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Multi-head-self-attention (MHSA) mechanisms achieve state-of-the-art (SOTA) performance across natural lan-
guage processing and vision tasks. However, their quadratic dependence on sequence lengths has bottlenecked
inference speeds. To circumvent this bottleneck, researchers have proposed various sparse-MHSA models,
where a subset of full attention is computed. Despite their promise, current sparse libraries and compilers
do not support high-performance implementations for diverse sparse-MHSA patterns due to the underlying
sparse formats they operate on. These formats are either too specialised, failing to cover a wide-range of
sparse patterns, or too general, incurring high metadata overhead when computing on the moderately sparse
(10-50% non-zeros) matrices present in sparse-MHSA.

We bridge this gap, achieving both generality and performance, by proposing a novel sparse format:
a!ne-compressed-sparse-row (ACSR) and supporting code-generation scheme, SPLAT, that generates high-
performance implementations for diverse sparse-MHSA patterns on GPUs. Core to our proposed format and
code generation algorithm is the observation that common sparse-MHSA patterns have uniquely regular
geometric properties. These properties, which can be analyzed just-in-time, expose novel optimizations and
tiling strategies that SPLAT exploits to generate high-performance implementations for diverse patterns. To
demonstrate SPLAT’s e!cacy, we use it to generate code for various sparse-MHSA models, achieving speedups
of up-to 2.05x and 4.05x over hand-written kernels written in Triton and TVM respectively on A100 GPUs in
single-precision.
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1 Introduction
Transformers have enjoyed widespread adoption in industry [5, 40]. However, to e"ectively train
and serve models at scale, transformers must: (1) have high model quality, and (2) utilize manycore
GPU architectures e"ectively. Nevertheless, achieving both simultaneously is challenging as datasets
and tasks [48, 51] are demanding increasingly longer input sequences. This increases the memory
consumption ofmulti-head-self-attention (MHSA) layers, which increases quadratically with respect
to input sequence lengths, and reduces the largest permissible batch size (LPBS) a model can operate
on. Since sequences across batches are independent and can be processed in parallel, large models
operating on long contexts are forced to use small batches and do not realize their high-throughput
potential despite being embarrassingly parallel.

To mitigate the memory bottleneck of MHSA, researchers have proposed several sparse-MHSA
methods [8, 16, 24, 34, 35]. These methods compute a subset of the entire attention matrix using a
statically #xed mask. However, unlike the sparsity levels encountered in widely studied scienti#c
and high-performance computing applications [3, 33] which are extremely sparse (<10% of the values
are non-zero), state-of-the-art (SOTA) sparse-MHSA methods are moderately sparse, computing
10-50% of the full attention matrix [8, 16, 34, 35, 52, 59]. Computing fewer values degrades model
quality while computing more values consumes additional memory. These moderate sparsity
ranges place unique challenges in adopting existing sparse formats to implement high-performance
sparse-MHSA kernels.
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Fig. 1. Run-time results for a sparse primitive
used in sparse-MHSA (R-SpMM) comparing cuS-
PARSE, cuBLAS and SPLAT. We vary the density
of the sparse input across: [0.4, 0.8, 1.6, 3, 6, 12,
24, 44, 75, 100]. The sparse input takes the shape
of the blocked pa!ern (figure 2 right).

On one end, general sparse libraries [36, 57] and
optimizations usually operate on general sparse for-
mats (GSFs) that incur highmetadata overhead at the
moderate sparsity levels present in sparse-MHSA.
Such formats, like the compressed-sparse-row (CSR)
and coordinate (COO) formats, contain metadata
that represent the dense coordinates of each non-
zero value, consuming memory in 𝐿 (𝑀𝑀𝑁𝑂). To ex-
tract performance out of sparse kernels operating on
GSFs, sparse libraries and optimizations propose var-
ious strategies [15, 26, 32]. Nevertheless, every non-
zero value read from a GSF must also read its respec-
tive metadata to uncover its dense coordinate. This
at least doubles the data read from high-bandwidth
memory within the inner loops of sparse primitives.
Since sparse-MHSA layers are moderately sparse,
producing megabytes of non-zero values per layer
[24, 34], doubling the data read from high bandwidth
memory (HBM) exacerbates contention of L1 caches
and register-#le resources, inhibiting performance. As we see in #gure 1, even hand-optimized
vendor libraries like cuSPARSE [2] that employ the CSR format are outperformed by their dense
counterparts, cuBLAS [1], for density levels as low as 20% despite doing 1/5th of the compute.

