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The uninterpretability of Deep Neural Networks (DNNs) hinders their use in safety-critical applications. Ab-
stract Interpretation-based DNN certifiers provide promising avenues for building trust in DNNs. Unsoundness
in the mathematical logic of these certifiers can lead to incorrect results. However, current approaches to
ensure their soundness rely on manual, expert-driven proofs that are tedious to develop, limiting the speed
of developing new certifiers. Automating the verification process is challenging due to the complexity of
verifying certifiers for arbitrary DNN architectures and handling diverse abstract analyses.

We introduce PROVESOUND, a novel verification procedure that automates the soundness verification of
DNN certifiers for arbitrary DNN architectures. Our core contribution is the novel concept of a symbolic
DNN, using which, PROVESOUND reduces the soundness property, a universal quantification over arbitrary
DNNE, to a tractable symbolic representation, enabling verification with standard SMT solvers. By formalizing
the syntax and operational semantics of CoNsTRAINTFLOW, a DSL for specifying certifiers, PROVESOUND
efficiently verifies both existing and new certifiers, handling arbitrary DNN architectures.

Our code is available at https://github.com/uiuc-focal-lab/constraintflow.git
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1 Introduction

While DNNs can achieve impressive performance, there is a growing need for their safety and
robustness in safety-critical domains like autonomous driving [8], healthcare [2], etc., due to their
susceptibility to environmental and adversarial noise [31, 68]. Formal certification of DNNs can be
used to assess their performance on a large, potentially infinite set of inputs, thereby providing
guarantees on DNN behavior. Abstract Interpretation-based DNN certifiers are used widely for
formally certifying DNNs, balancing cost and precision tradeoffs [3, 5-7, 9, 15, 16, 18, 20, 30, 32, 34,
37, 39, 43-46, 49, 51, 52, 54-57, 60-64, 66, 67, 70, 72, 73].

Abstract Interpretation-based DNN certifiers must satisfy the over-approximation-based soundness
property to ensure correctness. Currently, when a new DNN certifier is proposed, its soundness is
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proved manually using arduous pen-and-paper proofs. These proofs show that the outputs computed
by abstract transformers over-approximate the outputs of the DNN on concrete inputs. Developing
these proofs demands an expert-level understanding of abstract interpretation and substantial
experience in proving mathematical lemmas and theorems. Consequently, the development of
DNN certifiers is often confined to a small group of experts. Automating the verification of DNN
certifiers would significantly reduce these barriers, enabling more widespread development of
reliable certifiers. However, this automation presents several challenges, which we outline below.

Challenge 1: Imperative Programming. While one approach to verifying the mathematical
soundness of DNN certifiers could be to use program verifiers such as Dafny [26], they are unsuitable
because the commonly-used libraries implementing the DNN certifiers, such as auto_LiRPA [69],
ELINA [48], and ERAN [45], are extensive code-bases in general-purpose programming languages,
employing complex imperative programming paradigms, such as pointer arithmetic. Verifying the
soundness of these libraries would require isolating the mathematical logic from their implementa-
tion and modeling the algorithm’s behavior on an arbitrary DNN.

Challenge 2: Universal Quantification. Since a DNN is an input to a DNN certifier, the
over-approximation-based soundness of the certifier is a universally quantified assertion over all
possible DNNs, which significantly complicates its verification. To illustrate this, consider verifying
the certifier for a fixed DNN, where the architecture is known. In this case, the soundness can
be verified by representing all neurons and edges in the DNN (represented as a Directed Acyclic
Graph) using symbolic variables and then executing the certifier symbolically. The difficulty arises
when the input DNN is arbitrary and so, cannot be directly represented symbolically. A DNN might
be a simple fully-connected network with ReLU activations, or a more complex architecture such as
ResNet, with arbitrary residual connections and activations. These DNNs have drastically different
architectures, and the DNN certifier may have different execution traces for them. So, verifying the
soundness of the certifier for one architecture does not guarantee soundness for arbitrary DNNs.

Challenge 3: Complex DNN Certifiers. Popular DNN certifiers like [45, 65, 73] associate
polyhedral bounds with each neuron, which makes it difficult to naively model the certifier behavior
using symbolic execution. For example, a polyhedral lower bound for a neuron n might be expressed
asn > 5ny +ny, where the neurons ny, n; are neurons located anywhere in the DNN, independent of
the DNN architecture. This adds a structure over the neurons (beyond the DNN architecture) that
is unknown before executing the certifier. Further, n, ny, ny, - - - are symbolic variables even during
a concrete execution of the certifier. So, modeling the certifier behavior using symbolic execution
entails modeling the symbolic variables (neurons) as SMT symbolic variables. The correctness of
this modeling is unclear and is not explored in existing work [4, 53].

Challenge 4: Huge Query Size. One approach would be to represent a DNN as a complete DAG
where each neuron is a vertex, but this results in massive graphs (i.e. 10* neurons in a modest-size
DNN will have around (10*)? edges), with a weight of zero in the DAG representing the absence
of an edge in the DNN. However, a complete DAG would lead to a huge query, which would
overwhelm current SMT solvers, making them either fail or take an impractically long time. So,
naively modeling arbitrary DNNs as a complete DAG is impractical for realistic-size DNNs.

To the best of our knowledge, no existing technique can automatically verify the soundness of
abstract interpretation-based DNN certifiers while accommodating a diverse range of certifiers,
ensuring soundness for arbitrary DNNs, and maintaining efficiency and scalability.

This work. We design a novel automated bounded verification procedure—PROVESOUND—
which can verify the soundness of DNN certifiers for arbitrary DNNs. PROVESOUND is based on the
novel concept of a symbolic DNN—an abstract neural network that represents all subgraphs of any
arbitrary DNN on which a DNN certifier can be applied (§ 5). By leveraging symbolic DNNs, we
transform the universally quantified soundness conditions into a tractable symbolic representation,
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verifying which is sufficient to prove the certifier’s soundness on arbitrary DNNs. We offload
the verification of this tractable symbolic representation to off-the-shelf SMT solvers. Recently, a
preliminary design of a Domain Specific Language (DSL)—CoNSTRAINTFLOW—was proposed for
specifying the core mathematical logic of abstract interpretation-based DNN certifiers decoupling
it from any implementation details [42]. However, its syntax and semantics are not formalized. So,
we design a BNF grammar, type-system, and operational semantics for ConsTRAINTFLOW, which
enables PROVESOUND to verify the soundness of certifier specifications within CONSTRAINTFLOW.
Main contributions.

e We develop a type-system for ensuring well-typed programs in CoNsTRAINTFLOW and also
provide operational semantics. We also develop symbolic semantics for CONSTRAINTFLOW
and a novel concept of a symbolic DNN to devise a verification procedure—PROVESOUND—t0
automatically find bugs or verify the soundness of the specified DNN certifiers.

e We establish formal guarantees and provide proofs that include type-soundness, and the
soundness of the automated verification procedure, PROVESOUND, w.r.t. the operational
semantics of CONSTRAINTFLOW.

e We provide an extensive evaluation to demonstrate that PROVESOUND enables proving the
correctness or detecting bugs in existing and new abstract transformers for contemporary
DNN certifiers and new DNN certifiers with new abstract domains. Using PROVESoUND, for
the first time, we can automatically verify the soundness of DNN certifiers for DNNs with an
arbitrary number of layers, each with millions of learned parameters.

2 Background

In this section, we provide the necessary background needed for abstract interpretation-based DNN
certifiers. While the concepts introduced are relevant to a broad range of certifiers, we describe the
widely used DeepPoly certifier [45] and use it as our running example throughout the paper.

2.1 Abstract Interpretation-Based DNN Certifiers

We use a definition of DNNs similar to the one used in [42]. A DNN is represented as a Directed
Acyclic Graph (DAG) with neurons as the vertices and edges corresponding to the non-zero weights
in the DNN architecture. The value of each neuron is determined by a DNN operation f, which
receives as input a set of neurons, referred to as the previous neurons p. DNN operations can be
categorized into two categories: (i) primitive operations and (ii) composite operations. Primitive
operations include the addition and multiplication of two neurons as well as non-linear activations
like ReLU, sigmoid, etc. Composite operations are operations that can be expressed as combinations
of primitive functions. Examples include affine transformation of neurons (fully connected layers
or convolution layers) or activations like maxpool ,etc.

For a given DNN operation f, the input consists of m neurons, where m denotes the arity of
f (e.g., faga : RX R — R has m = 2). Let x represent an m-dimensional input to a layer, with
each dimension corresponding to a neuron. DNN certifiers take a potentially infinite set of inputs,
represented as ¢ = {x;} and ¢ € C, where C is the concrete domain. Concrete elements ¢y, ¢, € C are
ordered by subset inclusion C. Certification involves defining an abstract domain A and abstract
transformers f* for each f. The DNN certifiers map concrete inputs to abstract elements via an
abstraction function @ and propagate these through the network using abstract transformers.
Abstract elements a € A can be mapped back to concrete values using a concretization function y.

DEFINITION 2.1. An abstract transformer f* is sound w.r.t. the DNN operation f if Ya € A -Vc €
C-cCy(a) = f(c) C y(fﬁ(a)), where the semantics of f are lifted to the natural set semantics.
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2.2 DeepPoly DNN Certifier

We focus on abstract domains that associate fields with each neuron n to impose constraints on
their values. These fields form an abstract shape s with corresponding constraints denoted as
P (s, n). Popular abstract interpretation-based certifiers, including DeepPoly, use such domains.
In the DeepPoly abstract domain, an abstract element a € A is represented as a conjunction of
constraints over the neurons’ abstract shapes, i.e., a = (s1,...,sn5), where N is the total number of
neurons. For each neuron n, its abstract shape is s,, = (l,;, 4y, Lp, Uy, ), where L, u, € R U {—c0, co},
and L,, U, are affine expressions of neurons in the DNN. The associated over-approximation-based
constraints are P(s,n) = (I, < n < u,) A (L, £ n < Up). Thus, the concretization function
y(a) ={(ny,...,nm) € R™|Vie [m],(I,, < n; <up,) A(Ly, <n; <Uy,)}

An abstract transformer updates the abstract shape of the output neuron based on the concrete
operation f while leaving the others unchanged. For the Affine operation, the updated abstract
shape is s, = (I, ul,, L., U.), where L, = U, = b + Y'_, win;, where the bias (b) and the weights
(w;) are the DNN’s learned parameters. To compute the lower concrete bound (I;,), DeepPoly
performs a backsubstitution step which starts with the lower polyhedral expression, e = L;,. At
each step, e = ¢; + zﬁzl cin;, each n; in e is replaced with its own lower or upper polyhedral bound
depending on the sign of the coefficient ¢}, i.e., e < ¢; + Zﬁzl(clf > 0°?ciLy, : c;Uy,,). This step
is repeated until all the neurons in e are in the input layer, after which the constituent neurons
are replaced with their respective lower or upper concrete bounds, i.e., if e = ¢’ + 25:1 c;'n;, then

I =c) + Zﬁzl(c;' > 0°?c/ly, : ¢]up,). The upper concrete bound u;, is also computed similarly.

