in the active set and 0 indicates absence. We show that the value of 𝑤 is
bounded and decreases by at least 1 in each iteration. ⫆̸

5 P%!*+S!,"-—Bounded Automatic Verification
We present bounded automated veri!cation for the soundness veri!cation of every abstract trans-
former speci!ed for a DNN certi!er. Bounds are assumed on the maximum number of neurons in
the previous layer (𝐿𝑆𝑍𝑗𝑘), and the maximum number of P!"#$S"%&’ symbolic variables used by
the certi!er (𝐿𝑐𝑑𝑃). We reduce this veri!cation task to a !rst-order logic query which can be handled
with an o$-the-shelf SMT solver. In this section, the terms symbolic variables and constraints refer
to SMT symbolic variables and constraints over them, not the P!"#$S"%&’ symbolic variables 𝑑 or
constraints unless stated otherwise. When executing the certi!er using operational semantics, the
input is a concrete DNN. So, the soundness of the certi!er must be veri!ed for all possible inputs,
i.e., all possible DNNs. Our key insight is a Symbolic DNN that can represent arbitrary concrete
DNNs within the above-stated bounds. In a nutshell, given a P!"#$S"%&’ program, we perform the
following steps: (i) create a symbolic DNN (§ 5.1), (ii) expand the symbolic DNN to be able to execute
the program (§ 5.2), (iii) execute the program on the symbolic DNN using symbolic semantics
(§ 5.3), (iv) generate the veri!cation query and verify the query using an o$-the-shelf SMT solver
(§ 5.4). We prove the soundness of the symbolic semantics w.r.t. the operational semantics (§ 5.5). So,
verifying the soundness of a certi!er for a symbolic DNN ensures the soundness of any concrete
DNN within the bounds.

5.1 Symbolic DNN Creation
We introduce the concept of a Symbolic DNN to represent an arbitrary DNN and the corresponding
abstract shapes symbolically. It represents all subgraphs of any arbitrary neural network on which
the speci!ed transformer can be applied. So, it consists of symbolic values representing neurons
necessary for executing the transformer.
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E/(3*0$/6
⇐𝑐, 𝑡 ,𝑥,D𝑐 , C⇒ ℑ 𝐿, _

expandN(𝐿, 𝑖, 𝑟𝑐 ,D𝑌 , C,P) = D
∝

𝑌 , C
∝

expand(𝑐 [𝑖], 𝑟𝑐 , 𝑡 ,𝑥,D𝑌 , C,P) = D
∝

𝑌 , C
∝

G/2*0
𝑟𝑐 , 𝑡 ,𝑥,D𝑌 , C,P |= 𝑐 ! D

∝

𝑌 , C
∝

expand(𝑐, 𝑟𝑐 , 𝑡 ,𝑥,D∝

𝑌 , C
∝,P) = D𝑌0 , C0

⇐𝑐, 𝑡 ,𝑥,D𝑌0 , C0⇒ ℑ 𝑔𝑖0 +
𝑏∑

𝑄=1
𝐿𝑄 ∋ 𝑔𝑖𝐿

↘𝑍 ↔ [ 𝑠] 𝑟𝑐 , 𝑡 ,𝑥𝑄 ,D𝑌𝐿⇓1 , C𝑄⇓1 |= 𝑀𝑇 (𝐿𝑄 , 𝑔𝑖𝐿 ) ! D𝑌𝐿 , C𝑄

𝑟𝑌 , 𝑡 ,𝑥,D𝑌 , C,P |= 𝑐 · map(𝑀𝑇 ) ! D𝑌 𝑄 , C𝑌 𝑄

E70*&’/0",8/!
𝑟𝑐 (𝑖) = PolyExp D𝑌 [𝐿[𝑖]] = 𝑔𝑖𝑃 N = [𝐿∝1, · · ·𝐿

∝

𝑏 ]

D𝑌0 = D𝑌 ↘𝑍 ↔ [ 𝑠],D𝑌𝐿 , C𝑄 = add(𝐿∝𝑄 , 𝑟𝑐 ,D𝑌𝐿⇓1 ,P, C𝑄⇓1)

𝑔𝑖 = 𝑔𝑍0 +
𝑏∑

𝑄=1
𝑔𝑍𝐿 ∋ 𝐿

∝

𝑄 D
∝

𝑌 = D𝑌 𝑄 [𝐿[𝑖] ∈→ 𝑔𝑖]

expandN(𝐿, 𝑖, 𝑟𝑐 ,D𝑌 , C0,P) = D
∝

𝑌 , C𝑏

G/)!*#$!($
N = [𝐿1, · · ·𝐿 𝑏 ]

𝑟𝑐 , 𝑡 ,𝑥,D𝑌 , C,P |= 𝑐 ! D𝑌0 , C0 ↘𝑍 ↔ [ 𝑠],D𝑌𝐿 , C𝑄 = add(𝐿𝑄 , 𝑟𝑐 ,D𝑌𝐿⇓1 ,P, C𝑄⇓1)

𝑔𝑖 = 𝑔𝑖0 +
𝑏∑

𝑄=1
𝑔𝑖𝐿 ∋ 𝐿𝑄 𝑔𝑖, 𝑔𝑖0 , 𝑔𝑖𝐿 are fresh symbolic variables

D
∝

𝑌0
= D𝑌 𝑄 C

∝

0 = C𝑏 ↘𝑍 ↔ [ 𝑠], 𝑟𝑐 , 𝑡 ,𝑥,D
∝

𝑌𝐿⇓1
, C∝

𝑄⇓1,P |= 𝑀𝑇2 (𝐿𝑄 , 𝑔𝑖𝐿 ) ! D
∝

𝑌𝐿
, C∝

𝑄
D

∝∝

𝑌0
= D

∝

𝑌 𝑄
C
∝∝

0 = C
∝

𝑏 ↘𝑍 ↔ [ 𝑠], 𝑟𝑐 , 𝑡 ,𝑥,D
∝∝

𝑌𝐿⇓1
, C∝∝

𝑄⇓1,P |= 𝑀𝑇3 (𝐿𝑄 , 𝑔𝑖𝐿 ) ! D
∝∝

𝑌𝐿
, C∝∝

𝑄

𝑟𝑐 , 𝑡 ,𝑥,D𝑌 , C,P |= 𝑖 · traverse(𝑛, 𝑀𝑇1 , 𝑀𝑇2 , 𝑀𝑇3 ){𝑐} ! D
∝∝

𝑌 𝑄
, C∝∝

𝑏

Fig. 9. Symbolic DNN Expansion

D$.+&+)+"& 5.1. A symbolic DNN is a graph ⇐𝑦 , 𝑧,D𝑌 , C⇒, where 𝑦 is the set of neurons and 𝑧 is
the set of edges representing the DNN operations (e.g., Affine, ReLU). Each node is associated with an
abstract shape and metadata. D𝑌 is a record that maps each neuron, its shape members, and metadata
to symbolic variables and C represents constraints over the symbolic variables.