On another end, hand-written kernels usually operate on custom sparse formats (CSFs) that are
specialised to a single sparse-MHSA pattern and need to be redesigned to extract performance from
di"erent patterns. This specialisation permits format designs with lower metadata storage, and
custom sparse-schedules with favorable thread access patterns. For example, triton’s block-sparse
kernels [29] are hand-written kernels that operate on a CSF curated to represent block-like sparsity
patterns, giving up to a 9x speedup over using GSFs like CSR & COO [57]. However, naively
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adopting its CSF to a non block-like sparsity pattern, such as the window pattern (#gure 2 - 2𝐿𝑀
from left), results in redundant storage and compute, reducing the LPBS of models (see section 3 for
an example). To recover this lost performance, practitioners need to rewrite hand-written kernels
and the CSFs they operate on to specialise the indexing of sparse-structures to the sparse-MHSA
pattern in question, like [8] which specialises to the windowed and strided patterns. Since indexing
sparse structures requires non-trivial arithmetic involving nested layers of indirection, it is di!cult
to reason about which optimizations are e"ective, resulting in a concerted engineering e"ort to
hand-write high-performance sparse-MHSA kernels for a variety of patterns.

We observe that no general data format facilitates high-performance implementations for various
sparse-MHSA patterns. GSFs require 𝐿 (𝑀𝑀𝑁𝑂) metadata storage to permit generality at the cost of
performance while CSFs reduce metadata storage to permit performance at the cost of generality.
We plug this gap and propose a novel data-format: a!ne-compressed-sparse-row (ACSR) and
supporting GPU code-generation scheme, SPLAT (SParse reguLar ATtention) that can cover a
wide range of sparse-MHSA patterns while achieving good performance. However, in order to do
so, we had to solve several challenges.

First, reducing metadata below 𝐿 (𝑀𝑀𝑁𝑂) typically reduces the generality of a format, potentially
reducing its coverage of sparse-MHSA patterns. Fortunately, we observe that a variety of com-
monly used sparse-MHSA patterns are static with regularly repeating non-zero sub-structures.
We introduce a novel geometric property that describes these regularly repeating sub-structures:
a!ne-compressibility, and term sparse-MHSA patterns that are a!ne-compressible as regular.
This allows us to lift their regularity into the design of the ACSR format, enabling compressed
metadata storage in 𝐿 (𝑃𝑄𝑅𝑂), an asymptotic reduction of 𝐿 (𝑀𝑀𝑁𝑂) compared to GSFs. Importantly,
our notion of a!ne-compressibility is general, enabling us to represent a variety of current and
potential future a!ne-compressible sparse-MHSA structures without incurring extraneous padding
& compute, unlike CSFs. For example, the ACSR format can precisely represent: longformer-strided
and windowed [8] (12.5% density), gemma-two [24] (37.5% density), reformer [35] (25% density),
and big-bird global (10.9% density) amongst others [16, 34, 42].
Second, with the introduction of our novel ACSR format, it is a challenge to code-generate

high-performance sparse-MHSA kernels. Sparse-primitive schedules are intricately linked to the
underlying sparse-format they operate on. Therefore the ACSR, in its unique layout of both its non-
zero values and meta-data, requires novel optimizations and schedules to achieve high-performance.
To overcome these challenges, we develop a GPU code-generation framework, SPLAT, that produces
high-performance sparse-MHSA patterns with the ACSR as the underlying representation.

To demonstrate SPLAT’s e!cacy, we implement 4 widely used sparse-MHSA patterns at various
sparsity levels. SPLAT-generated SDDMM and SpMM kernels, two core primitives of sparse-MHSA,
outperform vendor libraries cuBLAS and cuSparse at moderate sparsity levels by 2.81 & 5.61x
respectively. Moreover, SPLAT’s end-to-end generated sparse-MHSA outperforms handwritten
kernels in triton and TVM by up to 2.05x and 4.05x respectively in single-precision.

In summary, this paper makes the following contributions:
• We introduce a novel geometric property of sparse-MHSA patterns: a!ne-compressibility
and leverage this to propose the ACSR format (Sections 4 & 5).

• We develop novel optimized GPU code-generation schemes for regularly sparse primitives,
what we term as R-SDDMM and R-SpMM kernels, that use the ACSR (Sections 6 & 7).