3 Overview

We first provide an overview of DNN certifier specification in CONSTRAINTFLOW using the DeepPoly
specification from [42] as a running example, followed by the novel type-system and semantics for
ConsTRAINTFLOW. Finally, we show the soundness verification of the certifier specification.

3.1 CoNsTRAINTFLOW

ConsTRAINTFLOW introduces datatypes specific to DNN certifiers including Neuron, PolyExp, and ct.
Neurons are represented as Neuron. The type PolyExp represents affine expressions over neurons and
ct represents symbolic constraints. Since some DNN certifiers use symbolic variables to specify
constraints over the neuron values [44, 46, 55], we introduce the sym construct to declare a symbolic
variable of the type sym. We also introduce SymExp to capture symbolic expressions over these
symbolic variables. By treating polyhedral and symbolic expressions as first-class members, we
can define the operational semantics of constructs that can directly operate on these new types.
These include (i) binary arithmetic operations like ‘+’, (ii) map, which applies a function to each
constituent neuron or symbolic variable in a polyhedral or symbolic expression, and (iii) traverse,
which repeatedly applies map to a polyhedral expression until a termination condition is met. The
formal semantics (discussed in detail in § 4.3) enable automated reasoning and verification.

In ConsTRAINTFLOW, a DNN certifier is specified through three main steps: (i) specifying the
abstract shape for each neuron along with its soundness constraints, (ii) defining the abstract
transformers for each DNN operation, and (iii) determining how constraints propagate through the
network. We illustrate the different steps of specifying a DNN certifier in CONSTRAINTFLOW using
the DeepPoly specification in Fig. 1.

3.1.1  Abstract Domain. The specification of a DNN certifier starts by defining the abstract domain
used by the certifier (Line 1 of Fig. 1). In CoNSTRAINTFLOW, this is done by defining the abstract
shape (s) associated with each neuron and the constraints defining the over-approximation-based
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1 Def shape as (Real 1, Real u, PolyExp L, PolyExp U) {(curr[l] <= curr) and (curr[u] >= curr)
and (curr[L] <= curr) and (curr[U] >= curr)};

2 Func priority(Neuron n) = n[layer];

3 Func concretize_lower(Neuron n, Real c¢) = (¢ >= 0) ? (¢ * n[1]) : (c * n[ul);

4 Func concretize_upper(Neuron n, Real ¢c) = (¢ >=0) ? (c * nful) : (c * n[1]1);

5 Func replace_lower(Neuron n, Real c) = (c >= @) ? (c * n[L]) : (c * n[U]);

6 Func replace_upper(Neuron n, Real c) = (c >= @) ? (c * n[U]) : (c * n[L]);

7 Func backsubs_lower(PolyExp e, Neuron n) = (e.traverse(backward,priority,false,replace_lower)
{e <= n}).map(concretize_lower);

8 Func backsubs_upper(PolyExp e, Neuron n) = (e.traverse(backward,priority,false,replace_upper)
{e >= n}).map(concretize_upper);

9 Transformer DeepPoly{
10 Affine -> (backsubs_lower(prev.dot(curr[w]) + curr[b], curr),

11 backsubs_upper(prev.dot(currfw]) + curr[b], curr),

12 prev.dot(currfw]) + curr[b],

13 prev.dot(curr[w]) + curr[bl);

14 Relu -> prev[l] >0 ?

15 (prev[1l], prev[ul, prev, prev) :

16 (prev[fu] < 0 ?

17 (0, 0, 0, 9) :

18 (0, prev[ul, @, ((prev[ul / (prev[u] - prev[1l])) * prev) - ((prev[u] * prev[1l])

/ (prev[ul - prev[11))));
19 3}

20 Flow(forward, -priority, false, DeepPoly);

Fig. 1. DeepPoly specification in CONSTRAINTFLOW

soundness condition (). These are specified for the curr neuron, which serves as a syntactic
placeholder for all neurons in the DNN. For example, the DeepPoly abstract shape and its constraints
can be defined in ConsTRAINTFLOW as illustrated in Fig. 1, where [, u, L, U are user-defined members
of the abstract shape, accessed via square bracket notation (curr [-]). The DeepPoly soundness
condition is encoded as: (I < n) A(u>n) A (L <n)A (U = n).

We formalize the syntax for CONSTRAINTFLOW (§ 4.1), allowing the users to define arbitrary
abstract shapes. For instance, abstract domains can combine polyhedral and novel symbolic ex-
pressions. Symbolic variables (€) are subject to default constraints, —1 < ¢; < 1, defining multi-
dimensional polyhedra. The constraint curr <> curr[Z] indicates that curr is embedded in the
polyhedron defined by curr[Z], meaning there exists an assignment to the symbolic variables in
curr[Z] such that curr = curr[Z]:

Def shape as (Real 1, Real u, PolyExp L, PolyExp U, SymExp Z) {curr[l] <= curr, curr[u] >= curr,
curr[L] <= curr, curr[U] >= curr, curr <> curr[Z]};

3.1.2  Abstract Transformers. After defining the abstract domain, the second step is to specify
the abstract transformers for different DNN operations. In Fig. 1, lines 2-8 show the user-defined
functions used within the transformer definitions in lines 9-19 within the Transformer construct.
The implicit inputs to the Transformer construct are curr, representing the current neuron, and prev,
representing the previous neurons. prev is a list for DNN operations with multiple inputs, like
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Affine, and a single neuron in case of operations with a single input, like ReLu. The transformer
for each DNN operation specifies the computations for updating the four fields of the abstract
shape: I, u, L, and U. The transformers for Affine and ReLU operations are shown in Fig. 1 in lines 10
and 14 respectively. Using the semantics of the CoNsTRAINTFLOW constructs, we show how the
DeepPoly specification in Fig. 1 simulates the mathematical logic of DeepPoly (explained in § 2).
The ConsTRAINTFLOW semantics also allow us to explore variants of DeepPoly.

In the DeepPoly Affine transformer, the polyhedral bounds (L and U) are given by prev.dot (curr
[w]) + curr [b]. There are many ways to compute the concrete lower [ and upper bounds u. Consider
concretize_lower and replace_lower functions from Fig. 1 that respectively replace a neuron with
its lower or upper concrete and polyhedral bounds based on its coefficient. We can compute the
lower concrete bound for curr, by applying the concretize_lower to all the neurons in the lower
polyhedral expression, i.e., (prev.dot (curr [w]) + curr [b]).map (concretize_lower). We can compute a
more precise polyhedral lower bound by first applying replace_lower to each constituent neuron,
i.e., (prev.dot (curr [w]) + curr [b]).map (replace_lower). We can repeat this several times, following
which, we can apply concretize_lower to concretize the bound. In the standard implementation,
the number of applications of replace_lower is unknown because it is applied until the polyhedral
bound only contains neurons from the input layer of the DNN. Although this is precise, it might be
costly to perform this computation until the input layer is reached. So, custom stopping criteria
can be decided, balancing the tradeoff between precision and cost. Note that the order in which the
neurons are substituted with their bounds also impacts the output’s precision.

To specify arbitrary graph traversals succinctly, we provide the traverse construct, which de-
couples the stopping criterion from the neuron traversal order. traverse operates on polyhedral
expressions and takes as input the direction of traversal and three functions—a user-defined stop-
ping function, a priority function over neurons specifying the order of traversal and a neuron
replacement function. In each step, traverse applies the priority function to each constituent neuron
in the polyhedral expression. Then, it applies the neuron replacement function to each constituent
neuron with the highest priority among the neurons on which the stopping condition evaluates
to false. The outputs are then summed up to generate a new polyhedral expression. This process
continues until the stopping condition is true on all the constituent neurons or all the neurons are
in the input or output layer depending on the traversal order. We can use traverse to specify the
backsubstitution step and hence the DeepPoly Affine transformer as shown in Fig. 1.

3.1.3  Flow of Constraints. Existing DNN certifiers propagate constraints from the input to the
output layer or in reverse [58, 65, 71]. Further, the order in which abstract shapes of neurons
are computed impacts analysis precision. In CONSTRAINTFLOW, the specification of the order of
application is decoupled from the actual transformer specification, so the soundness verification of
the transformer remains independent of the traversal order. We formalize this syntax and semantics
to provide adjustable knobs to define custom flow orders, using a direction, priority function, and a
stopping condition. The user specifies these arguments and the transformer using the Flow construct,
as demonstrated in Fig. 1, Line 20, for the DeepPoly certifier. This code assigns higher priority to
lower-layer neurons, resulting in a BFS traversal. The stopping function is set to false, stopping
only when reaching the output layer. We verify the soundness of all specified transformers in the
Transformer construct. Based on the DNN operation, Flow applies the corresponding transformer,
ensuring a composition of only sound transformers.
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3.2 PRoOVESOUND: Automated Bounded Verification of the DNN Certifier

To establish the soundness of a certifier, it is necessary to verify the soundness of each abstract
transformer f¥# w.r.t. its concrete counterpart f, ie.,

Vae A-VeeC-cCyla) = f(c) Cy(ff(a) (1)

Equation 1 is universally quantified over both the abstract element a and the concrete element
c. The abstract element, a tuple of abstract shapes, over-approximates the values of neurons in
the DNN, while the concrete element represents specific valuations for the neurons. Since the
DNN architecture—its topology, number of neurons, and consequently the number of abstract
shapes—can vary, the universal quantification in equation 1 presents a challenge for verification.

So, we introduce the concept of a Symbolic DNN to represent an arbitrary DNN and the corre-
sponding abstract shapes symbolically. The symbolic DNN is an abstract neural network repre-
senting all subgraphs of any arbitrary DNN on which the specified transformer can be applied. It
consists of symbolic values representing only the necessary neurons for executing the transformer
specification. So, verifying the soundness of the specified transformer on a finite symbolic DNN is
sufficient to prove its soundness on an arbitrarily large DNN with any topology.

The symbolic DNN is initialized only with curr and prev, along with their abstract shapes so the
specified abstract transformer can be symbolically executed. However, in some cases, the symbolic
execution of a transformer requires more neurons to be initialized in the symbolic DNN. We do
so by a Symbolic DNN Expansion, where we statically analyze the transformer and only introduce
neurons and their abstract shapes necessary for the symbolic execution. We explain these steps
using an example in § 3.2.1, § 3.2.2. After the creation and expansion steps, we have a symbolic
representation of the DNN and corresponding abstract shapes sufficient for symbolic execution to
generate the final verification query which can be off-loaded to an off-the-shelf SMT solver (§ 3.2.3).