As explained in § 3.2.1, 3.2.2, for each DNN operation 𝑓 (e.g., ReLU), we initialize a symbolic
DNN with neurons representing prev and curr that are respectively the input and output of 𝑓. The
edges are only between curr and prev neurons and represent the operation 𝑓. C encodes 𝑓 and the
assumption of the user-speci!ed property P over all of the neurons in the symbolic DNN. Each
shape member and metadata associated with these neurons is set to symbolic variables in D𝑌 .
In subsequent sections, we omit 𝑦 and 𝑧 and refer to D𝑌 , C as a symbolic DNN. Next, to enable
symbolic execution of the speci!ed transformer, we may need to expand the symbolic DNN. For
example, in the case of the expression 𝑐 ∞ prev[𝑌 ] .map(foo), where foo is a user-de!ned function,
prev[𝑌 ] must be expanded before we can apply foo. The symbolic DNN expansion step is written
in the form 𝑟𝑐 , 𝑡 ,𝑥,D𝑌 , C,P |= 𝑐 ! D

∝

𝑌 , C
∝ (§ 5.2). After the symbolic DNN expansion step of an

expression 𝑐 , it can be symbolically executed using the symbolic semantics. The symbolic semantics
are de!ned in the form ⇐𝑐, 𝑡 ,𝑥,D𝑌 , C⇒ ℑ 𝑔, C∝ (§ 5.3).

5.2 Symbolic DNN Expansion
The expansion step is done by statically analyzing the transformer speci!cation and expanding the
symbolic DNN accordingly. A subset of the rules for symbolic DNN expansion is shown in Fig. 9.
The complete set of rules can be found in Appendix G. This step analyzes the expression 𝑐 for the
presence of one of three constructs - map, function call, or traverse. The rules for map and traverse
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are shown in rules G/2*0 and G/)!*#$!($ (in Fig. 9). In the rule G/2*0, the graph expansion is
recursively applied to the input expression 𝑐 in the !rst line. Then, since it is a map construct, it
must be ensured that the output of 𝑐 is in expanded form. This is done in the second line. The
third line asserts that the output from the symbolic execution of 𝑐 is already in the expanded form
𝑔𝑖0 +

∑𝑏
𝑄=1 𝐿𝑄 ∋ 𝑔𝑖𝐿 . Since the map construct applies the function call to all the individual summands of

the output, the DNN expansion step is applied to each function call before symbolically executing
it. This is shown in the fourth line of G/2*0 rule.

Now, we explain the expand(𝑐, 𝑟𝑐 , 𝑡 ,𝑥,D𝑌 , C,P) rules used to ensure that the output of symbol-
ically executing 𝑐 is in expanded form. Here, expand takes in an expression, 𝑐 , 𝑟𝑌 , 𝑡 , 𝑥 , D𝑌 , C, and
the abstract shape constraint de!nition P. The output of expand is D∝

𝑌 , which can contain new
shape members and expanded versions of existing shape members, and C

∝, which is extended to
include the soundness property assumptions on any new neurons added to the symbolic DNN or
the constraint ⇓1 ↖ 𝑑 ↖ 1 for any new P!"#$S"%&’ symbolic variables. In Fig. 9, we show one
of the base cases of this step, E70*&’/0",8/!, where we expand the accessed polyhedral shape
member of the input neuron. In the !rst line, we symbolically execute 𝑐 to get the neuron 𝐿. Then, if
𝑖 is of the type PolyExp or SymExp, we add new symbolic variables to the symbolic DNN accordingly.

Another interesting case for graph expansion is the expressions 𝑖 .traverse(𝑜, 𝑀𝑇1 , 𝑀𝑇2 , 𝑀𝑇3 ) shown
in the rule G/)!*#$!($, where we recursively call the graph expansion for the invariant 𝑐 in line
1. Since we cannot symbolically execute the traverse construct due to it being a loop with an
undetermined number of iterations at the analysis time, we declare new neurons to represent the
output. In line 2, these new neurons and their corresponding metadata are added to the symbolic
DNN. So, the output of symbolically executing traverse is represented as 𝑔𝑖 = 𝑔𝑖0 +

∑𝑏
𝑄=1 𝑔𝑖𝐿 ∋ 𝐿𝑄 in

line 3. When generating the query, we also need to assume that the stopping condition (𝑀𝑇2 ) is true
on all summands of the !nal output, and also the function 𝑀𝑇3 is applied to all the summands. So, in
lines 4-5, we recursively apply the symbolic DNN expansion on all the summands using 𝑀𝑇2 and 𝑀𝑇3 .

5.3 Symbolic Semantics
Like operational semantics, symbolic semantics (S) use 𝑡 whichmaps function names to their formal
arguments and return expressions. However, instead of the concrete store 𝑢 used in operational
semantics, it uses a symbolic store, 𝑥 , which maps the identi!ers to their symbolic values 𝑔 in
expanded form. Symbolic semantics output a symbolic value 𝑔, and also add additional constraints
to C, i.e., ⇐𝑐, 𝑡 ,𝑥,D𝑌 , C⇒ ℑ 𝑔, C∝. Constants, variables, and the introduction of new P!"#$S"%&’
symbolic variables using the 𝑑 construct are the base cases of the symbolic semantics of P!"#$S"%&’.
Unary, binary, and ternary operations are straightforward recursive cases. We show S82/)$!&*!8
in Fig. 10, where the three expressions 𝑐1, 𝑐2, and 𝑐3 are recursively executed to output 𝑔1, 𝑔2, 𝑔3,
respectively. The output value of the ternary operation is thus returned as If(𝑔1, 𝑔2, 𝑔3), where If is
a Z3 construct. Also, the constraints are accumulated in the recursive calls. The symbolic semantics
for map construct are similar to the operational semantics and are therefore omitted here. We now
discuss the semantics for the more challenging traverse construct. Detailed semantics for other
constructs are available in Appendices F and G.
Due to the lack of DNN architecture information, full symbolic execution of the loop speci!ed

by the traverse construct is not feasible. So, we validate the user-provided invariant’s soundness
and subsequently use it for the symbolic semantics of traverse. In the rule S82/)!*#$!($ in Fig. 10,
𝑐 is the user-de!ned invariant for the traversal, 𝑔𝑖 is the output symbolic polyhedral expression,
and 𝑔 is the result of applying the invariant 𝑐 to 𝑔𝑖 . We check the soundness of this invariant
in two steps (C3$54/+&#*!+*&) in Fig. 10). First, we verify that the invariant is satis!ed at the
initial state. Here, 𝑔 represents the evaluated invariant expression 𝑐 applied to the input state of

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 144. Publication date: April 2025.



144:16 Avaljot Singh, Yasmin Chandini Sarita, Charith Mendis, and Gagandeep Singh

S82/)$!&*!8
⇐𝑐1, 𝑡 ,𝑥,D𝑌 , C⇒ ℑ 𝑔1, C1 ⇐𝑐2, 𝑡 ,𝑥,D𝑌 , C1⇒ ℑ 𝑔2, C2 ⇐𝑐3, 𝑡 ,𝑥,D𝑌 , C2⇒ ℑ 𝑔3, C3

⇐(𝑐1?𝑐2 : 𝑐3), 𝑡 ,𝑥,D𝑌 , C⇒ ℑ 𝑙 𝑀 (𝑔1, 𝑔2, 𝑔3), C3

C3$54/+&’%5)+"&

N = [𝐿∝1, · · · ,𝐿
∝

𝑏 ] 𝑔𝑖 = 𝑔real0 +

𝑏∑
𝑄=1

𝑔real𝑄 ∋ 𝐿∝𝑄 𝑥 ∝ = 𝑥 [𝑖 ∈→ 𝑔𝑖]