• We use the optimized sparse operations to provide GPU code-generation strategies for end-
to-end globally e!cient sparse-MHSA models (Section 8).

• We implement these code generation schemes in a framework called SPLAT, and evaluate
SPLAT against against hand-optimized kernels (Section 9).
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2 Background
Full Attention. The backbone of the transformer is multi-head-self-attention (MHSA) [55]. MHSA
computes the following matrix: 𝑆𝑄𝑀𝑇𝑈𝑉 (𝑊𝑋𝑈𝑌1,𝑊𝑋𝑈𝑌2, ...,𝑊𝑋𝑈𝑌𝑁) where 𝑊𝑋𝑈𝑌𝑂 is:
softmax(𝑍𝑎𝑃

𝑂 (𝑏𝑎 𝑄
𝑂 )𝑅 )︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸

𝑆𝐿

𝑐𝑎𝑇
𝑂 ↑ R𝑈↓𝑀𝑀/𝑁 and the concatenation happens across the columns of

𝑑𝑂𝑐𝑎𝑇
𝑂 . The matrices 𝑍 , 𝑏 & 𝑐 ↑ R𝑈↓𝑀𝑀 are the input matrices consisting of 𝑒 vectors of size

R𝑀𝑀 , where 𝑒 is the input sequence length.𝑎𝑃
𝑂 ,𝑎 𝑄

𝑂 and𝑎𝑇
𝑂 ↑ R𝑀𝑀↓𝑀𝑁 are linear transformations.

The matrix 𝑑𝑂 is known as the attention matrix and the softmax is taken row-wise in the product
𝑍𝑎𝑃

𝑂 (𝑏𝑎 𝑄
𝑂 )𝑅 . Self-attention is expensive due to the matrix 𝑑𝑂 being of size 𝐿 (𝑒 2).

Sparse Attention. To alleviate the quadratic computation in self-attention. Researchers have
proposed a variety of sparsi"cation techniques to reduce the size and memory of computing 𝑑𝑂 .
These techniques compute some subset of the values of𝑑𝑂 controlled by a mask matrix𝑓 , reducing
the runtime of MHSA [8, 16] by computing:

[softmax(

𝑉↔𝑊𝑋𝑋𝑌𝑌︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷
𝑓 ↗ 𝑍𝑎𝑃

𝑂 (𝑏𝑎 𝑄
𝑂 )𝑅 )]︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸

𝑆𝑂
𝐿

𝑐𝑎𝑇
𝑂

︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
𝑉↔𝑊𝑍𝑌𝑌

(1)

where mask𝑓 is a mask of 0s and 1s and ↗ is a pair-wise product. The product:𝑓↗ (𝑍𝑎𝑃
𝑂 (𝑏𝑎 𝑄

𝑂 )𝑅 )
in traditional sparse computing terminology is a sampled dense dense matrix multiplications (SD-
DMM), whilst the product:𝑑𝑎

𝑂𝑐𝑎
𝑇
𝑂 is a sparse matrix dense matrix multiplication (SpMM). However,

compared to the sparsity levels studied in sparse computing literature,𝑓 is both moderately sparse
and regular. Hence we term these operations appropriately pre#xed with 𝑃𝑋𝑔𝑕𝑖𝑈𝑃 as R-SDDMM
and R-SpMM respectively. We de#ne regularity in section 4.

Fig. 2. Examples of 4 commonly occurring sparse-
MHSA pa!erns in the literature. Strided (far le" figure),
Windowed (2𝐿𝑀 from le") [8], Blocked (2𝐿𝑀 from right)
[16, 35], and Global (far right) [59]. Full a!ention com-
putes all points

Sparse-MHSAPatterns.A variety of sparse
transformers have been proposed in the liter-
ature [8, 16, 35, 61]. For example, the strided
and windowed patterns (#gure 2 far left and
2𝐿𝑀 from left) which implement Longformer
(written in TVM) [8, 12], and the blocked pat-
tern (#gure 2 2𝐿𝑀 from right) which imple-
ments Reformer (written in JAX), and sparse-
transformer (written in Triton) [10, 16, 53].

Sparse Formats. To obtain memory savings
and performance bene#ts, sparse-kernels oper-
ate on data structures that only store the non-zero values in a sparse matrix. These data structures
consist of non-zero values and their respective metadata. The metadata indicates the index of the
trailing and leading dimension of a non-zero value. For example, the compressed-sparse-row (CSR)
representation in #gure 3 (b) contains the rowPtr and colInd arrays, indicating the leading and
trailing dimensions of non-zero values in the values array. Many sparse formats have been proposed
in the literature including: COO, CSC, BCSR, ELLPACK, DIA, CSF [17, 28], to name a few.