To better illustrate these steps, we introduce a new DeepPoly transformer for ReLu which has a
better runtime than the original transformer but is slightly less precise. We then show the above-
mentioned steps for the verification of the new transformer. As introduced in § 2, the DeepPoly
abstract shape consists of 4 fields—I, u, L, U, where [, u are the concrete bounds and L, U are the
polyhedral bounds of the neuron. Consider the DeepPoly ReLu transformer. It takes in as input
the abstract shape of the prev neuron and computes the new abstract shape for curr neuron. It
has 3 cases based on the values prev[[], prev[u] of the input abstract shape - (i) prev[l] > 0, (ii)
prev[u] < 0, and (iii) prev[l/] < 0 < prev[u]. We focus only on the first case for illustration. In
this case, the concrete bounds are set to the input concrete bounds, i.e., curr[l] « prev[l] and
curr{u] « prev[u]. Both the lower and upper polyhedral bounds are set to prev, i.e., curr[L] < prev
and curr[U] « prev. In the new transformer for ReLu, instead of setting the polyhedral bounds of
curr in terms of the neurons of the previous layer, i.e., prev, we set them using the lower and upper
polyhedral bounds of prev, which are prev[L] and prev[U] respectively. In CoNsTRAINTFLOW, these
polyhedral bounds can be computed using map(replace_lower) and map(replace_upper) respectively.
The user-defined functions replace_lower and replace_upper replace a neuron with its lower or upper
polyhedral bounds based on its coefficient. The map construct applies a function to all neurons in a
polyhedral expression. So, the expression for the upper polyhedral bound (and similarly for lower)
can thus be written as e = prev[U].map(replace_upper).

3.2.1  Symbolic DNN Creation. For each DNN operation 7 (e.g., ReLU in this case), given the abstract
transformer, we create a symbolic DNN (Fig. 2a) with neurons representing prev and curr that
are respectively the input and output of 5. These neurons are associated with symbolic variables
Hp and p. representing their valuations respectively. The edges are only between curr and prev
neurons representing the ReLU operation. Here, prev represents only a single neuron. However,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAL, Article 144. Publication date: April 2025.



144:8 Avaljot Singh, Yasmin Chandini Sarita, Charith Mendis, and Gagandeep Singh

1 1
_ e Lo i
s Hp —u ReLU U g
l(—!l 1 1 . prev — curr -
LZ, He ph L I I Lt
o —u [T =T ) Hp He
i prev Y curr fe o+ g * flp, < U U gy
Hp L ! ! Lo pe L : It
ngU Hp He U s U N;l l‘nul
ymHu r‘l/ —n u’_)ynz
1 2
! L U ~ /’ﬁ,‘_'L 7 ) LD—>p£2
P(eurr) = (pe < ple < pg) A (e < pe < pie) u Hn, Hn, U
WU Ul

P(prev) = (1 < ptp < ) A (f < pp < 1)
Cr=(p <0 = p=0)A(p >0 = pc=pp)

P(prev) = (i < pip < pf) A (< ptp < (i} + 2 ¢ i, + 122 % fin,))
C = P(curr) A P(prev) A C”

C = P(curr) A P(prev) A Cy AP (n1) AP(nz)

(a) (b)

Fig. 2. Symbolic DNN creation and expansion for DeepPoly. P(n) = (I <n<u) A (L<n<U)

for DNN operations like Affine, the symbolic DNN is initialized with prevy, - - - prevy where k is
a sufficiently large parameter. We do not make any assumptions about the DNN’s architecture,
resulting in the absence of any extra neurons or edges between prev; and prev; and thus, no additional
constraints over symbolic variables. Fig. 2a shows the symbolic DNN for the ReLu transformer for
the DeepPoly certifier. The soundness property P for this certifier is that for each neuron n,
(I <n<u)A(L £n <U).Each shape member and metadata associated with these neurons is also
initialized with fresh symbolic variables. For instance, ,ui,, Hp represent the lower and upper concrete
bounds respectively, and /1]1; , yg are the lower and upper polyhedral bounds of prev. The symbolic
DNN is associated with constraints representing the edge relations between the neurons and the
soundness property assumptions before applying the transformer. In Fig. 2a, these constraints are
presented as C = P (curr) A P(prev) A C,, where P (curr) and P (prev) represent the soundness
property over curr and prev respectively. C, represents the semantics of the ReLU operation, i.e.,
curr = 0 when prev < 0, and curr = prev otherwise. The formal definition and details of a symbolic
DNN can be found in § 5.1.

3.2.2  Symbolic DNN Expansion. Initially, polyhedral bounds such as prev[L] and prev[U] are
represented as single symbolic variables. However, for operations like map, the polyhedral values
need to be expanded into expressions of the form x + x1 - ny + x5 - ny .. ., where x; are coefficients
and n; are neurons. This is necessary for the semantics of map, as functions like replace_upper are
applied to each constituent neuron and coefficient within the polyhedral expression. For example,
consider e = prev[U].map(replace_upper). Initially, prev[U] is a single symbolic variable ,ug (Fig. 2a),
but to symbolically evaluate e, the expression must be expanded into its constituent terms, e.g.,
P2 i, + 12 - 1, , where pil, p2, and p2 are symbolic coefficients, and puy,,, i, represent new neurons.
In this case, the expansion introduces two neurons, but in general, the number of neurons 7, is a
sufficiently large parameter. No architectural assumptions are made about the new neurons, but they
must be added to the symbolic DNN along with their metadata, and the soundness property # must
be assumed for them. Fig. 2b shows the updated symbolic DNN after one expansion step. Similarly,
before executing the expression for the polyhedral lower bound e = prev[L].map(replace_lower), pjf;
must also be expanded. This expansion is performed through static analysis of the transformer.
Once the symbolic DNN is expanded, the associated constraints C are updated to reflect the new
neurons and the expanded values. Detailed steps for Symbolic DNN Expansion are in § 5.2.
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Fig. 3. Soundness offﬁ w.rt. f
Fig. 4. SMT query for Soundness offﬂ w.rt. f

Table 1. Generating SMT query for verifying one case of the ReLU transformer for DeepPoly certifier.

Steps in Fig. 3 DeepPoly Translation for ReLU Operation

Leta=(---, SnysSngsSpsScs* ) Declare fresh symbolic variables for all neurons, metadata, and shape
fields in the expanded symbolic DNN

(1) Let (- - ,ny,ng,p,c,---) =y(a),c C y(a) ‘ @1 = P(sny> 1) A P(Sny,n2) AP (sp,p) AP (sc,¢)

(2) Apply f toc | p2=c=fr(p)

(3)Leta’ = f #(a) Declare new symbolic variables for output:
@3=(a" == (- ,Sn»Sny> SpsSes "+ )

(4) Apply y to @’ | @4=P(sc.c)

3.2.3 Generating the Verification Query. Once the symbolic DNN is expanded, we can translate
the soundness check of a DNN certifier (Formula 1) into a closed-form SMT query. In the case
of ReLu, the symbolic DNN corresponds to an abstract element a, a tuple of abstract shapes a =
(“** 2 Sny> Snys Sp Sc» * + + ), Where sy, Sp,, 5p, and s represent the abstract shapes of ny, ny, prev, and
curr, respectively. As shown in Fig. 3, the verification process consists of two steps (1, 2) to compute
f(c), and two steps (3, 4) to compute y(f t(a)), starting from a. Table 1 outlines the computations
for each step, with an example for the first case of the DeepPoly ReLU transformer (¢, = prev[l] > 0).

1 ¢ C y(a), representing the set of neuron value tuples satisfying P. This is denoted by ¢;.

2 Applying f to prev to compute curr. Any v € f(c), witho = (---,p,c,---), must satisfy
@2 = ¢ = f(p), where, in the case of ReLu, f; is defined as f; (p) = max(p,0).

3 Applying fﬂ to a, updating only the abstract shape of curr: a’ = (- -+, sp,, Sn,, Sp, Si, - - ). The
new shape fields [, u, L, and U are computed symbolically. For example, curr[U] is set to
prev|[U].map(replace_upper) We start this computation by computing prev[U] as u;} + pi2 * 1, +
12 * pi,. Then we apply replace_upper to each constituent summands to compute the final
value as i +If (1} = 0, uf # i, iy + pg ) + L () = 0,1 % pyy 7+ iy, ). Here, If (e, Lr) is a
Z3 construct. Similarly, the lower polyhedral bound is also computed.

4 Applying y to a’ results in ¢4 = P(s., ¢).

The verification reduces to checking if (¢o A @1 A @2 A ¢3) = @4, as illustrated in Fig. 4. More
details on the symbolic semantics and the steps to generate the final query can be found in § 5.3, 5.4.

3.24 Soundness and Completeness of PROVESOUND. The target of the verification procedure is to
ensure that if using the operational semantics of CoNsTRAINTFLOW, the abstract transformer is
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(Expression) ex=c|x|sym|e; ® ex|e[x]]| fe(er, ) | x.traverse(d, fz,, fo,, fe, ) {€} |
e.map(fc) | solver(minimize, ey, e3) |---

(Shape-decl) d ::= Def shape as (t; x1,1; X2, -+ ){e}

(Function-def’) f u=Func x(ty x1,8 Xp,--+) =€

(DNN-operation) n ::= Affine | ReLU | MaxPool | DotProduct | Sigmoid | Tanh | - - -

(Transformer-decly 6y ::= Transformer x
(Transformer-ret) 0, == (e, ez, ---)|(e? 6, :6,,)

(Transformer) 0 :=04{nm —6,5n2—> 6}
(Statement) s == Flow(S, fo,, fe,, 0c) | f1 0| s15 52
(Program) Il :=d;s

Fig. 5. A part of the BNF grammar for CONSTRAINTFLOW. The complete grammar can be found in Appendix A

applied to any concrete DNN along with its abstract element that satisfies the specified property,
the updated abstract element still maintains the over-approximation-based soundness. For this,
PROVESOUND creates a symbolic DNN and executes the specified transformer using symbolic
semantics to generate an SMT query. We prove that verifying the transformer using symbolic
semantics over a symbolic DNN ensures the verification using operational semantics over any
concrete DNN. We explain this in detail in § 5.5.

Soundness. We introduce the notion of a symbolic DNN over-approximating a concrete DNN
and symbolic semantics over-approximating the operational semantics. As a result, we use a
bisimulation argument to prove that if the transformer is verified for a symbolic DNN, then it is
also verified for all concrete DNNs that the symbolic DNN over-approximates.