⇐𝑐, 𝑡 ,𝑥 ∝,D𝑌 , C⇒ ℑ 𝑔∝𝑖, C0 ↘𝑍 ↔ [ 𝑠], ⇐𝑀𝑇2 (𝐿𝑄 , 𝑔𝑍𝐿 ), 𝑡 ,𝑥
∝,D𝑌 , C𝑄⇓1⇒ ℑ 𝑔∝𝑄 , C𝑄

C
∝

0 = C𝑏 ↘𝑍 ↔ [ 𝑠], ⇐𝑀𝑇3 (𝐿𝑄 , 𝑔𝑍𝐿 ), 𝑡 ,𝑥
∝,D𝑌 , C

∝

𝑄⇓1⇒ ℑ 𝑔∝∝𝑄 , C
∝

𝑄

𝑔∝∝ = 𝑔𝑍0 +
𝑏∑

𝑄=1
𝑙 𝑀 (𝑔∝𝑄 , 𝑔

∝∝

𝑄 , 𝑔𝑍𝐿 ∋ 𝐿𝑄 ) 𝑥 ∝∝ = 𝑥 [𝑖 ∈→ 𝑔∝∝] ⇐𝑐, 𝑡 ,𝑥 ∝∝,D𝑌 , C
∝

𝑏 ⇒ ℑ 𝑔∝∝∝, C∝∝

Ind(𝑖 · traverse(𝑛, 𝑀𝑇1 , 𝑀𝑇2 , 𝑀𝑇3 ){𝑐}, 𝑡 ,𝑥,D𝑌 , C) = unsat(¬(C0 ↙ 𝑔∝𝑖 =≃ C
∝∝

𝑏 ↙ 𝑔∝∝∝))

C3$54/+&#*!+*&)
⇐𝑐, 𝑡 ,𝑥,D𝑌 , C⇒ ℑ 𝑔, C∝ 𝑔𝑖 = unsat(¬(C∝ =≃ 𝑔))
𝑔∝𝑖 = Ind(𝑖 · traverse(𝑛, 𝑀𝑇1 , 𝑀𝑇2 , 𝑀𝑇3 ){𝑐}, 𝑡 ,𝑥,D𝑌 , C)

Inv(𝑖 · traverse(𝑛, 𝑀𝑇1 , 𝑀𝑇2 , 𝑀𝑇3 ){𝑐}, 𝑡 ,𝑥,D𝑌 , C) = 𝑔𝑖 ↙ 𝑔∝𝑖, C
∝

S82/)!*#$!($
Inv(𝑖 · traverse(𝑛, 𝑀𝑇1 , 𝑀𝑇2 , 𝑀𝑇3 ){𝑐}, 𝑡 ,𝑥,D𝑌 , C) = true, C∝

𝑔𝑖 = 𝑔0 +
𝑏∑

𝑄=1
𝑔𝑄 ∋ 𝑔

∝

𝑄 𝑥 ∝ = 𝑥 [𝑖 ∈→ 𝑔𝑖] ⇐𝑐, 𝑡 ,𝑥 ∝,D𝑌 , C
∝
⇒ ℑ 𝑔, C∝∝

⇐𝑖 · traverse(𝑛, 𝑀𝑇1 , 𝑀𝑇2 , 𝑀𝑇3 ){𝑐}, 𝑡 ,𝑥,D𝑌 , C⇒ ℑ 𝑔𝑖, 𝑔 ↙ C
∝∝

Fig. 10. Symbolic Semantics (S) for P%!*+S!,"- expressions: ⇐𝑐, 𝑡 ,𝑥,D𝑌 , C⇒ ℑ 𝑔, C∝

traverse. unsat(¬(C∝ =≃ 𝑔)) implies that 𝑔 is true under the conditions, C∝, which are valid
before executing traverse. Second, we verify that the invariant is inductive (C3$54/+&’%5)+"&).
In Ind, unsat(¬(C0 ↙ 𝑔∝𝑖 =≃ C

∝∝

𝑏 ↙ 𝑔∝∝∝)) means that under the assumption that the invariant
holds before an iteration of traverse, the invariant must hold after the iteration of traverse. If the
invariant is validated, we create a symbolic value of the form 𝑔0 +

∑𝑏
𝑄=1 𝑔𝑄 ∋ 𝑔

∝

𝑄 to represent the
output of 𝑖 .traverse(𝑜, 𝑀𝑇1 , 𝑀𝑇2 , 𝑀𝑇3 ){𝑐} and assume, in C, that the invariant holds on this output.

5.4 !eries for Verification
Initially, it is assumed that the property P holds for all the neurons in the symbolic DNN. To
compute the new abstract shape, the user-speci!ed abstract transformer is executed using the
symbolic semantics as described in § 5.3. This results in the new abstract shape (for curr) - a tuple
of symbolic values (𝑔1, · · · , 𝑔𝑂) and a condition, C∝ that encodes constraints over 𝑔𝑄 . To verify
the soundness of the abstract transformer, we need to check that if the property P holds for all
the neurons in the symbolic DNN (↘𝐿 ↔ D𝑌 ,P(𝑄𝑂,𝐿)), then it also holds for the new symbolic
abstract shape values, P(𝑄 ∝

curr, curr), where 𝑄 ∝
curr = (𝑔1, · · · , 𝑔𝑂). We split the query into two parts:

(i) antecedent 𝑁—encoding the initial constraints on the symbolic DNN, the computations of the
new abstract shape for curr, represented by R, the semantic relationship 𝑓 between curr and prev,
and any path conditions relevant to the speci!c computations we are verifying, C∝. 𝑁 ⊋ (↘𝐿 ↔

D𝑌 ,P(𝑄𝑂,𝐿)) ↙ curr = 𝑓 (prev) ↙ R ↙ C
∝ (ii) consequent 𝛥—encoding the property P applied to the

new abstract shape of curr. 𝛥 ⊋ P(𝑄 ∝
curr, curr). So, the !nal query is checkValid(𝑁 =≃ 𝛥).
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𝐿

𝑉 = ⇓1

𝑊 = 3

𝑋 = 4 + 5𝐿1 + 6𝐿2

𝑌 = 3 ⇓ 2𝐿1

D𝑕 D𝑌

prev∈→

𝑔𝑆

𝑉 ∈→ 𝑔𝑅𝑆

𝑊 ∈→ 𝑔𝑈𝑆

𝑋 ∈→ 𝑔𝑉𝑆

𝑌 ∈→ 𝑔1𝑍 + 𝑔2𝑍 ∋ 𝑔𝑂1 + 𝑔3𝑍 ∋ 𝑔𝑂2

Fig. 11. Parts of Concrete DNN D𝑕 and Symbolic DNN D𝑌

5.5 Correctness of Verification Procedure
We de!ne a notion of over-approximation of a concrete DNN by a symbolic DNN, a concrete value
by a symbolic value, etc. So, any property proved by our veri!cation algorithm for a symbolic DNN
also holds for any concrete DNN that is over-approximated by the symbolic DNN. This notion lets
us establish the correctness of the P!"#$S"%&’ veri!cation procedure.

5.5.1 Over-Approximation. Fig. 11 shows parts of a concrete DNN D𝑕 and a symbolic DNN D𝑌

from Fig. 2b. The neuron prev inD𝑌 over-approximates the neuron 𝐿 in the concrete DNND𝑕 if 𝑗 is
satis!able, where 𝑗 ∞ (𝑔𝑅𝑆 = ⇓1)↙ (𝑔𝑈𝑆 = 3)↙ (𝑔𝑉𝑆 = 4+5𝐿1+6𝐿2)↙ (𝑔1𝑍 +𝑔

2
𝑍 ∋𝑔𝑂1 +𝑔

3
𝑍 ∋𝑔𝑂2 = 3⇓2𝐿1).