3 Motivation
In this section, we study the implications of using GSFs and CSFs in the moderately sparse context
of sparse-MHSA for a particular pattern. Consider two sparse-formats: the CSR [23] general sparse-
format and BCSR-like [21] custom sparse-format (used in triton blocksparse kernels [29]). The CSR
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Listing 1: Example C++
1 int x = blockIdx.x * blockDim.x + threadIdx.x;
2 int y = blockIdx.y * blockDim.y + threadIdx.y;
3 float answer = 0;
4 for (int k = row_ptr[x]; k < rowptr[x + 1]; k++) {
5 int col = col_idx[k]; // Metadata brought up memory hierarchy
6 answer += A_val[k] * B[col][y];
7 }

Listing 2: Example C++
1 int x = blockIdx.x * blockDim.x + threadIdx.x;
2 int y = blockIdx.y * blockDim.y + threadIdx.y;
3 float answer = 0;
4 int block_x = x / block_size;
5 for (int k = 0; k < K / block_size; k++) {
6 if (A_val[block_x ][k]) {
7 float **tile = A_val[block_x ][k];
8 for (int k_one = 0; k_one < block_size; k_one ++) {
9 answer += tile[threadIdx.y][ k_one] * B[k_one][ threadIdx

.x]; // Redundant compute
10 }
11 }
12 }

1

(d)

(e)

Listing 1: Example C++
1 int x = blockIdx.x * blockDim.x + threadIdx.x;
2 int y = blockIdx.y * blockDim.y + threadIdx.y;
3 float answer = 0;
4 for (int k = row_ptr[x]; k < rowptr[x + 1]; k++) {
5 int col = col_idx[k]; // Metadata brought up memory hierarchy
6 answer += A_val[k] * B[col][y];
7 }

Listing 2: Example C++
1 int tx = threadIdx.x; int ty = threadIdx.y;
2 int x = blockIdx.x * blockDim.x + tx;
3 int y = blockIdx.y * blockDim.y + ty;
4 float answer = 0;
5 int block_x = x / block_size;
6 for (int k = 0; k < K / block_size; k++) {
7 if (A_val[block_x ][k]) {
8 float **tile = A_val[block_x ][k];
9 for (int k_one = 0; k_one < block_size; k_one ++) {

10 // Redundant compute
11 answer += tile[ty][k_one] * B[k_one ][ty];
12 }
13 }
14 }

1

Window Pattern

Fig. 3. A comparison between SpMM implementations that use the CSR format (b), and a specialized format
(c). (d) and (e) are naive SpMM implementations of𝑆 = 𝑑𝑗, when𝑑 is represented as a CSR and the specialized
format of (c) (resembling a BCSR), respectively.

allows storage of arbitrary sparse patterns without extra zero-padding, while the BCSR is curated
to store patterns with block-like sparsity. However, since sparse-MHSA has a variety of patterns,
we investigate the performance characteristics of using the CSR and BCSR-like formats in #gure
3 on the windowed sparsity pattern (#gure 2 2𝐿𝑀 from left) at moderate sparsity (24% non-zero).
Figures 3 (b) and 3 (c) show how the windowed pattern in #gure 3 (a) is represented in the CSR and
BCSR-like formats respectively. We focus on the SpMM kernel, 𝑆 = 𝑑𝑗 where 𝑑 is a sparse tensor.
For illustrative purposes, #gures 3 (d) & 3 (e) show the naive implementations of the SpMM kernel
when using the CSR and BCSR-like formats respectively, while #gure 4 shows the performance
pro#les of optimized versions of the same kernel.