Completeness. Symbolic execution is not complete for traverse because it involves loops with
input-dependent termination conditions. So, to verify programs using traverse, we check the
correctness and subsequently use the inductive invariant provided by the programmer. We also
provide a construct solver in CONSTRAINTFLOW that can be used for calls to external solvers. For
example, finding the minimum value of an expression e; under some constraints e; can be encoded
as solver(minimize, e, €2). Since we do not have access to the solver, instead of symbolically executing
it, we use function contracts to represent the output, i.e., a fresh variable x is declared that represents
the output. Under the conditions e;, the output x must be less than ey, i.e., e, = x < e;. Due to
the invariants and contracts not being the strongest, the verification is not complete. However, it is
complete for programs that do not use these constructs.

4 Formalising ConNSTRAINTFLOW

We formally develop the syntax, type-system, and operational semantics of CONSTRAINTFLOW.

4.1 Syntax

4.1.1 Statements. In CONSTRAINTFLOW, a program II starts with the shape declaration (d) and is
followed by a sequence of statements (s), i.e., IT ::= d ; s. As shown in Fig. 5, statements include
function definitions (f) - specified using Func construct, transformer definitions () - specified
using Transformer construct, the flow of constraints - specified using Flow construct, and sequence
of statements separated by ;. The output of a function is an expression e, while the output of a
transformer (6,) is either a tuple of expressions t = (ey, - - - ), where e; represents the output of each
member of the abstract shape, or (e ? 6,, : 6,,), where _?_: _ is the ternary operator.
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I'[x +— (Neuron X Neuron) — (t1,---)]
Fig. 6. Subtyping Lattice

Fig. 7. Type-checking Rules (7°)

4.1.2  Expressions. As shown in Fig. 5, apart from constants (c) and variables (x), sym is also an
expression, which can be used to declare a new symbolic variable €. For every symbolic variable, we
implicitly add the constraint most commonly used in DNN certifiers, i.e., -1 < € < 1. We allow the
standard binary operators, list operators, function calls, etc. Some operators like ‘+* are overloaded
to also apply to polyhedral and symbolic expressions. Each neuron is associated with its abstract
shape and metadata, which can be accessed by square bracket notation, for instance - curr[l]. The
map construct takes in a function name and an expression of type PolyExp (or Symexp). The function is
applied to all the constituent neurons (or symbolic variables) and adds the results to give a new
polyhedral (or symbolic) expression. traverse is applied to a variable (x) representing a polyhedral
expression, and takes in the direction of traversal (6), a priority function (f;,), a stopping function
(f,), a replacement function (f;,), and a user-defined invariant (e), needed for verification. We also
provide the solver construct in PROvESoUND, which allows calls to external solvers. For example,
minimizing an expression e; under constraints e, can be expressed as solver(minimize, €1, €3).

4.1.3  Specifying Constraints. To verify a DNN certifier, one must provide the soundness property
(P) along the abstract shape. Also, for traverse, the programmer must provide an invariant. To
define constraints in CoNSTRAINTFLOW, the operators ==, <, > are overloaded and can be used to
compare polyhedral expressions as well as CONSTRAINTFLOW symbolic expressions. For example,
the constraint n; + n, < n3 means that for all possible values of ny, n,, and ns during concrete
execution, the constraint must be true. Further, the construct <> can be used to define constraints
such as e; <> ey, where e is a polyhedral expression, and e; is a symbolic expression. Mathematically,
the constraint n; +ny <> sym; + 2 symy means Vnq, ny - d symy, symy € [—1, 1], s.t., ny +ny = sym; +2 sym,.
In ConsTRAINTFLOW, the constraints are expressions of type ct. The binary operators like A, V are
also overloaded. For example, if e; and e, are of the type ct, then e; A e; is a constraint of type ct.

4.2 Type Checking

We define a subtyping relation C for the basic types in CONSTRAINTFLOW, organized as a lattice
(Fig. 6). An expression is type-checked to ensure that it has a type other than T or L. Type-
checking involves recording the types of the members of the abstract shape in a record 7 (referred
to as T-sHAPE in Fig. 7). A static environment I' maps program identifiers to their respective
types, and the tuple (T, 7;) forms the typing context in CONSTRAINTFLOW (T-PROGRAM). We utilize
standard function types of the form t; X --- X t, — t, where t; are the argument types and ¢ is
the return type. The Transformer construct encapsulates the abstract transformers associated with
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Fig. 8. Big-step Operational Semantics (OP) of CONSTRAINTFLOW

each DNN operation. In rule T-TRANSFORMER, the output of an abstract transformer 6, is a tuple
of expressions that undergo recursive type-checking to ensure consistency with z;. The implicit
inputs to Transformer are curr and prev. For n members in the user-defined abstract shape and m
DNN operations, the corresponding abstract transformers yield tuples of types (¢}, - -, ). For

each abstract shape element, we define the type t/ = I_Iie[m]tl.j . The transformer type checks if
j € [n] and t] C 7/, where 7] is the type of the j-th shape member. The type of curr is Neuron,

while the type of prev depends on the DNN operation; for simplicity, we assume prev is of type
Neuron. If all abstract transformers in the Transformer construct pass type-checking, a new binding is
created in T mapping the transformer name to the type Neuron X Neuron — (t1,- -+, t™). The detailed

description of type-checking in CoNsTRAINTFLOW can be found in Appendix B.

4.3 Operational Semantics

The input concrete DNN is represented as a record D¢ that maps the metadata and abstract shape
members of all neurons to their respective values. While executing statements in CONSTRAINTFLOW,
two stores are maintained: (i) F, which maps function names to their arguments and return
expressions, and (ii) ©, which maps transformer names to their definitions. The general form for the
operational semantics of statements in CONSTRAINTFLOW is given by: (s, F, 0, D¢) || F/,©’, Z)é.
Function definitions add entries to F, while transformer definitions add entries to ©. The Flow
construct applies transformer 6 to the neurons in the DNN D¢, modifying it to Dy..

Each expression in CONSTRAINTFLOW evaluates to a value (v), with the formal definition of values
provided in Appendix C. A record p maps variables in CONSTRAINTFLOW to concrete values. The
general form for the operational semantics of expressions in CONSTRAINTFLOW is: (e, F, p, Dc) | v,
with most operations, including unary and binary, following their natural operational semantics.

The operational semantics of map (OP-mAP in Fig. 8) begins by recursively evaluating the input
expression e, yielding a polyhedral or symbolic expression denoted as v;. The input function f is
then applied to each component of v, resulting in individual outputs v; that are summed to produce
the final output. For traverse, the input expression e is first evaluated to yield a polyhedral value v.
Then, an active vertex set V is established by retrieving constituent neurons from v and filtering
out neurons that satisfy the stopping condition f;,, i.e., V « Ft(neurons(v), f,, F, p, Dc¢). This
set initializes V and is iterated upon until it is empty. In each iteration, shown in OP-TRAVERSE-2
(Fig. 8), the priority function f;, is applied to each neuron in V, selecting the highest-priority
neurons: V' « P(V, f;, F, p, Dc¢). The value v can be decomposed into three parts: a constant c,
the value associated with neurons in V’, and the value for neurons notin V': v = ¢ + v + Vi
The replacement function f;, is applied only to vy, retaining the coefficients of the other neurons,
resulting in a new polyhedral value: v = ¢ + 1" + v7. The active set is updated by removing
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neurons from V' and adding their neighbors, filtered again to satisfy the stopping condition:
V7" = Ft(V\ V) UN(V', ), fe,, F, p. Dc). This process continues until the final value is computed.
More detailed operational semantics for traverse and other constructs can be found in Appendix D.

4.4 Type Soundness

We demonstrate that if a program type-checks according to the rules of ConsTRAINTFLOW, then
applying the program according to operational semantics produces an updated abstract element
for the input neural network (Theorem 4.1). Lemmas 4.1 and 4.2 establish that if an expression or
statement type-checks, it will evaluate according to operational semantics, with the output type
consistent with the type computed during type-checking. Detailed proofs are in Appendix E.

LeEmMA 4.1. Given (T, 75) and (F, p, D¢) with finite D¢ such that (F, p, Dc¢) is consistent with
(T,75),if T,zsre:tand LC t C T, then{e,F,p,Dc) | vandrv:t st.t' Ct.

LeEmMA 4.2. Given (T, 75) and (F, p, Dc) with finite D¢ such that (F, p, D¢) is consistent with
L Ts), if Lt - s 17, then (s, F, p, D¢ , P, s.t. , P, 1s consistent wit ,Ts).
T,7,), if T T, then (s, F, p, Dc) U F, p', D} s.t. (F', p, D) is consi ith (I”

THEOREM 4.1. A well-typed program in CONSTRAINTFLOW successfully terminates according to the
operational semantics, i.e., T | OP. Formally, if - + I1 : T, 75 then (I1, Dc) | D

ProorF skeTCH. Theorem 4.1 follows directly from Lemmas 4.1 and 4.2. The lemmas are proved by
induction on the structures of e and s. For Lemma 4.1, the case where e = x - traverse(d, fi, f2, f3){_}
is particularly intricate as it involves traversing the DNN. We demonstrate this by constructing
a bit vector B representing the neurons in the DNN, ordered topologically (as a DAG), where 1
indicates the presence in the active set and 0 indicates absence. We show that the value of B is
bounded and decreases by at least 1 in each iteration. O

5 PrRoveSounp—Bounded Automatic Verification

We present bounded automated verification for the soundness verification of every abstract trans-
former specified for a DNN certifier. Bounds are assumed on the maximum number of neurons in
the previous layer (n,r¢,), and the maximum number of PROVESOUND symbolic variables used by
the certifier (nsym). We reduce this verification task to a first-order logic query which can be handled
with an off-the-shelf SMT solver. In this section, the terms symbolic variables and constraints refer
to SMT symbolic variables and constraints over them, not the PROVESOUND symbolic variables € or
constraints unless stated otherwise. When executing the certifier using operational semantics, the
input is a concrete DNN. So, the soundness of the certifier must be verified for all possible inputs,
i.e., all possible DNNs. Our key insight is a Symbolic DNN that can represent arbitrary concrete
DNNs within the above-stated bounds. In a nutshell, given a PROVESOUND program, we perform the
following steps: (i) create a symbolic DNN (§ 5.1), (ii) expand the symbolic DNN to be able to execute
the program (§ 5.2), (iii) execute the program on the symbolic DNN using symbolic semantics
(§ 5.3), (iv) generate the verification query and verify the query using an off-the-shelf SMT solver
(§ 5.4). We prove the soundness of the symbolic semantics w.r.t. the operational semantics (§ 5.5). So,
verifying the soundness of a certifier for a symbolic DNN ensures the soundness of any concrete
DNN within the bounds.