Further, if 𝑔𝑆 , 𝑔𝑂1 , 𝑔𝑂2 represent 𝐿,𝐿1,𝐿2 respectively, they must also be equal, i.e., 𝑗1 ∞ 𝑗 ↙ (𝑔𝑆 =
𝐿) ↙ (𝑔𝑂1 = 𝐿1) ↙ (𝑔𝑂2 = 𝐿2) must be satis!able. Note that the neurons in D𝑕 are not assigned any
values and are therefore symbolic themselves. So, 𝑗1 must be satis!able for all possible values of
𝐿,𝐿1,𝐿2 in D𝑕 . Further, the symbolic DNN has another component C which imposes constraints
on 𝑔𝑄 . So, the formula must be satis!able under the constraints C, i.e., 𝑗2 must be true.

𝑗2 = ↘{𝐿,𝐿1,𝐿2} · ¬{𝑔𝑆 , 𝑔𝑂1 , 𝑔𝑂2 , 𝑔
𝑅
𝑆 , · · · } ·

(
𝑗 ↙ (𝑔𝑆 = 𝐿) ↙ (𝑔𝑂1 = 𝐿1) ↙ (𝑔𝑂2 = 𝐿2) ↙ C

)
(2)

In the symbolic DNN, C contains (i) the constraints encoded by the property P assumed on all the
neurons in the symbolic DNN, and (ii) the edge relationship between curr and prev.

D$.+&+)+"& 5.2. A symbolic DNN D𝑌 , C over-approximates a concrete DNN D𝑕 if ↘𝛩 · ¬𝛬 ·

(C
∧

𝑙 ↔dom(D𝑅 )
D𝑌 (𝑝) = D𝑕 (𝑝)), where 𝛩 is the set of neurons and P%!*+S!,"- symbolic variables

in D𝑕 and𝛬 is the set of all SMT symbolic variables in D𝑌 .

Further, in Equation 2, all the variables inside universal quanti!er (𝐿,𝐿1,𝐿2) are set equal to
variables in the existential quanti!er 𝑔𝑆 , 𝑔𝑂1 , 𝑔𝑂2 . So, the equation can be rewritten by simply
replacing the variables within the universal quanti!er with corresponding variables in the ex-
istential quanti!er, and removing the corresponding equality constraints, i.e., 𝑗3 = 𝑗2, where
𝑗3 = ↘{𝑔𝑆 , 𝑔𝑂1 , 𝑔𝑂2 } · ¬{𝑔

𝑅
𝑆 , 𝑔

𝑈
𝑆 , 𝑔

𝑉
𝑆 , 𝑔

1
𝑍 , 𝑔

2
𝑍 , 𝑔

3
𝑍 } · (𝑗 ↙ C).

In our example in Fig. 11, 𝛩 = {𝑔𝑆 , 𝑔𝑂1 , 𝑔𝑂2 }, and𝛬 is the set of all the other symbolic variables
used in D𝑌 . So, a symbolic DNN D𝑌 , C over-approximates a concrete DNN D𝑕 if ↘𝛩 · ¬𝛬 ·

(C ↙
∧

𝑙 ↔dom(D𝑅 )
(D𝑌 (𝑝) = D𝑕 (𝑝))). There are two types of symbolic variables in𝛬—ones that

represent constants during concrete execution and ones that represent polyhedral or symbolic
expressions. So, we partition𝛬 into two sets, 𝛯 and 𝑒 , where 𝛯 contains the symbolic variables
representing constants, while 𝑒 contains the other symbolic variables. So, we can then re-write
𝑗3 as 𝑗4 = ↘𝛩 · ¬𝛯 · ¬𝑒 · (C ↙

∧
𝑙 ↔dom(D𝑅 )

(D𝑌 (𝑝) = D𝑕 (𝑝))). Note that in the example above,
𝛯 = {𝑔𝑅𝑆 , 𝑔

𝑈
𝑆 , 𝑔

1
𝑍 , 𝑔

2
𝑍 , 𝑔

3
𝑍 },𝑒 = {𝑔𝑉𝑆 }. From Equation 2, since 𝑔𝑅𝑆 , 𝑔𝑈𝑆 , 𝑔1𝑍 , 𝑔2𝑍 , 𝑔3𝑍 are independent of𝐿,𝐿1,𝐿2,

we bring the set 𝛯 out of the ↘ quanti!er. Generalizing this notion, we use the de!nition O#$!/
*00!"7/DNN in Fig. 12. The over-approximation of a concrete DNN D𝑕 by a symbolic DNN D𝑌 , C
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O#$!/*00!"7/DNN
dom(D𝑌 ) ↗ dom(D𝑕 ) 𝛯 = Constants(D𝑌 , C) 𝛩 = Neurons(D𝑌 , C) ⇑ SymbolicVars(D𝑌 , C)

𝑒 = PolyExps(D𝑌 , C) ⇑ SymExps(D𝑌 , C) ⇑ Constraints(D𝑌 , C)

¬𝛯 · ↘𝛩 · ¬𝑒 ·

(
C ↙

∧
𝑙 ↔dom(D𝑅 )

D𝑌 (𝑝) = D𝑕 (𝑝)
)

D𝑕 ⊤C D𝑌

B+(%2*)+"&
⇐𝑐, 𝑡 , 𝑢,D𝑕 ⇒ ℜ 𝑣 ⇐𝑐, 𝑡 ,𝑥,D𝑌 , C⇒ ℑ 𝑔, C∝

¬!𝛯 · ↘𝛩 · ¬!𝑒 ·

(
𝛱𝛴 (𝑔,𝑣) ↙ C

∝
↙M ↙

∧
𝑙 ↔dom(D𝑅 )

D𝑌 (𝑝) = D𝑕 (𝑝)
)

⇐⇐𝑐, 𝑡 , 𝑢,𝑥,D𝑕 ,D𝑌 , C⇒⇒ ⊥ 𝑣, 𝑔, C
∝,M

Fig. 12. Definitions for Over-approximation and Bisimulation

is represented as D𝑕 ⊤C D𝑌 . The de!nitions for a symbolic value over-approximating a concrete
value and a symbolic store over-approximating a concrete store can be found in (Appendix H).

Using these de!nitions of over-approximation, we prove two important properties. First, if a
symbolic DNN over-approximates the concrete DNN, then expanding the symbolic DNN maintains
the over-approximation. Second, we show that given a P!"#$S"%&’ expression that type-checks,
if one starts with a symbolic DNN D𝑌 , C and a concrete DNN D𝑕 such that D𝑕 ⊤C D𝑌 , then
the output of applying symbolic semantics on D𝑌 , C over-approximated the output of applying
operational semantics on D𝑕 . We prove this using bisimulation (rule B+(+2%,*)+"& in Fig. 12),
where we simultaneously apply the operational semantics to the concrete DNN and the symbolic
semantics to the symbolic DNN D𝑌 , C. The complete details can be found in Appendix I.