General sparse formats incur high metadata overhead. GSFs are designed to store random
& extremely sparse patterns (with <10% of the values computed) by storing metadata for each
non-zero value, occupying O(nnzs) space. However, their metadata storage results in considerable
data moved through the GPU memory hierarchy at moderate sparsity levels. Consider the naive
SpMM implementation operating on a CSR in #gure 3 (d). When reading a value from sparse matrix
A, its respective column index must be read (line 5) to multiply with the correct row from B which
results in 3 loads of (1) col_idx, (2) 𝑑, and (3) 𝑗 to L1-caches and register #les. However, the sparsity
levels of sparse-MHSA layers are moderate, with up to 2048 megabytes of data produced per layer
in SOTA sparse architectures [24, 34], resulting in non-zero data (from𝑑 and 𝑗) and metadata (from
col_idx) contending for space in caches and register #les. Moreover, this contention occurs within
every iteration of the inner loop (lines 4-6) resulting in frequent cache evictions and extraneous
data moved from L2 to L1. This is not mitigated even in heavily optimized vendor-libraries for
sparse computations like cuSPARSE, which operate on CSRs. As seen in #gure 4, cuSPARSE’s
SpMM transfers 4.73x more data from L2 to L1 compared to cuBLAS’s dense matrix-multiplication,
despite executing 1/3rd of the compute instructions.
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Fig. 4. Profile of R-SpMM sparse-primitive imple-
mented in SPLAT, cuBLAS, cuSPARSE and Triton. Ma-
trices are 1024x1024 with sparse matrices in the win-
dow format (see figure 2 - 2𝐿𝑀 from le") at 24% density.
FFMA is an FP32 fused multiply-add instruction and
L2 read is the amount of data-tra#ic (in GB) from L2
to L1 cache. Lower is be!er.

Custom sparse formats lack generality.
CSFs are designed to store speci#c sparsity pat-
terns, reducing the metadata storage required
to represent the coordinates of non-zero values.
However, using these formats to store sparsity
patterns that these formats were not designed
for results in redundant compute and storage.
Consider the naive SpMM implementation op-
erating on the specialized format that is curated
to store block-like sparsity patterns in #gure 3
(c). When naively adopting the same format to
represent the window pattern, boundary con-
ditions result in redundant storage of 0s in tiles
(0,1) and (1,0), incurring redundant compute in
line 11 within the inner loop of lines 6-14. More-
over, more data is read than is necessary, result-
ing in extraneous tra!c through the memory
hierarchy. This is not mitigated even in hand-
written kernels. As seen in #gure 4, the highly optimized block-sparse kernels [29], hand-written
kernels written in triton that operate on a similar CSF, execute 1.4x the $oating point operations
compared to cuSPARSE. To recover this lost performance, the sparse-kernel in #gure 3 (e) needs to
be rewritten and performance engineered with another CSF specialized to the windowed structure,
resulting in a unique hand-written kernel for each sparse-MHSA pattern.

SPLAT. In this work, we recognize that an appropriate sparse-format for sparse-MHSA should
ideally incur low metadata overhead and high coverage of a variety of patterns without redundant
compute & storage. We bridge this gap by introducing a new sparse-format: a!ne-compressed
sparse-row (ACSR). Core to its design is the observation that commonly used sparse-MHSA patterns
are static with regularly repeating non-zero sub-structures, requiring metadata only in 𝐿 (𝑃𝑄𝑅𝑂) as
opposed to 𝐿 (𝑀𝑀𝑁𝑂) like in GSFs, and without compromising generality like in CSFs. Moreover,
we introduce a code-generation mechanism, SPLAT, that produces sparse-MHSA kernels which
operate on the ACSR format, reducing the number of compute instructions and data tra!c across
the memory hierarchy as we observe in #gure 4.

4 Overview
Figure 5 shows the work$ow of SPLAT. SPLAT takes an input mask and code-generates high-
performance sparse-MHSA implementations just-in-time. Its code-generation strategy proceeds in
three phases. First, it proceeds with two analysis passes. The #rst pass analyzes the input mask and
ensures that pre-conditions are met for the correctness of later code-generation passes. The second
pass generates information required for certain optimisations later code-generation passes can
exploit. Second, it proceeds with 3 kernel code-generation passes, producing the R-SDDMM (section
6), Softmax, and R-SpMM (see section 7) kernels used to implement sparse-MHSA. Third, it proceeds
with an end-to-end code-generation pass (see section 8) that allocates the necessary memory and
creates auxiliary objects required for the correctness of kernel optimizations. The output of the
end-to-end code-generation phase is a compiled function that can be used in transformer models to
implement the sparse-MHSA mechanism. Our code-generation scheme produces high-performance
sparse-MHSA implementations that store sparsity in our novel custom format: a!ne-compressed-
sparse-row - ACSR (see section 5) that leverages the regularity of these patterns.
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SPLAT

Just-In-Time Inference

Input tensors
(Q, K, V)

Mask

Regularity Check
R-SDDMM Code-Generation (§7)

Density Analysis

Softmax Code-Generation

R-SpMM Code-Generation (§8)

Memory Allocation

Auxiliary Object 
Creation

SparseMHSA(Q,K,V)

Fig. 5. An overview on SPLAT’s inner mechanics and how its just-in-time strategy produces compiled sparse-
MHSA kernels for inference.