5.1 Symbolic DNN Creation

We introduce the concept of a Symbolic DNN to represent an arbitrary DNN and the corresponding
abstract shapes symbolically. It represents all subgraphs of any arbitrary neural network on which
the specified transformer can be applied. So, it consists of symbolic values representing neurons
necessary for executing the transformer.
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Fig. 9. Symbolic DNN Expansion

DEFINITION 5.1. A symbolic DNN is a graph (V,E, Ds, C), where V is the set of neurons and E is
the set of edges representing the DNN operations (e.g., Affine, ReLU). Each node is associated with an
abstract shape and metadata. D is a record that maps each neuron, its shape members, and metadata
to symbolic variables and C represents constraints over the symbolic variables.

As explained in § 3.2.1, 3.2.2, for each DNN operation 1 (e.g., ReLU), we initialize a symbolic
DNN with neurons representing prev and curr that are respectively the input and output of . The
edges are only between curr and prev neurons and represent the operation 5. C encodes n and the
assumption of the user-specified property P over all of the neurons in the symbolic DNN. Each
shape member and metadata associated with these neurons is set to symbolic variables in Ds.
In subsequent sections, we omit V and E and refer to Dg, C as a symbolic DNN. Next, to enable
symbolic execution of the specified transformer, we may need to expand the symbolic DNN. For
example, in the case of the expression e = prev[U].map(foo), where foo is a user-defined function,
prev[U] must be expanded before we can apply foo. The symbolic DNN expansion step is written
in the form 75, F, 0, D5, C, P | e ~ D¢, C’ (§ 5.2). After the symbolic DNN expansion step of an
expression e, it can be symbolically executed using the symbolic semantics. The symbolic semantics

are defined in the form (e, F, o, Ds,C) | p, C’ (§ 5.3).

5.2 Symbolic DNN Expansion

The expansion step is done by statically analyzing the transformer specification and expanding the
symbolic DNN accordingly. A subset of the rules for symbolic DNN expansion is shown in Fig. 9.
The complete set of rules can be found in Appendix G. This step analyzes the expression e for the
presence of one of three constructs - map, function call, or traverse. The rules for map and traverse
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are shown in rules G-MAP and G-TRAVERSE (in Fig. 9). In the rule G-maP, the graph expansion is
recursively applied to the input expression e in the first line. Then, since it is a map construct, it
must be ensured that the output of e is in expanded form. This is done in the second line. The
third line asserts that the output from the symbolic execution of e is already in the expanded form
Hp, + Zle n; * [p,. Since the map construct applies the function call to all the individual summands of
the output, the DNN expansion step is applied to each function call before symbolically executing
it. This is shown in the fourth line of G-maP rule.

Now, we explain the expand(e, 75, F, o, Ds, C, P) rules used to ensure that the output of symbol-
ically executing e is in expanded form. Here, expand takes in an expression, e, s, F, o, Ds, C, and
the abstract shape constraint definition #. The output of expand is D¢, which can contain new
shape members and expanded versions of existing shape members, and C’, which is extended to
include the soundness property assumptions on any new neurons added to the symbolic DNN or
the constraint —1 < € < 1 for any new PROVESOUND symbolic variables. In Fig. 9, we show one
of the base cases of this step, EXPAND-POLY-R, where we expand the accessed polyhedral shape
member of the input neuron. In the first line, we symbolically execute e to get the neuron n. Then, if
x is of the type PolyExp or Symexp, we add new symbolic variables to the symbolic DNN accordingly.

Another interesting case for graph expansion is the expressions x.traverse(d, fc,, fz,, fz,) shown
in the rule G-TRAVERSE, where we recursively call the graph expansion for the invariant e in line
1. Since we cannot symbolically execute the traverse construct due to it being a loop with an
undetermined number of iterations at the analysis time, we declare new neurons to represent the
output. In line 2, these new neurons and their corresponding metadata are added to the symbolic
DNN. So, the output of symbolically executing traverse is represented as pi, = pip, + 2{21 Hp, * n; in
line 3. When generating the query, we also need to assume that the stopping condition (fc,) is true
on all summands of the final output, and also the function f;, is applied to all the summands. So, in
lines 4-5, we recursively apply the symbolic DNN expansion on all the summands using f;, and f;,.

5.3 Symbolic Semantics

Like operational semantics, symbolic semantics (S) use F which maps function names to their formal
arguments and return expressions. However, instead of the concrete store p used in operational
semantics, it uses a symbolic store, o, which maps the identifiers to their symbolic values p in
expanded form. Symbolic semantics output a symbolic value p, and also add additional constraints
toC,ie, (e, F, 0, Ds C) | p C'. Constants, variables, and the introduction of new PROVESOUND
symbolic variables using the € construct are the base cases of the symbolic semantics of PROVESOUND.
Unary, binary, and ternary operations are straightforward recursive cases. We show SYM-TERNARY
in Fig. 10, where the three expressions ey, e, and e5 are recursively executed to output py, pi, y3,
respectively. The output value of the ternary operation is thus returned as If(yy, pi2, p3), where If is
a Z3 construct. Also, the constraints are accumulated in the recursive calls. The symbolic semantics
for map construct are similar to the operational semantics and are therefore omitted here. We now
discuss the semantics for the more challenging traverse construct. Detailed semantics for other
constructs are available in Appendices F and G.

Due to the lack of DNN architecture information, full symbolic execution of the loop specified
by the traverse construct is not feasible. So, we validate the user-provided invariant’s soundness
and subsequently use it for the symbolic semantics of traverse. In the rule Sym-TRAVERSE in Fig. 10,
e is the user-defined invariant for the traversal, y, is the output symbolic polyhedral expression,
and p is the result of applying the invariant e to y,. We check the soundness of this invariant
in two steps (CHECK-INVARIANT in Fig. 10). First, we verify that the invariant is satisfied at the
initial state. Here, y represents the evaluated invariant expression e applied to the input state of
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SYM-TERNARY

(e1,F,0,Ds5,C) | 11, C1 ez, F,0,Ds,Cy) | pi2,Co (es, F,0,Ds,Ca) | 3, Cs
((e1?ey : €3),F,0,Ds,C) | If (p1, p2, p13), Cs

CHECK-INDUCTION
I ’ real real o /
= [n}, -+, 1] +§ Hi i o =olx )

(e,F,O",Ds,C> l:u[;’CO Vie []] <f02(nluurl) F O. DS: i— 1> l:uz’
) C(; = Cj Vie []]: <ﬁ;3(n,,,uri),F,O' . Ds, l—1> *l'lul >

J
K=y + Z If (i s pry %) o’ =olxp’] (e F.d",Ds,CH) Ly, C"

Ind(x - traverse(S, fe,, fe,» fe;){e}, F, 0, Ds, C) = unsat(—~(Co Ay, = C;' Ap'"))

CHECK-INVARIANT
(e,F,0,Ds,C) | 1, C"  pp = unsat(~(C" = p))
,u,; = Ind(x - traverse(d, fc,, fz,, fes ) {€}, F. 0, Ds, C)

Inv(x - traverse((s,fcl,ch,fCS){e}, F,0,Ds,C) = pup A ,u;, ol

SYM-TRAVERSE

Inv(x - traverse(5,fcl,f62,fc3){e}, F,0,Ds, C) = true,C’
J

wo=po+ Y e o =olxom]  (eF.o,Ds.C) L pC”

i=1

(x - traverse(d, fcl,ﬁz,fc3){e}, F,0,Ds,C) | Hp, B A c”

Fig. 10. Symbolic Semantics (S) for PROVESOUND expressions: (e, F, o, Ds,C) | p,C’

traverse. unsat(—=(C’ = p)) implies that p is true under the conditions, C’, which are valid
before executing traverse. Second, we verify that the invariant is inductive (CHECK-INDUCTION).
In Ind, unsat(=(Co A g, = C;" A p’”')) means that under the assumption that the invariant
holds before an iteration of traverse, the invariant must hold after the iteration of traverse. If the
invariant is validated, we create a symbolic value of the form o + Y.7_, p; * p| to represent the
output of x.traverse(d, f;,, f2,, fc,){e} and assume, in C, that the invariant holds on this output.

5.4 Queries for Verification

Initially, it is assumed that the property # holds for all the neurons in the symbolic DNN. To
compute the new abstract shape, the user-specified abstract transformer is executed using the
symbolic semantics as described in § 5.3. This results in the new abstract shape (for curr) - a tuple
of symbolic values (yy, - - -, un) and a condition, C’ that encodes constraints over y;. To verify
the soundness of the abstract transformer, we need to check that if the property # holds for all
the neurons in the symbolic DNN (Yn € Dg, P (an, n)), then it also holds for the new symbolic
abstract shape values, P (atgypr curr), where alyrr = (p1, - - -, fin). We split the query into two parts:
(i) antecedent p—encoding the initial constraints on the symbolic DNN, the computations of the
new abstract shape for curr, represented by R, the semantic relationship 1 between curr and prev,
and any path conditions relevant to the specific computations we are verifying, C’. p = (Vn €
Ds, P(an, n)) A curr = nj(prev) AR A C’ (ii) consequent g—encoding the property P applied to the
new abstract shape of curr. ¢ = P (agypr curr). So, the final query is checkValid(p = ¢).
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. g l=-1 l|—>ﬂ‘5) .
i - - prev >
L U =3-2m L'_MU;L; o]
_ - o
“L=4+5n; +6n, U pb+ p2 s i, + 112 # pin, P

Fig. 11. Parts of Concrete DNN D¢ and Symbolic DNN Dg

5.5 Correctness of Verification Procedure

We define a notion of over-approximation of a concrete DNN by a symbolic DNN, a concrete value
by a symbolic value, etc. So, any property proved by our verification algorithm for a symbolic DNN
also holds for any concrete DNN that is over-approximated by the symbolic DNN. This notion lets
us establish the correctness of the PROVESOUND verification procedure.

5.5.1 Over-Approximation. Fig. 11 shows parts of a concrete DNN D¢ and a symbolic DNN Dg
from Fig. 2b. The neuron prev in Dg over-approximates the neuron n in the concrete DNN D¢ if ¢ is
satisfiable, where ¢ = (,u;, =D A (g =3)A (,uﬁ = 44511 +6n2) A (412 s i, + 112 % i, = 3—2n4).
Further, if pip, fin,, jin, represent n, ny, ny respectively, they must also be equal, i.e., o1 = ¢ A (1 =
n) A (fn, = n1) A (Un, = ny) must be satisfiable. Note that the neurons in D¢ are not assigned any
values and are therefore symbolic themselves. So, ¢; must be satisfiable for all possible values of
n, ny, nz in Dc. Further, the symbolic DNN has another component C which imposes constraints
on f4;. So, the formula must be satisfiable under the constraints C, i.e., ¢, must be true.