5.5.2 Soundness and Completeness. We show that if P!"#$S"%&’ concludes that the abstract
transformers speci!ed in the program are veri!ed to maintain the user-de!ned property P, then
executing the program on any concrete DNN also maintains the property P. We prove this by
initially creating a symbolic DNN with only the neurons representing curr and prev and edges
representing their corresponding DNN operation (𝑓 - for example ReLU). This over-approximates
any part of an arbitrary concrete DNN (within the bounds of veri!cation) which is the output of
𝑓. Next, the over-approximation is maintained during symbolic DNN expansion and executing
symbolic semantics. Finally, the query is generated over symbolic values that overapproximate the
corresponding concrete values. So, if the SMT solver concludes that the property P is maintained
over the symbolic DNN, then we can conclude that P will also be maintained over all over-
approximated concrete DNNs. Further, since the symbolic semantics are not exact only for traverse
and solver constructs, P!"#$S"%&’ is complete, excluding these constructs.

T3$"!$2 5.1 (S"%&’&$((). For a well-typed program ω, if P%!*+S!,"- veri!cation procedure
proves it maintains the property P, then upon executing ω on all concrete DNNs within the bounds of
veri!cation, the property P will be maintained at all neurons in the DNN.

T3$"!$2 5.2 (C"20,$)$&$((). If executing a well-typed program ω that does not use traverse and
solver constructs on all concrete DNNs within the bounds of veri!cation maintains the property P for
all neurons in the DNN, then it can be proved by the P%!*+S!,"- veri!cation procedure.

6 Evaluation
We demonstrate that designing the formal semantics for C"&()!*+&)F,"- and the veri!cation
procedure P!"#$S"%&’ enables users to design and verify new DNN certi!ers. The new designs
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include—(i) variations to the existing certi!ers, (ii) supporting new DNN operations within the
existing abstract domains, and (iii) completely new abstract domains and transformers. In practice,
the implementations of existing DNN certi!ers [12, 44–46, 65, 73] employ various techniques to ad-
just the scalability vs precision tradeo$. Incorporating such modi!cations to the original algorithms
unintentionally alters their mathematical logic. However, the original pen-and-paper proofs do
not ensure the correctness of the certi!ers with these modi!cations. In § 6.1, we demonstrate that
these modi!ed certi!ers can be veri!ed using P!"#$S"%&’ by specifying them in C"&()!*+&)/
F,"-. In § 6.2, we extend DNN certi!ers to support new operations such as Abs, HardSigmoid, etc.
by designing abstract transformers, which has not been addressed by any existing work [45]. We
also show the veri!cation of their soundness using P!"#$S"%&’. In § 6.3, we design new abstract
domains and their corresponding transformers in C"&()!*+&)F,"- and verify their soundness
using P!"#$S"%&’.
Finally, in § 6.4, we show that C"&()!*+&)F,"- can specify and verify the above-mentioned

diverse existing DNN certi!ers, covering various abstract domains, transformers, and #ow directions.
We evaluated a diverse set of state-of-the-art DNN certi!ers, including IBP [12], DeepPoly [45],
CROWN [73], DeepZ [44], Re!neZono [46], Vegas [65], and Hybrid Zonotope [33]. For all our
experiments, we demonstrate that our veri!cation procedure, P!"#$S"%&’, can automatically
prove the soundness of the certi!ers speci!ed in C"&()!*+&)F,"- or detect unsoundness. The
benchmarks for testing the unsoundness detection using P!"#$S"%&’ were created by introducing
random bugs programmatically in the DNN certi!ers, following a methodology established in prior
research [11]. The details are provided in Appendix K.1.

DNN Operations. We focus on the widely used DNN operations, including primitive operations
like ReLU, Max, Min, Add, Mult, etc., and composite operations like Affine, MaxPool, etc. The primitive
operations are the ones that take a small, !xed number of inputs, like the addition or multiplication
of 2 neurons. Since these can be composed to de!ne composite operations, such as Attention layers,
the corresponding abstract transformers can also be composed accordingly. Although verifying
transformers for primitive operations directly implies the soundness of arbitrary compositions, in
some cases, transformers can be more precise if speci!ed directly for composite operations. In such
cases, we show the speci!cation and veri!cation for composite operations.

We focus on the abstract transformers where the veri!cation problem is known to be decidable.
Although it is possible to express transformers for activation functions like Sigmoid and Tanh in
C"&()!*+&)F,"- (Appendix K.2), their veri!cation may become undecidable [21]. In the future,
P!"#$S"%&’ veri!cation can be extended to handle these transformers using 𝑛-complete decision
procedures [17]. Currently, our veri!cation queries fall under SMT of Nonlinear Real Arithmetic
(NRA), decidable with a doubly exponential runtime in the worst case [24].

Verification Bounds. For veri!cation of composite operations - Affine and MaxPool, the parameters,
𝐿𝑆𝑍𝑗𝑘 (maximum number of neurons in a layer) and 𝐿𝑐𝑑𝑃 (maximum length of a polyhedral or
symbolic expression) are used during the graph expansion step and impact the veri!cation times. For
our experiments, we set 𝐿𝑐𝑑𝑃 = 𝐿𝑆𝑍𝑗𝑘 . Note that 𝐿𝑆𝑍𝑗𝑘 is an upper bound for the maximum number
of neurons in a single layer, without restricting the total neuron count in the DNN. Therefore, the
DNN can have an arbitrary number of layers, each with at most 𝐿𝑆𝑍𝑗𝑘 neurons, thereby, allowing
for an arbitrary total number of neurons in the DNN. We set these parameters based on the sizes
of layers within DNNs that existing certi!ers currently handle [29, 34, 45, 73]. For MaxPool, MinPool,
and AvgPool, existing certi!ers handle at most 10 neurons at a time, so we set 𝐿𝑆𝑍𝑗𝑘 = 𝐿𝑐𝑑𝑃 = 10.
The Affine layer includes DNN operations like convolution layers and fully-connected layers. In
Table 3b, we present the computation times for Affine with 𝐿𝑆𝑍𝑗𝑘 = 𝐿𝑐𝑑𝑃 = 2048. In Fig. 16, we
show how the veri!cation time scales with parameter values (𝐿𝑆𝑍𝑗𝑘 = 𝐿𝑐𝑑𝑃), ranging from 32 to
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8192, for Affine transformers. Note that 𝐿𝑆𝑍𝑗𝑘 = 8192 corresponds to over 64 million parameters per
layer. Existing DNN certi!ers [29, 34, 45, 73] usually do not operate on larger sizes than this, but
the veri!cation time for larger sizes can be extrapolated from the graph for higher values.

Experimental setup. We implemented the automated veri!cation procedure in Python and used Z3
SMT solver [14] to verify the generated queries. All our experiments were run on a 2.50 GHz 16
core 11th Gen Intel i9-11900H CPU with a main memory of 64 GB.

6.1 Verifying Modified DNN Certifiers
Implementations of DNN certi!ers often includemodi!cations to balance the scalability vs. precision
tradeo$. It is crucial to ensure the soundness of the modi!ed certi!ers. Verifying them using pen-
and-paper proofs can be complicated. In contrast, C"&()!*+&)F,"- and P!"#$S"%&’ provide
a way to specify and verify these certi!ers respectively. For illustration purposes, we focus on
the DeepPoly abstract domain and key DNN operations—Affine, MaxPool, and ReLU. However, the
concepts introduced can be applied to other certi!ers and DNN operations. We present two case
studies: BALANCE Cert and REUSE Cert, and show the evaluation results in Table 2a.