A!ne-Compressibility and Regularity. As observed in section 3, appropriate sparse formats
for sparse-MHSA kernels should compress metadata, reducing the number of bytes used to store the
indices of each non-zero value. Moreover, such a compression scheme should be able to precisely
represent non-zero values’ metadata across a variety of sparse-MHSA patterns without redundancy.
We achieve both by observing that the point-set of commonly occurring sparse-MHSA structures
(like in #gure 2), consists of rows that are a!ne-compressible, and are therefore regular. This
observation enables us to create a novel sparse-format that symbolically stores the metadata for
each row of a regularly sparse structure through an a!ne function.

Point-Sets. To analyze the geometric properties of sparse-MHSA structures, we interpose their
input-masks onto the cartesian coordinate system. For a mask,𝑓 , consisting of 0s and 1s, we map
the point𝑓 [𝑘] [ 𝑙] to the point ( 𝑙, 𝑘). We de#ne the point-set of an input-mask as the set of all points
that are 1, i.e. the set of all ( 𝑙, 𝑘) such that𝑓 [𝑘] [ 𝑙] = 1.

A!ne-Compressibility. A!ne-compressibility is a property of sets of points on the cartesian
coordinate system. It states that a set of points can be compressed, such that they consecutively
neighbor each other along the x-dimension (trailing-dimension of a matrix).

D!"#$#%#&$ 1. Consider a set of points: 𝑚 = {(𝑛1,𝑜1), (𝑛2,𝑜2), ..., (𝑛𝑏 ,𝑜𝑏 )} on the coordinate system.
𝑚 is a!ne-compressible if and only if:

↘𝑈,𝑝 ↑ N0, such that,≃𝑘 ↑ [𝑞 ↔ 1], 𝑛𝑂 ↔ 𝑝

𝑈
+ 1 =

𝑛𝑂+1 ↔ 𝑝

𝑈

We denote 𝑈,𝑝 as the a!ne-indices of 𝑚 .

For example, the set 𝑚1 = {(0, 0), (2, 0), (4, 0), (6, 0)} is a!ne-compressible with a!ne-indices:
𝑈 = 2,𝑝 = 0, however the set 𝑚2 = {(0, 0), (2, 0), (4, 0), (5, 0)} is not.

Regularity. Regularity is a property of a sparse-MHSA mask, building upon the concept of
a!ne-compressiblity. We de#ne a sparse-MHSA mask, 𝑓 , to be regular i" every row in its cor-
responding point-set, 𝑚 , is a!ne-compressible. Hence, a regularly sparse mask is amenable to
metadata compression by symbolically storing the dense indices of the trailing-dimension of a
sparse matrix. For example, in #gure 6 (b), we see for each row of the window pattern the respective
linear-transformation (denoted as 𝑈) and translation (denoted as 𝑝).

5 A!ine-Compressed Sparse-Row
We introduce the ACSR format to store regularly sparse matrices. The ACSR format leverages the
regularity of sparse-MHSA matrices to store metadata in the order of number of rows with its
metadata, the a!ne-indices, exposing various optimization opportunities.We detail the construction
of the ACSR in section 5.1, and the optimizations its metadata exposes in section 5.2.
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5.1 ACSR Construction
The ACSR comprises of two arrays: non-zero values, and metadata. The metadata symbolically
records the index of the trailing dimension for each non-zero value in a particular row. ACSR
represents a sparse matrix by computing the a!ne-indices per row and compressing data across
the trailing dimension such that non-zero values consecutively neighbor each other. For example,
in #gure 6, the original 2-D matrix in #gure 6 (a) is compressed across the trailing-dimension to 6
(b). Each row in 6 (b) has the triplet: 𝑈 (linear-transformation), 𝑝 (translation), and 𝑀𝑀𝑁𝑂 (number of
non-zero-values) as metadata. If 𝑂𝑟𝑈𝑃𝑂𝑋𝑂 is the index of a non-zero value’s trailing dimension in
the ACSR, then (𝑂𝑟𝑈𝑃𝑂𝑋𝑂 · 𝑈) + 𝑝 is the index of the trailing dimension in the original sparse matrix.
Consider the location with value 14 in #gure 6 (b); it is at 𝑂𝑟𝑈𝑃𝑂𝑋𝑂 = 1 and has 𝑈 = 1, 𝑝 = 1, and
𝑀𝑀𝑁𝑂 = 4 as metadata. The index of its trailing dimension in #gure 6 (a) is thus (1 · 1) + 1 = 2. The
metadata consists of the (𝑈, 𝑝, 𝑀𝑀𝑁𝑂) triplet per row, occupying 𝐿 (𝑃𝑄𝑅𝑂) rather than 𝐿 (𝑀𝑀𝑁𝑂) space.
However, to construct an ACSR, the a!ne-indices for each row of a sparse 2-D matrix need to