02 = V{n,n1, 2} - IH{ptp, fins st} (0 A (ptp = 1) A (i, =11) A (i, =12) AC) (2)

In the symbolic DNN, C contains (i) the constraints encoded by the property # assumed on all the
neurons in the symbolic DNN, and (ii) the edge relationship between curr and prev.

DEFINITION 5.2. A symbolic DNN Dgs, C over-approximates a concrete DNN D¢ if VY - W -
(C Atedom(ns) Ds(t) = Dc(t)), where Y is the set of neurons and PROVESOUND symbolic variables
in D¢ and W is the set of all SMT symbolic variables in Ds.

Further, in Equation 2, all the variables inside universal quantifier (n, ny, n,) are set equal to
variables in the existential quantifier yp, pin,, pin,. So, the equation can be rewritten by simply
replacing the variables within the universal quantifier with corresponding variables in the ex-
istential quantifier, and removing the corresponding equality constraints, i.e., ¢3 = ¢z, where
03 = V{lips finys tiny } - Ity s 155 i3 i3 17} - (0 A C).

In our example in Fig. 11, Y = {,up, Hny» Hny}, and W is the set of all the other symbolic variables
used in Ds. So, a symbolic DNN Ds, C over-approximates a concrete DNN D¢ if VY - IW -
(C A Atedom(s) (Ds(t) = Dc(t))). There are two types of symbolic variables in W—ones that
represent constants during concrete execution and ones that represent polyhedral or symbolic
expressions. So, we partition W into two sets, X and Z, where X contains the symbolic variables
representing constants, while Z contains the other symbolic variables. So, we can then re-write
@3as @4 = VY - 3X - 3Z - (C A Asedom(ns) (Ds(t) = De(t))). Note that in the example above,
X = {p;,, Hy, pk w13y, Z = {,u]L,}. From Equation 2, since ,u;,, 1y, ul, 2, 112 are independent of n, ny, ny,
we bring the set X out of the V quantifier. Generalizing this notion, we use the definition OVER-
ApPROX-DNN in Fig. 12. The over-approximation of a concrete DNN D¢ by a symbolic DNN Dg, C
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OVER-APPROX-DNN
dom(Ds) € dom(Dc) X = Constants(Ds, C) Y = Neurons(Dg, C) U SymbolicVars(Ds, C)
Z = PolyExps(Ds, C) U SymExps(Ds, C) U Constraints(Dsg, C)
3X-vY-3Z. (c AN Dsr) = Dc(t))
tedom(Ds)
Dc <¢ Ds

BisumaTIiON
(eF,p,.Dcyllv (e F,0,DsC)lpcC
JX-vY-3Z- (CS(y, WAC'AMA N\ Ds()= Z)C(t))
tedom(Ds)
{e,F,p,0,Dc, Ds,CH T v, i, C' .M

Fig. 12. Definitions for Over-approximation and Bisimulation

is represented as D¢ <¢ Ds. The definitions for a symbolic value over-approximating a concrete
value and a symbolic store over-approximating a concrete store can be found in (Appendix H).
Using these definitions of over-approximation, we prove two important properties. First, if a
symbolic DNN over-approximates the concrete DNN, then expanding the symbolic DNN maintains
the over-approximation. Second, we show that given a PROVESOUND expression that type-checks,
if one starts with a symbolic DNN Dg, C and a concrete DNN D¢ such that D¢ <¢ Ds, then
the output of applying symbolic semantics on Ds, C over-approximated the output of applying
operational semantics on D¢c. We prove this using bisimulation (rule BisiMuLATION in Fig. 12),
where we simultaneously apply the operational semantics to the concrete DNN and the symbolic
semantics to the symbolic DNN Dg, C. The complete details can be found in Appendix L.

5.5.2  Soundness and Completeness. We show that if PROVESOUND concludes that the abstract
transformers specified in the program are verified to maintain the user-defined property £, then
executing the program on any concrete DNN also maintains the property #. We prove this by
initially creating a symbolic DNN with only the neurons representing curr and prev and edges
representing their corresponding DNN operation (7 - for example ReLU). This over-approximates
any part of an arbitrary concrete DNN (within the bounds of verification) which is the output of
n. Next, the over-approximation is maintained during symbolic DNN expansion and executing
symbolic semantics. Finally, the query is generated over symbolic values that overapproximate the
corresponding concrete values. So, if the SMT solver concludes that the property # is maintained
over the symbolic DNN, then we can conclude that # will also be maintained over all over-
approximated concrete DNNSs. Further, since the symbolic semantics are not exact only for traverse
and solver constructs, PROVESOUND is complete, excluding these constructs.

THEOREM 5.1 (SOUNDNESS). For a well-typed program I1, if PROVESOUND verification procedure
proves it maintains the property P, then upon executing I on all concrete DNNs within the bounds of
verification, the property P will be maintained at all neurons in the DNN.

THEOREM 5.2 (COMPLETENESS). If executing a well-typed program I that does not use traverse and
solver constructs on all concrete DNNs within the bounds of verification maintains the property P for
all neurons in the DNN, then it can be proved by the PROVESOUND verification procedure.

6 Evaluation

We demonstrate that designing the formal semantics for CoNnsTRAINTFLOW and the verification
procedure PROVESOUND enables users to design and verify new DNN certifiers. The new designs
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include—(i) variations to the existing certifiers, (ii) supporting new DNN operations within the
existing abstract domains, and (iii) completely new abstract domains and transformers. In practice,
the implementations of existing DNN certifiers [12, 44-46, 65, 73] employ various techniques to ad-
just the scalability vs precision tradeoff. Incorporating such modifications to the original algorithms
unintentionally alters their mathematical logic. However, the original pen-and-paper proofs do
not ensure the correctness of the certifiers with these modifications. In § 6.1, we demonstrate that
these modified certifiers can be verified using PROVESOUND by specifying them in CONSTRAINT-
FLow. In § 6.2, we extend DNN certifiers to support new operations such as Abs, HardSigmoid, etc.
by designing abstract transformers, which has not been addressed by any existing work [45]. We
also show the verification of their soundness using PROVESOUND. In § 6.3, we design new abstract
domains and their corresponding transformers in CONSTRAINTFLOW and verify their soundness
using PROVESOUND.

Finally, in § 6.4, we show that CONSTRAINTFLOW can specify and verify the above-mentioned
diverse existing DNN certifiers, covering various abstract domains, transformers, and flow directions.
We evaluated a diverse set of state-of-the-art DNN certifiers, including IBP [12], DeepPoly [45],
CROWN [73], DeepZ [44], RefineZono [46], Vegas [65], and Hybrid Zonotope [33]. For all our
experiments, we demonstrate that our verification procedure, PROVESOUND, can automatically
prove the soundness of the certifiers specified in CONSTRAINTFLOW or detect unsoundness. The
benchmarks for testing the unsoundness detection using PROVESOUND were created by introducing
random bugs programmatically in the DNN certifiers, following a methodology established in prior
research [11]. The details are provided in Appendix K.1.

DNN Operations. We focus on the widely used DNN operations, including primitive operations
like ReLU, Max, Min, Add, Mult, etc., and composite operations like Affine, MaxPool, etc. The primitive
operations are the ones that take a small, fixed number of inputs, like the addition or multiplication
of 2 neurons. Since these can be composed to define composite operations, such as Attention layers,
the corresponding abstract transformers can also be composed accordingly. Although verifying
transformers for primitive operations directly implies the soundness of arbitrary compositions, in
some cases, transformers can be more precise if specified directly for composite operations. In such
cases, we show the specification and verification for composite operations.

We focus on the abstract transformers where the verification problem is known to be decidable.
Although it is possible to express transformers for activation functions like Sigmoid and Tanh in
ConsTraINTFLOW (Appendix K.2), their verification may become undecidable [21]. In the future,
PROVESOUND verification can be extended to handle these transformers using §-complete decision
procedures [17]. Currently, our verification queries fall under SMT of Nonlinear Real Arithmetic
(NRA), decidable with a doubly exponential runtime in the worst case [24].

Verification Bounds. For verification of composite operations - Affine and MaxPool, the parameters,
Npreo (Maximum number of neurons in a layer) and ngy,, (maximum length of a polyhedral or
symbolic expression) are used during the graph expansion step and impact the verification times. For
our experiments, we set nsym = Npreo. Note that np,e, is an upper bound for the maximum number
of neurons in a single layer, without restricting the total neuron count in the DNN. Therefore, the
DNN can have an arbitrary number of layers, each with at most n,,., neurons, thereby, allowing
for an arbitrary total number of neurons in the DNN. We set these parameters based on the sizes
of layers within DNNs that existing certifiers currently handle [29, 34, 45, 73]. For MaxPool, MinPool,
and AvgPool, existing certifiers handle at most 10 neurons at a time, so we set nyrey = Nsym = 10.
The Affine layer includes DNN operations like convolution layers and fully-connected layers. In
Table 3b, we present the computation times for Affine with np,ey = nsym = 2048. In Fig. 16, we
show how the verification time scales with parameter values (nre0 = nsym), ranging from 32 to
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8192, for Affine transformers. Note that n,,., = 8192 corresponds to over 64 million parameters per
layer. Existing DNN certifiers [29, 34, 45, 73] usually do not operate on larger sizes than this, but
the verification time for larger sizes can be extrapolated from the graph for higher values.

Experimental setup. We implemented the automated verification procedure in Python and used Z3
SMT solver [14] to verify the generated queries. All our experiments were run on a 2.50 GHz 16
core 11th Gen Intel i9-11900H CPU with a main memory of 64 GB.

6.1 Verifying Modified DNN Certifiers

Implementations of DNN certifiers often include modifications to balance the scalability vs. precision
tradeoft. It is crucial to ensure the soundness of the modified certifiers. Verifying them using pen-
and-paper proofs can be complicated. In contrast, CONSTRAINTFLOW and PROVESOUND provide
a way to specify and verify these certifiers respectively. For illustration purposes, we focus on
the DeepPoly abstract domain and key DNN operations—Affine, MaxPool, and ReLU. However, the
concepts introduced can be applied to other certifiers and DNN operations. We present two case
studies: BALANCE Cert and REUSE Cert, and show the evaluation results in Table 2a.

6.1.1 BALANCE Cert (Balanced Efficiency and Precision Certifier). We use the same abstract shape
as the DeepPoly certifier and design transformers that balance precision and efficiency.

Affine. The most expensive part of the DeepPoly certifier is the backsubstitution step in the Affine
transformer. To improve efficiency, albeit with reduced precision, BALANCE Cert employs a custom
stopping function within the traverse construct to stop the backsubstitution at an intermediate
layer, specifically, two layers back rather than always proceeding to the input layer.