6.1.1 BALANCE Cert (Balanced E"iciency and Precision Certifier). We use the same abstract shape
as the DeepPoly certi!er and design transformers that balance precision and e"ciency.
A"ne. The most expensive part of the DeepPoly certi!er is the backsubstitution step in the Affine

transformer. To improve e"ciency, albeit with reduced precision, BALANCE Cert employs a custom
stopping function within the traverse construct to stop the backsubstitution at an intermediate
layer, speci!cally, two layers back rather than always proceeding to the input layer.
ReLU. In the case of unstable neurons, there are two commonly used lower polyhedral bounds - 0
and prev. In BALANCE Cert, a heuristic determines which polyhedral lower bound to store based
on prev[𝑉] and prev[𝑊].
MaxPool. For MaxPool, we use the new abstract transformer designed in [42], which is more precise
than DeepPoly. We compute a list of neurons whose concrete lower bound is greater than or equal
to the concrete upper bounds of all other neurons in prev. If this list is non-empty, we set the
polyhedral lower and upper bounds to the average of the neurons in this list. Otherwise, we use
the same polyhedral bounds used in DeepPoly. The complete code can be found in Appendix K.4.

6.1.2 REUSE Cert (Reused Bounds for Enhanced E"iciency). In an existing implementation of
DeepPoly [47], the certi!er stores previously computed polyhedral bounds from earlier layers
to reuse them instead of recalculating them for current layer bounds. This approach prioritizes
e"ciency while accepting a slight trade-o$ in precision. In C"&()!*+&)F,"-, this can be easily
speci!ed by additionally storing the cached polyhedral bounds as separate members of the abstract
shape 𝑋𝑇 ,𝑌𝑇 . For the Affine abstract transformer, the users can !rst use the new polyhedral bounds.
If the results are not su"ciently precise (based on a heuristic), then the computation falls back to the
original computation using the traverse construct. This transformer signi!cantly boosts e"ciency
by leveraging cached values of previous Affine layer backsubstitutions rather than computing them
anew at each layer. The transformers for ReLU and MaxPool can be similarly de!ned for REUSE Cert.
The complete code can be found in Appendix K.4.

6.2 Abstract Transformers for New DNN Operations
As deep learning frameworks continually introduce new activations, the need for designing sound
abstract transformers becomes increasingly critical. We demonstrate the e$ectiveness of C"&/
()!*+&)F,"- syntax and formal semantics and P!"#$S"%&’ veri!cation procedure in this context
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Table 2. "ery generation time (G), verification time (V) for correct implementation, and bug-finding time
for randomly introduced bugs (B) in seconds for new DNN certifiers (§ 6.1, § 6.2).

(a) New Transformers introduced in § 6.1

Certi!ers Affine MaxPool ReLU

G V B G V B G V B

BALANCE Cert 0.230 1.921 0.318 0.172 0.844 0.069 0.252 1.397 0.099
REUSE Cert 0.263 2.843 0.667 0.176 1.029 0.073 0.242 2.895 0.359

(b) New DNN operations introduced in § 6.2

Certi!ers ReLU6 Abs HardSigmoid HardTanh HardSwish

G V B G V B G V B G V B G V B

DeepPoly/CROWN 0.299 2.454 0.543 0.199 5.252 0.069 0.319 2.238 0.147 0.304 3.016 0.354 0.277 2.963 0.383
Vegas(Backward) 0.216 1.264 0.145 0.078 0.237 0.102 0.206 0.900 0.076 0.166 1.154 0.095 0.186 0.812 0.065
DeepZ 0.150 1.25 0.363 0.116 0.462 0.369 0.172 1.634 0.550 0.148 2.677 0.526 0.290 3.457 0.886
Re!neZono 0.233 2.084 0.347 0.165 0.870 0.128 0.259 2.847 0.150 0.178 2.444 0.657 0.542 2.42 0.564
IBP 0.102 0.237 0.289 0.147 0.455 0.059 0.098 0.228 0.071 0.123 0.269 0.065 0.205 0.653 0.218
Hybrid Zonotope 0.109 0.388 0.456 0.125 0.930 0.121 0.118 0.369 0.403 0.175 0.405 0.197 0.238 2.256 0.065
BALANCE Cert 0.230 1.921 0.318 0.172 0.844 0.069 0.252 1.397 0.099 0.229 2.433 0.083 0.198 2.070 0.462
REUSE Cert 0.263 2.843 0.667 0.176 1.029 0.073 0.242 2.895 0.359 0.227 4.354 0.446 0.234 3.733 0.121

by specifying and verifying abstract transformers for novel DNN operations not currently sup-
ported by existing DNN certi!ers. These new operations include ReLU6, Abs, HardSigmoid, HardTanh, and
HardSwish. Detailed transformers for each operation can be found in Appendix K. Evaluation results
across di$erent DNN certi!ers are presented in Table 2b, demonstrating that most transformers
for these operations can be veri!ed (or disproved) within 1 second. For illustration, we show the
DeepPoly transformer for HardSwish (HardSwish(𝑖) = 𝑖 ·min(1,min(0, 𝑚+36 ))).

1 Func slope(Real x1, Real x2) = ((x1 * (x1 + 3)) - (x2 * (x2 + 3))) / (6 * (x1-x2));

2 Func intercept(Real x1, Real x2) = x1 * ((x1 + 3) / 6) - (slope(x1, x2) * x1);

3 Func f1(Real x) = x < 3 ? x * ((x + 3) / 6) : x;

4 Func f2(Real x) = x * ((x + 3) / 6);

5 Func f3(Neuron n) = max(f2(n[l]), f2(n[u]));

6 Transformer DeepPoly{

7 HardSwish ->

8 (prev[l] < -3) ?

9 (prev[u] < -3 ?

10 (0, 0, 0, 0) :

11 (prev[u] < 0 ?

12 (-3/8, 0, -3/8, 0) :

13 (-3/8, f1(prev[u]), -3/8, f1(prev[u]) * (prev - prev[l])))) :

14 ((prev[l] < 3) ? ((prev[u] < 3) ?

15 (-3/8, f3(prev), -3/8, prev*slope(prev[u], prev[l]) + intercept(prev[u],prev[l

])):

16 (-3/8, prev[u], -3/8, prev[u] * ((prev + 3) / (prev[u] + 3)))) :

17 (prev[l], prev[u], prev, prev));

18 }

6.3 Designing New DNN Certifiers with New Abstract Domains
We show that P!"#$S"%&’ allows verifying the soundness of new DNN certi!ers based on com-
pletely new abstract domains and transformers. Specifying them in C"&()!*+&)F,"- is only
possible due to the novel formalism including type system and semantics introduced in this work.
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1 Def shape as (Real l, Real u, PolyExp symL, PolyExp symU) {(curr[l]<=curr) and (curr[u]>=curr)

and (curr[symL]<=curr) and (curr[symU]>=curr)};

2 Transformer SymPoly{

3 Relu -> prev[l] > 0 ? (prev[l], prev[u], prev, prev) :

4 (prev[u] < 0 ? (0, 0, 0, 0) :

5 (0, prev[u], ((1+sym)/2) * prev, ((prev[u] / (prev[u] - prev[l])) * prev) - ((

prev[u] * prev[l]) / (prev[u] - prev[l]))));

6 }

(a) SymPoly

1 Def shape as (Real l, Real u, PolyExp L, PolyExp U, SymExp Z) {curr[l]<=curr and curr[u]>=curr

and curr[L]<=curr and curr[U]>=curr and curr <> curr[Z]};