be computed. This can be error-prone for a user to implement and can be avoided by observing
that for a given row, 𝑜, in a regularly sparse 2-D matrix: 𝑈 = 𝑘1,𝑐 ↔ 𝑘0,𝑐 and 𝑝 = 𝑘1,𝑐 , where 𝑘0,𝑐
& 𝑘1,𝑐 are the #rst two points’ column indices in row 𝑜. Once the a!ne-indices for each row is
computed, we can check to see if the entire pattern is then a!ne-compressible by computing:
𝑂𝑃 ,𝑄↔𝑑𝑄

𝑒𝑄
= 𝑂𝑃↔1,𝑄↔𝑑𝑄

𝑒𝑄
+ 1 and checking (𝑘𝑓↔1,𝑐 ↔ 𝑝𝑐) mod 𝑈𝑐 = 0 ⇐ (𝑘𝑓,𝑐 ↔ 𝑝𝑐) mod 𝑈𝑐 = 0, where

𝑈𝑐,𝑝𝑐 are the a!ne-indices of row 𝑜, and 𝑘𝑓,𝑐 is the 𝑛𝑔𝑁 non-zero value in row 𝑜.

5.2 ACSR Properties
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Fig. 6. The 4 di#erent data-layouts an ACSR can take:
(b) row-wise compressed row-major, (c) row-wise com-
pressed col-major, (d) col-wise compressed row-major,
(e) col-wise compressed col-major. For (f) and (g), colors
represent elements of the same column. The a, b, and
nnzs represent a row’s linear-transformation, transla-
tion, and number of non-zero values respectively, con-
stituting the metadata. The a and b variables are the
a#ine-indices of a row.

The ACSR exposes novel optimization oppor-
tunities for R-SDDMM and R-SpMM kernels at
the moderate sparsity levels observed in sparse-
MHSA.
Reduction in Predicated Execution. Op-

erating on sparse inputs may result in an im-
balance of work across threads within a warp
as certain input regions are potentially more
dense than others. The ACSR, in storing the
dense indices of the trailing dimension symbol-
ically via a!ne-indices, exposes which regions
of a sparse tensor are identical at the granular-
ity of a row. For example, if di"erent rows have
identical linear-transformations, translations,
and number of non-zero values, then they have
data placed in identical trailing indices. Rows
with identical a!ne-indices can be re-mapped
to operate on threads within a warp to reduce
predicated execution.
Favorable read/write access patterns. In

R-SpMM kernels, memory accesses to conven-
tional sparse-formats can be un-coalesced. To
coalesce these accesses, contiguous elements
in a column need to be laid out in contiguous
memory addresses, which our construction in section 5.1 does not do. Fortunately, regularly sparse
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kernels are also column-wise a!ne-compressible. When compressing data across the trailing di-
mension and laying out data in column-major, contiguous memory addresses in the ACSR contain
contiguous elements in a column of a sparse matrix as shown in #gure 6 (g).

Fast indexing. Certain sparse kernels check whether an index in a sparse 2-D matrix is non-zero
by traversing a region of values in a sparse-format. For example, to identify if a point (𝑌𝑋𝑀𝑂𝑋𝑂 ,𝑌𝑋𝑀𝑂𝑋 𝑕 )
(leading, trailing dimensions resp.) is non-zero in a CSR requires a traversal of all the points
[𝑃𝑄𝑅𝑚𝑉𝑃 [𝑌𝑋𝑀𝑂𝑋𝑂 ], 𝑃𝑄𝑅𝑚𝑉𝑃 [𝑌𝑋𝑀𝑂𝑋𝑂 + 1]]. However, the ACSR can compute the answer in 𝐿 (1) time
and metadata accesses by computing: 𝑌𝑋𝑀𝑂𝑋 𝑕%(𝑈) == 0 ⇐ 𝑌𝑋𝑀𝑂𝑋 𝑕 ↔ 𝑝 > 0, where 𝑈 and 𝑝 are the
a!ne-indices of row 𝑌𝑋𝑀𝑂𝑋𝑂 .