ReLU. In the case of unstable neurons, there are two commonly used lower polyhedral bounds - 0
and prev. In BALANCE Cert, a heuristic determines which polyhedral lower bound to store based
on prev[!] and prev|u].

MaxPool. For MaxPool, we use the new abstract transformer designed in [42], which is more precise
than DeepPoly. We compute a list of neurons whose concrete lower bound is greater than or equal
to the concrete upper bounds of all other neurons in prev. If this list is non-empty, we set the
polyhedral lower and upper bounds to the average of the neurons in this list. Otherwise, we use
the same polyhedral bounds used in DeepPoly. The complete code can be found in Appendix K.4.

6.1.2 REUSE Cert (Reused Bounds for Enhanced Efficiency). In an existing implementation of
DeepPoly [47], the certifier stores previously computed polyhedral bounds from earlier layers
to reuse them instead of recalculating them for current layer bounds. This approach prioritizes
efficiency while accepting a slight trade-off in precision. In CONSTRAINTFLOW, this can be easily
specified by additionally storing the cached polyhedral bounds as separate members of the abstract
shape L, U.. For the Affine abstract transformer, the users can first use the new polyhedral bounds.
If the results are not sufficiently precise (based on a heuristic), then the computation falls back to the
original computation using the traverse construct. This transformer significantly boosts efficiency
by leveraging cached values of previous Affine layer backsubstitutions rather than computing them
anew at each layer. The transformers for ReLU and MaxPool can be similarly defined for REUSE Cert.
The complete code can be found in Appendix K.4.

6.2 Abstract Transformers for New DNN Operations

As deep learning frameworks continually introduce new activations, the need for designing sound
abstract transformers becomes increasingly critical. We demonstrate the effectiveness of Con-
STRAINTFLOW syntax and formal semantics and PROVESOUND verification procedure in this context
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Table 2. Query generation time (G), verification time (V) for correct implementation, and bug-finding time
for randomly introduced bugs (B) in seconds for new DNN certifiers (§ 6.1, § 6.2).

(a) New Transformers introduced in § 6.1

Certifiers Affine MaxPool ReLU

‘ G \ B | G Vv B | G \ B
BALANCECert‘0.230 1921 0318 ] 0.172 0.844 0.069 | 0.252 1397 0.099

REUSE Cert 0.263 2.843 0.667 | 0.176 1.029 0.073 | 0.242 2.895 0.359
(b) New DNN operations introduced in § 6.2
Certifiers ReLU6 Abs HardSigmoid HardTanh HardSwish

‘GVB\GVB\GVB\GVBGVB

DeepPoly/CROWN | 0.299 2.454 0.543 | 0.199 5.252 0.069 | 0.319 2.238 0.147 | 0.304 3.016 0.354 | 0.277 2.963 0.383
Vegas(Backward) 0.216 1.264 0.145| 0.078 0.237 0.102 | 0.206 0.900 0.076 | 0.166 1.154 0.095 | 0.186 0.812 0.065

DeepZ 0.150 125 0.363 | 0.116 0.462 0.369 | 0.172 1.634 0.550 | 0.148 2.677 0.526 | 0.290 3.457 0.886
RefineZono 0.233  2.084 0.347 | 0.165 0.870 0.128 | 0.259 2.847 0.150 | 0.178 2.444 0.657 | 0.542 2.42 0.564
IBP 0.102  0.237 0.289 | 0.147 0.455 0.059 | 0.098 0.228 0.071 | 0.123 0.269 0.065 | 0.205 0.653 0.218

Hybrid Zonotope 0.109 0.388 0.456 | 0.125 0.930 0.121 | 0.118 0.369 0.403 | 0.175 0.405 0.197 | 0.238 2.256 0.065
BALANCE Cert 0.230 1.921 0.318 | 0.172 0.844 0.069 | 0.252 1.397 0.099 | 0.229 2.433 0.083 | 0.198 2.070 0.462
REUSE Cert 0.263 2.843 0.667 | 0.176  1.029 0.073 | 0.242 2.895 0.359 | 0.227 4.354 0.446 | 0.234 3.733 0.121

by specifying and verifying abstract transformers for novel DNN operations not currently sup-
ported by existing DNN certifiers. These new operations include ReLUS, Abs, HardSigmoid, HardTanh, and
Hardswish. Detailed transformers for each operation can be found in Appendix K. Evaluation results
across different DNN certifiers are presented in Table 2b, demonstrating that most transformers
for these operations can be verified (or disproved) within 1 second. For illustration, we show the
DeepPoly transformer for HardSwish (HardSwish(x) = x - min(1, min(0, "T*'S)))

1 Func slope(Real x1, Real x2) = ((x1 * (x1 + 3)) - (x2 * (x2 + 3))) / (6 * (x1-x2));
2 Func intercept(Real x1, Real x2) = x1 * ((x1 + 3) / 6) - (slope(x1, x2) * x1);

Func f1(Real x) = x <3 ?2 x * ((x +3) / 6) : x;

Func f2(Real x) = x * ((x + 3) / 6);

5 Func f3(Neuron n) = max(f2(n[11), f2(nlful));

6 Transformer DeepPoly{

N

7 HardSwish ->

8 (prev[1l] < -3) ?

9 (prev[u] < -3 ?

10 (0, 0, 0, 9) :

1 (prev[ul] <0 ?

12 (-3/8, 0, -3/8, @) :

13 (-3/8, f1(prev[ul), -3/8, f1(prev[ul) * (prev - prev[l])))) :

14 ((prev[l] < 3) ? ((prev[u] < 3) ?

15 (-3/8, f3(prev), -3/8, prevxslope(prev[ul, prev[1l]) + intercept(prev[u],prev[l
D):

16 (-3/8, prev[ul, -3/8, prev[u] * ((prev + 3) / (prev[ul + 3)))) :

17 (prev[l], prev[ul, prev, prev));

18 }

6.3 Designing New DNN Certifiers with New Abstract Domains

We show that PROVESOUND allows verifying the soundness of new DNN certifiers based on com-
pletely new abstract domains and transformers. Specifying them in CoNsSTRAINTFLOW is only
possible due to the novel formalism including type system and semantics introduced in this work.
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1 Def shape as (Real 1, Real u, PolyExp symL, PolyExp symU) {(curr[l]<=curr) and (curr[ul>=curr)
and (curr[symL]<=curr) and (curr[symUl>=curr)};

2 Transformer SymPoly{

3 Relu -> prev[l] > @ ? (prev[l], prev[u], prev, prev) :

4 (prevful <@ ? (0, 0, 0, ) :

5 (0, prev[ul, ((1+sym)/2) * prev, ((prev[u] / (prev[u] - prev[1])) * prev) - ((
prev[u] * prev[1]) / (prev[u] - prev[1l]1))));

6 3}

(a) SymPoly

Def shape as (Real 1, Real u, PolyExp L, PolyExp U, SymExp Z) {curr[l]<=curr and curr[ul>=curr
and curr[L]<=curr and curr[U]>=curr and curr <> curr[Z]};

-

~

Func min_symexp(Sym e, Real c) =c >0 ? -c : c;
Func lower_sym(Neuron List prev, Neuron curr) = (prev[Z] * curr[w] + curr[b]).map(min_symexp);
Func lower_poly(Neuron List prev, Neuron curr) = backsubs_lower(prev * curr[w] + curr[bl);

@ W

Transformer PolyZ{

6 Affine -> (max(lower_sym(prev, curr), lower_poly(prev, curr)),
7 min(upper_sym(prev, curr), upper_poly(prev, curr)),
8 prev * curr[w] + curr[b], prev * curr[w] + curr[b], prev[Z] * curr[w] + curr[b
D
9}
(b) PolyZ

Fig. 13. Code Sketches for new DNN certifiers. The complete codes can be found in Appendix K.4

SymPoly DNN Certifier. Several state-of-the-art DNN certifiers, including DeepPoly, CROWN,
etc., approximate the value of each neuron in the DNN by imposing polyhedral constraints over
each of them. However, in the case of piecewise-linear activation functions, these certifiers rely
on heuristics to choose appropriate polyhedral bounds from more than one possible choice. For
instance, in the case of an unstable ReLU neuron, there are infinite possibilities for a potential lower
polyhedral bound. We argue that in general, the lower polyhedral bound can be of the form ¢ - prev
where c is any real coefficient s.t. 0 < ¢ < 1. The two most commonly used lower bounds - prev
and 0 are only two extreme cases of the general lower bound. Using the CONSTRAINTFLOW syntax
and semantics, the users can directly specify the general transformer, i.e., curr[L] « HsTym
PROVESOUND can be used to prove the soundness of this lower bound. In this way, PROVESoUND
allows a user to verify the soundness of a space of abstract transformers, which can be leveraged to
automatically synthesize the optimal transformer using a cost function encoding the precision of
the transformer based on the DNN certification problem. Further, since each invocation of the sym
construct outputs a new symbolic value, different values of the symbolic coefficient can be chosen
for different neurons in the DNN. A slightly different version is explored in the DNN certifier
a—CROWN [70], where « is a concrete but learnable coefficient, learned using gradient descent.
Based on this idea, the DNN certifier SymPoly can be found in Fig. 13a. The abstract domain con-
sists of two concrete bounds 1, u and two polyhedral bounds with symbolic coefficients symL, symu.
The abstract transformer for ReLu is specified in 3 cases - (i) curr[u] < 0, (ii) curr[I] > 0, and (iii)

curr[l] < 0 < curr[u]. In the more challenging third case, the lower polyhedral bound is set to
1+sym
2

* prev.

* prev. The abstract transformers can be similarly designed for activations such as HardTanh,
HardSigmoid, HardSwish, Abs, etc. These can be found in Appendix K.4. Notably, we can verify the
soundness of these transformers in runtimes similar to the DeepPoly certifier.
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1 Func lower(Neuron n1, Neuron n2) = min([n1[1J*n2[1], n1[1J*n2[ul, n1Lul*n2[1], n1Lul*n2[ull);
2 Func upper(Neuron n1, Neuron n2) = max([n1[1]*n2[1], n1[1]*n2[ul, n1ful*n2[1], n1ful*n2[ull);
3 Transformer DeepPoly{
4 Max -> (prevo[l] >= previ[ul) ? (prev@[l], prevo[u], prevd, prevd) : ((previ[l] >= prevo[u

D7
5 (previ[l], previ[ul, prevl, prevl) :
6 (max(prevo[l], previ[1l]), max(prev@[u], previ[u]), max(prevo[l], previ[l]),
7 max(prevo[ul, previ[ul)));
8 Mult -> (lower(prev@, prevl), upper(prevd, prevl), lower(prev@, prevl), upper(prev@, prevl)

)5
9 3}

Fig. 14. Max and Mult transformers for DeepPoly Certifier
32768 —— DeepPoly
—— DeepZ

1 Def shape as (Real 1, Real u, PolyExp L, PolyExp U) _ 8192 I VAl

ISR % 2048 RefineZono

E 512

2 Transformer DeepPoly_forward{ReLU -> ... ;} % 28
3 Transformer DeepPoly_backward{rev_ReLU -> ... ;} g =
4 Flow(forward, ..., ... , DeepPoly_forward); :
5 Flow(backward, ..., ..., DeepPoly_backward); 32 64 128 256 512 1024 2048 4096 8192

Parameter value (Nprey)

Fig. 15. Code Sketch for Vegas Certifier Fi

g. 16. Verification time (in s) for
Affine transformers.