2 Func min_symexp(Sym e, Real c) = c > 0 ? -c : c;

3 Func lower_sym(Neuron List prev, Neuron curr) = (prev[Z] * curr[w] + curr[b]).map(min_symexp);

4 Func lower_poly(Neuron List prev, Neuron curr) = backsubs_lower(prev * curr[w] + curr[b]);

5 Transformer PolyZ{

6 Affine -> (max(lower_sym(prev, curr), lower_poly(prev, curr)),

7 min(upper_sym(prev, curr), upper_poly(prev, curr)),

8 prev * curr[w] + curr[b], prev * curr[w] + curr[b], prev[Z] * curr[w] + curr[b

]);

9 }

(b) PolyZ

Fig. 13. Code Sketches for new DNN certifiers. The complete codes can be found in Appendix K.4

SymPoly DNN Certifier. Several state-of-the-art DNN certi!ers, including DeepPoly, CROWN,
etc., approximate the value of each neuron in the DNN by imposing polyhedral constraints over
each of them. However, in the case of piecewise-linear activation functions, these certi!ers rely
on heuristics to choose appropriate polyhedral bounds from more than one possible choice. For
instance, in the case of an unstable ReLU neuron, there are in!nite possibilities for a potential lower
polyhedral bound. We argue that in general, the lower polyhedral bound can be of the form 𝑃 · prev
where c is any real coe"cient s.t. 0 ↖ 𝑃 ↖ 1. The two most commonly used lower bounds - prev
and 0 are only two extreme cases of the general lower bound. Using the C"&()!*+&)F,"- syntax
and semantics, the users can directly specify the general transformer, i.e., curr[𝑋] ′ 1+sym

2 ∋ prev.
P!"#$S"%&’ can be used to prove the soundness of this lower bound. In this way, P!"#$S"%&’
allows a user to verify the soundness of a space of abstract transformers, which can be leveraged to
automatically synthesize the optimal transformer using a cost function encoding the precision of
the transformer based on the DNN certi!cation problem. Further, since each invocation of the sym

construct outputs a new symbolic value, di$erent values of the symbolic coe"cient can be chosen
for di$erent neurons in the DNN. A slightly di$erent version is explored in the DNN certi!er
𝑄⇓CROWN [70], where 𝑄 is a concrete but learnable coe"cient, learned using gradient descent.

Based on this idea, the DNN certi!er SymPoly can be found in Fig. 13a. The abstract domain con-
sists of two concrete bounds l, u and two polyhedral bounds with symbolic coe"cients symL, symU.
The abstract transformer for ReLU is speci!ed in 3 cases - (i) curr[𝑊] < 0, (ii) curr[𝑉] > 0, and (iii)
curr[𝑉] ↖ 0 ↖ curr[𝑊]. In the more challenging third case, the lower polyhedral bound is set to
1+sym

2 ∋ prev. The abstract transformers can be similarly designed for activations such as HardTanh,
HardSigmoid, HardSwish, Abs, etc. These can be found in Appendix K.4. Notably, we can verify the
soundness of these transformers in runtimes similar to the DeepPoly certi!er.
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1 Func lower(Neuron n1, Neuron n2) = min([n1[l]*n2[l], n1[l]*n2[u], n1[u]*n2[l], n1[u]*n2[u]]);

2 Func upper(Neuron n1, Neuron n2) = max([n1[l]*n2[l], n1[l]*n2[u], n1[u]*n2[l], n1[u]*n2[u]]);

3 Transformer DeepPoly{

4 Max -> (prev0[l] >= prev1[u]) ? (prev0[l], prev0[u], prev0, prev0) : ((prev1[l] >= prev0[u

]) ?

5 (prev1[l], prev1[u], prev1, prev1) :

6 (max(prev0[l], prev1[l]), max(prev0[u], prev1[u]), max(prev0[l], prev1[l]),

7 max(prev0[u], prev1[u])));

8 Mult -> (lower(prev0, prev1), upper(prev0, prev1), lower(prev0, prev1), upper(prev0, prev1)

);

9 }

Fig. 14. Max and Mult transformers for DeepPoly Certifier

1 Def shape as (Real l, Real u, PolyExp L, PolyExp U)

{...};

2 Transformer DeepPoly_forward{ReLU -> ... ;}

3 Transformer DeepPoly_backward{rev_ReLU -> ... ;}

4 Flow(forward, ..., ... , DeepPoly_forward);

5 Flow(backward, ..., ..., DeepPoly_backward);

Fig. 15. Code Sketch for Vegas Certifier Fig. 16. Verification time (in s) for
Affine transformers.

PolyZ DNN Certifier. We show another new abstract domain - PolyZ - a reduced product of the
popular DeepZ and DeepPoly domains using polyhedral and symbolic constraints. The abstract
shape consists of 5 members - two concrete interval bounds, 𝑉 and𝑊 of the type Real, two polyhedral
bounds 𝑋 and 𝑌 of the type PolyExp, and a symbolic expression 𝑒 of the type SymExp. The shape
constraints state that the neuron’s value satis!es the bounds 𝑉 , 𝑊, 𝑋, and𝑌 and curr <> 𝑒 . We also
de!ne the abstract transformers for this new domain. The Affine transformer is shown in Fig. 13b
and the complete speci!cation is in Appendix K.4. PolyZ is more precise than both DeepPoly and
DeepZ, and we can verify its soundness using the P!"#$S"%&’ veri!cation procedure.

6.4 State-of-the-Art DNN Certifiers
The existing DNN certi!ers evaluated in this section include IBP [12] (Interval Bound Propagation),
DeepPoly [45] (or CROWN [73]), DeepZ [44], Re!neZono [46], Vegas [65], and Hybrid Zono-
tope [33]. The abstract shapes of DeepPoly, CROWN, and Vegas include polyhedral expressions
represented by the PolyExp datatype and use the traverse construct to compute the concrete bounds.
DeepZ, Re!neZono, and Hybrid Zonotope use symbolic expressions represented by SymExp in their
abstract shapes. Re!neZono uses Ct to encode constraints over the possible values of the neurons.
Re!neZono and Vegas use the solver construct to compute the concrete bounds. The users can
de!ne functions using the Func construct, promoting code reusability and facilitating a modular
design. The C"&()!*+&)F,"- codes for these DNN certi!ers are presented in Appendix K.
Notably, with the formal syntax and the operational semantics, C"&()!*+&)F,"- can handle

various #ow directions e$ectively. For instance, the Vegas certi!er [65], which employs both
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Table 3. "ery generation time (G), verification time (V) for correct implementation, and bug-finding time
for randomly introduced bugs (B) in seconds for transformers of existing DNN certifiers (§ 6.4).

(a) Primitive operations

Certi!ers ReLU Max Min Add Mult

G V B G V B G V B G V B G V B

DeepPoly/CROWN 0.196 1.526 0.066 0.095 2.618 0.074 0.128 2.829 0.601 0.0812 0.136 0.205 0.209 2.104 0.129
Vegas(Backward) 0.142 0.584 0.221 0.047 0.139 0.084 0.052 0.115 0.087 0.056 0.097 0.153 0.388 0.486 0.110
DeepZ 0.0832 0.534 0.336 0.115 0.703 0.145 0.119 0.691 0.215 0.0815 0.091 0.256 0.234 0.498 0.427
Re!neZono 0.158 0.980 0.071 0.199 1.235 0.262 0.213 1.263 0.331 0.089 0.117 0.242 0.404 17.197 0.468
IBP 0.112 0.493 0.364 0.132 0.508 0.081 0.136 0.545 0.333 0.0716 0.060 0.158 0.217 1.160 0.259
Hybrid Zonotope 0.260 1.003 0.341 0.132 0.775 0.292 0.132 0.724 0.626 0.086 0.286 0.204 0.209 0.520 1.397

(b) Composite operations

Certi!ers Affine MaxPool MinPool AvgPool

G V B G V B G V B G V B

DeepPoly / CROWN 5.496 889.607 9.825 14.744 196.651 1396.132 13.917 194.871 1419.119 0.137 0.363 0.131
Vegas (Backward) 2.436 25.447 25.898 - - - - - - - - -
DeepZ 4.569 854.548 833.314 54.217 364.859 1780.938 52.140 292.806 1366.977 0.0818 0.265 0.763
Re!neZono 5.436 329.994 152.825 54.788 376.177 1451.729 56.427 308.570 1799.091 0.095 0.306 0.301
IBP 2.997 540.865 183.707 0.089 4.077 0.253 0.090 4.114 4.605 0.067 0.0117 0.921
Hybrid Zonotope - - - 1.816 10.610 2.892 1.503 10.598 3.395 0.318 11.499 2.568

forward and backward #ows, is easily expressed in C"&()!*+&)F,"-. We provide the code for the
Vegas certi!er in Fig. 15. The abstract shape and the transformer for the forward direction are the
same as the DeepPoly analysis, while the transformer for the backward analysis replaces operations
like ReLU with rev_ReLU. We can also verify its soundness using P!"#$S"%&’ (Tables 3a, 3b).
For primitive operations like Max, Mult, etc., there are two implicit inputs to the transformer

de!nitions, namely the input neurons - prev0 and prev1. DeepPoly transformers for Max and Mult

are shown in Fig. 14. The primitive operations - ReLU, Max, Min, Add, Mult shown in Table 3a can be
veri!ed in fractions of a second. In Table 3b, we show the evaluation results for the composite
operations. For MaxPool and MinPool, the DeepZ and Re!neZono transformers are harder to verify
because their queries are doubly quanti!ed due to the <> operator in their speci!cations. IBP is
the easiest to verify because the limited abstract shape does not allow it to be as precise as other
transformers for MaxPool and MinPool. Also, for Vegas, the backward transformers for MaxPool, MinPool,
and AvgPool are not available in existing works. Similarly, for the Hybrid Zonotope, the transformer
for Affine is de!ned in terms of transformers for primitive operations. So, we skip these in Table 3b.
For Affine, DeepPoly is the hardest because it uses the traverse construct, which requires additional
queries to check the validity of the invariant. Vegas takes the least time because of a relatively
simpler veri!cation query. Note that the veri!cation times are not correlated to the runtimes of
certi!ers on concrete DNNs. In Appendix K.3, we provide the C"&()!*+&)F,"- code for several of
these certi!ers. The complexity inherent in these certi!ers and their implementations suggests that
verifying them solely through pen-and-paper proofs or automated theorem provers is impractical.

7 Related Work
DNN Certi!cation. The recent advancements in DNN certi!cation techniques [1] have led to

the organization of competitions to showcase DNN certi!cation capabilities [10], the creation of
benchmark datasets [13], the introduction of a DSL for specifying certi!cation properties [19, 40],
and the development of a library for DNN certi!ers [27, 36]. However, these platforms lack formal
soundness guarantees and do not o$er a systematic approach to designing new certi!ers.
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DSL for Abstract Interpretation. Although [42] proposed a preliminary design for C"&()!*+&)/
F,"- using a few examples, the absence of formal semantics hinders its use for designing and
verifying new DNN certi!ers. We equip C"&()!*+&)F,"- with a BNF grammar, type-system,
operational semantics, and symbolic semantics that enable users to specify existing DNN certi!ers,
design new ones, and verify their soundness using P!"#$S"%&’.
Similarly, [28] designs TSL—a DSL for abstract interpreters for conventional programs. TSL

allows users to specify the concrete semantics and the abstract domain and automatically produces
an abstract interpreter based on these speci!cations. However, it does not provide any specialized
datatypes needed to specify DNN certi!ers easily. It also does not guarantee the soundness of the
abstract interpreter. In contrast, P!"#$S"%&’ can verify the soundness of the certi!er speci!cation.

Symbolic Execution. Similar to P!"#$S"%&’ DNN expansion step, [25, 59] employ lazy initial-
ization for symbolic execution of complex data structures like lists, trees, etc. The object !elds are
initialized with symbolic values only when accessed by the program. Unlike these works, which
possess prior knowledge of the exact structure of the objects, DNN certi!ers deal with arbitrary
DAGs representing DNNs. The graph nodes (neurons) are intricate data structures with unknown
graph topology. We believe that we are the !rst to create a symbolic DNN with su"cient generality
to represent arbitrary graph topologies to verify the soundness of DNN certi!ers.

Correctness of Symbolic Execution. Some existing works prove the correctness of the symbolic
execution w.r.t. the language semantics [23]. However, these methods do not establish correctness
in cases where symbolic execution also represents symbolic variables used in concrete executions.
On the other hand, we provide elaborate proofs establishing the correctness of P!"#$S"%&’ where
we encode the symbolic variables within the program as SMT symbolic variables.

8 Discussion and Future Work
We develop P!"#$S"%&’, a novel bounded automated veri!cation procedure to automatically
verify the overapproximation-based soundness of abstract interpretation-based DNN certi!ers.
We also develop a formal syntax, type-system, operational semantics, and symbolic semantics for
C"&()!*+&)F,"-. For the !rst time, we can verify the soundness of DNN certi!ers for arbitrary
(but bounded) DAG topologies. Given the growing concerns about AI safety, we believe that
P!"#$S"%&’, coupled with C"&()!*+&)F,"-, allows the development of new DNN certi!ers
without proving their soundness manually. This work allows the following future directions:

Multi-neuron speci!cations. - P!"#$S"%&’ can be extended to verify multi-neuron abstract
shapes [35] by allowing their speci!cation in C"&()!*+&)F,"-.

Sequence of Operations. - P!"#$S"%&’ can also be extended to automatically verify a sequence
of DNN operations, like Affine + ReLU. To do so, while generating the !nal query, we would execute
the concrete semantics of the composition of Affine and ReLU.

Automating Abstract Interpretation. - P!"#$S"%&’ and C"&()!*+&)F,"- facilitate the auto-
mated generation of abstract transformers [22, 38, 50] by o$ering all the basic components - (i) a
DSL for de!ning the search space of candidate transformers, (ii) the semantics of the DSL, and (iii)
a procedure for verifying the soundness of each candidate. This can be explored in future research.

Veri!cation Property. - Currently, the veri!cation property is the over-approximation-based
soundness of a DNN certi!er. Nevertheless, given that all the necessary formalism for veri!cation
has been established, the property can be extended to encompass more intricate aspects, such as
encoding precision of a DNN certi!er w.r.t. a baseline.
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9 Data-Availability Statement
The artifact[41] consists of P!"#$S"%&’ implementation and the C"&()!*+&)F,"- speci!cations
of the DNN certi!ers presented in Section 6 and Appendix K. The code, accompanied by the
instructions to run it, can be found here.
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