PolyZ DNN Certifier. We show another new abstract domain - PolyZ - a reduced product of the
popular DeepZ and DeepPoly domains using polyhedral and symbolic constraints. The abstract
shape consists of 5 members - two concrete interval bounds, / and u of the type Real, two polyhedral
bounds L and U of the type PolyExp, and a symbolic expression Z of the type symexp. The shape
constraints state that the neuron’s value satisfies the bounds [, u, L, and U and curr <> Z. We also
define the abstract transformers for this new domain. The Affine transformer is shown in Fig. 13b
and the complete specification is in Appendix K.4. PolyZ is more precise than both DeepPoly and
DeepZ, and we can verify its soundness using the PROVESOUND verification procedure.

6.4 State-of-the-Art DNN Certifiers

The existing DNN certifiers evaluated in this section include IBP [12] (Interval Bound Propagation),
DeepPoly [45] (or CROWN [73]), DeepZ [44], RefineZono [46], Vegas [65], and Hybrid Zono-
tope [33]. The abstract shapes of DeepPoly, CROWN, and Vegas include polyhedral expressions
represented by the PolyExp datatype and use the traverse construct to compute the concrete bounds.
DeepZ, RefineZono, and Hybrid Zonotope use symbolic expressions represented by Symexp in their
abstract shapes. RefineZono uses ct to encode constraints over the possible values of the neurons.
RefineZono and Vegas use the solver construct to compute the concrete bounds. The users can
define functions using the Func construct, promoting code reusability and facilitating a modular
design. The CoNsTRAINTFLOW codes for these DNN certifiers are presented in Appendix K.
Notably, with the formal syntax and the operational semantics, CONSTRAINTFLOW can handle
various flow directions effectively. For instance, the Vegas certifier [65], which employs both
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Table 3. Query generation time (G), verification time (V) for correct implementation, and bug-finding time
for randomly introduced bugs (B) in seconds for transformers of existing DNN certifiers (§ 6.4).

(a) Primitive operations

Certifiers ReLU Max Min Add Mult
G \ B | G V B |G VvV B G \ B G \ B

DeepPoly/CROWN | 0.196 1.526 0.066 | 0.095 2.618 0.074 | 0.128 2.829 0.601 | 0.0812 0.136 0.205 | 0.209 2.104 0.129
Vegas(Backward) 0.142 0.584 0.221 | 0.047 0.139 0.084 | 0.052 0.115 0.087 | 0.056 0.097 0.153 | 0.388 0.486 0.110

DeepZ 0.0832 0.534 0.336 | 0.115 0.703 0.145 | 0.119 0.691 0.215 | 0.0815 0.091 0.256 | 0.234 0.498 0.427
RefineZono 0.158 0.980 0.071 | 0.199 1.235 0.262 | 0.213 1.263 0.331 | 0.089 0.117 0.242 | 0.404 17.197 0.468
IBP 0.112 0.493 0.364 | 0.132 0.508 0.081 | 0.136 0.545 0.333 | 0.0716 0.060 0.158 | 0.217 1.160  0.259

Hybrid Zonotope 0.260 1.003 0.341 | 0.132 0.775 0.292 | 0.132 0.724 0.626 | 0.086 0.286 0.204 | 0.209 0.520 1.397

(b) Composite operations

Affine MaxPool MinPool AvgPool

Certifiers G v B | G v B | G v B G Vv B

DeepPoly/ CROWN | 5.496 889.607 9.825 14.744 196.651 1396.132 | 13.917 194.871 1419.119 | 0.137 0.363 0.131
Vegas (Backward) 2436 25447  25.898 - - - - - - - - -
DeepZ 4.569 854.548 833.314 | 54.217 364.859 1780.938 | 52.140 292.806 1366.977 | 0.0818 0.265 0.763

RefineZono 5.436 329.994 152.825 | 54.788 376.177 1451.729 | 56.427 308.570 1799.091 | 0.095 0.306 0.301
IBP 2.997 540.865 183.707 | 0.089 4.077 0.253 0.090 4.114 4.605 0.067 0.0117 0.921
Hybrid Zonotope - - - 1.816  10.610 2.892 1.503  10.598 3.395 0.318  11.499 2.568

forward and backward flows, is easily expressed in CONSTRAINTFLOW. We provide the code for the
Vegas certifier in Fig. 15. The abstract shape and the transformer for the forward direction are the
same as the DeepPoly analysis, while the transformer for the backward analysis replaces operations
like ReLU with rev_ReLu. We can also verify its soundness using PROVESOUND (Tables 3a, 3b).

For primitive operations like Max, Mult, etc., there are two implicit inputs to the transformer
definitions, namely the input neurons - preve and previ. DeepPoly transformers for Max and Mult
are shown in Fig. 14. The primitive operations - ReLU, Max, Min, Add, Mult shown in Table 3a can be
verified in fractions of a second. In Table 3b, we show the evaluation results for the composite
operations. For MaxPool and MinPool, the DeepZ and RefineZono transformers are harder to verify
because their queries are doubly quantified due to the <> operator in their specifications. IBP is
the easiest to verify because the limited abstract shape does not allow it to be as precise as other
transformers for MaxPool and MinPool. Also, for Vegas, the backward transformers for MaxPool, MinPool,
and AvgPool are not available in existing works. Similarly, for the Hybrid Zonotope, the transformer
for Affine is defined in terms of transformers for primitive operations. So, we skip these in Table 3b.
For Affine, DeepPoly is the hardest because it uses the traverse construct, which requires additional
queries to check the validity of the invariant. Vegas takes the least time because of a relatively
simpler verification query. Note that the verification times are not correlated to the runtimes of
certifiers on concrete DNNs. In Appendix K.3, we provide the CoNsTRAINTFLOW code for several of
these certifiers. The complexity inherent in these certifiers and their implementations suggests that
verifying them solely through pen-and-paper proofs or automated theorem provers is impractical.

7 Related Work

DNN Certification. The recent advancements in DNN certification techniques [1] have led to
the organization of competitions to showcase DNN certification capabilities [10], the creation of
benchmark datasets [13], the introduction of a DSL for specifying certification properties [19, 40],
and the development of a library for DNN certifiers [27, 36]. However, these platforms lack formal
soundness guarantees and do not offer a systematic approach to designing new certifiers.
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DSL for Abstract Interpretation. Although [42] proposed a preliminary design for CONSTRAINT-
FLow using a few examples, the absence of formal semantics hinders its use for designing and
verifying new DNN certifiers. We equip CONSTRAINTFLOW with a BNF grammar, type-system,
operational semantics, and symbolic semantics that enable users to specify existing DNN certifiers,
design new ones, and verify their soundness using PROVESOUND.

Similarly, [28] designs TSL—a DSL for abstract interpreters for conventional programs. TSL
allows users to specify the concrete semantics and the abstract domain and automatically produces
an abstract interpreter based on these specifications. However, it does not provide any specialized
datatypes needed to specify DNN certifiers easily. It also does not guarantee the soundness of the
abstract interpreter. In contrast, PROVESOUND can verify the soundness of the certifier specification.

Symbolic Execution. Similar to PRovESounD DNN expansion step, [25, 59] employ lazy initial-
ization for symbolic execution of complex data structures like lists, trees, etc. The object fields are
initialized with symbolic values only when accessed by the program. Unlike these works, which
possess prior knowledge of the exact structure of the objects, DNN certifiers deal with arbitrary
DAGs representing DNNs. The graph nodes (neurons) are intricate data structures with unknown
graph topology. We believe that we are the first to create a symbolic DNN with sufficient generality
to represent arbitrary graph topologies to verify the soundness of DNN certifiers.

Correctness of Symbolic Execution. Some existing works prove the correctness of the symbolic
execution w.r.t. the language semantics [23]. However, these methods do not establish correctness
in cases where symbolic execution also represents symbolic variables used in concrete executions.
On the other hand, we provide elaborate proofs establishing the correctness of PROVESOUND where
we encode the symbolic variables within the program as SMT symbolic variables.

8 Discussion and Future Work

We develop PROVESOUND, a novel bounded automated verification procedure to automatically
verify the overapproximation-based soundness of abstract interpretation-based DNN certifiers.
We also develop a formal syntax, type-system, operational semantics, and symbolic semantics for
ConNsTRAINTFLOW. For the first time, we can verify the soundness of DNN certifiers for arbitrary
(but bounded) DAG topologies. Given the growing concerns about AI safety, we believe that
PrROVESOUND, coupled with CoNsTRAINTFLOW, allows the development of new DNN certifiers
without proving their soundness manually. This work allows the following future directions:

Multi-neuron specifications. - PROVESOUND can be extended to verify multi-neuron abstract
shapes [35] by allowing their specification in CONSTRAINTFLOW.

Sequence of Operations. - PROVESOUND can also be extended to automatically verify a sequence
of DNN operations, like Affine + ReLU. To do so, while generating the final query, we would execute
the concrete semantics of the composition of Affine and ReLu.

Automating Abstract Interpretation. - PROVESOUND and CoNSTRAINTFLOW facilitate the auto-
mated generation of abstract transformers [22, 38, 50] by offering all the basic components - (i) a
DSL for defining the search space of candidate transformers, (ii) the semantics of the DSL, and (iii)
a procedure for verifying the soundness of each candidate. This can be explored in future research.

Verification Property. - Currently, the verification property is the over-approximation-based
soundness of a DNN certifier. Nevertheless, given that all the necessary formalism for verification
has been established, the property can be extended to encompass more intricate aspects, such as
encoding precision of a DNN certifier w.r.t. a baseline.
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9 Data-Availability Statement

The artifact[41] consists of PROVESOUND implementation and the CoNsTRAINTFLOW specifications
of the DNN certifiers presented in Section 6 and Appendix K. The code, accompanied by the
instructions to run it, can be found here.
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