6 High-Performance R-SDDMM
An important optimization applied to GPU implementations of SDDMM kernels is tiling to improve
reuse and reduce thread-divergence. This involves deciding a mapping of thread-blocks to outputs.
Di"erent tiling strategies have been explored within the context of random and extreme sparsity [27,
32, 38] (see section 10 for more details). However such strategies either target extremely sparse
matrices or operate on speci#c sparse-formats.
Comparatively, we leverage the regular nature of the sparsity patterns and the ACSR format

to provide a novel, inexpensive tiling strategy for the R-SDDMM kernel (see section 6.3). We
show that our tiling approach increases cache reuse, and memory coalescing whilst reducing
thread-divergence and redundant compute with strong optimality guarantees (see section 6.3).

6.1 Observations
The geometric diversity of sparse-MHSA patterns gives rise to several possible arrangements
of thread-blocks over the output, 𝑆 . Each arrangement trades o" di"erent factors that impact
performance. We categorize each sparse pattern as either polygonal or strided. Polygonal patterns
comprise of non-zero values that are clustered together, with no gaps between them like the
windowed and blocked pattern. Strided patterns consist of non-zero values which have constant
gaps between them, each non-zero value having no neighbor.
Polygonal Patterns. Figures 7 (c) and 7 (d) show two valid tiling arrangements for the same

polygonal pattern. 7 (d) incurs more threads with divergent control-$ow compared to 7 (c), as
more threads within a thread-block exceed the boundary of the pattern and are predicated to
terminate, diverging from the threads that compute output values. Instead 7 (c) incurs threads with
redundant compute as thread-blocks that overlap (orange points) compute the same values. The
more performant tiling arrangement between the two will depend on the relative costs associated
with thread-divergence, redundant compute, and number of thread-blocks.

Strided Patterns. Figures 7 (g) and 7 (h) show two valid tiling arrangements for the same strided
pattern. 7 (h) exhibits low spatial locality compared to 7 (g), as thread-blocks operate on outputs that
do not re-use rows and columns from the input. Instead, thread-blocks in 7 (g) issue un-coalesced
reads to input matrices as they operate on outputs with a constant stride. Additionally, 7 (h)
exhibits increased divergent control-$ow and uses more thread-blocks compared to 7 (g). The more
performant tiling arrangement between the two will depend on the relative costs associated with
un-coalesced memory accesses, divergent control $ow, spatial locality, and number of thread-blocks.
Our observations indicate that 4 factors impact the performance of a tiling arrangement. (1)

The amount of redundant compute between thread-blocks that overlap and compute the same
output. (2) The amount of thread-divergence within a thread-block by being placed on irregular
boundary conditions. (3) The amount of reuse within a thread-block by computing outputs that
share either rows or columns of input matrices 𝑑 and 𝑗. (4) The number of memory access/write
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Fig. 7. Di#erent ways thread-blocks can tile strided and polygonal pa!erns. (a) and (e) are the two pa!erns.
(b) and (f) demonstrate our novel poset tiling strategy. (c) and (d) show two strategies to tile polygonal
pa!erns. Gray represents thread-divergence, and orange represents redundant compute. (g) and (h) show
two strategies to tile strided pa!erns. Numbers on the mask represent what iteration in the for-loop (line 4 of
algorithm 1) the thread-block was placed.

requests issued by a warp that are coalesced by reading/writing to contiguous memory locations. A
good code-generation scheme should generate a tiling arrangement that reduces the cost of each.

6.2 R-SDDMM Performance Characterisation
We #rst develop a cost model that explicitly reasons about each of the four factors that a"ect the
performance of a tiling strategy. We achieve this by developing expressions to compute each of
these factors as a function of the thread-block arrangement of a given tiling strategy.

Thread-Blocks.We de#ne a thread-block to be a mapping between a logical rectangle of threads
of size𝑠 ↓ 𝑀 to points on a mask,𝑓 .

D!"#$#%#&$ 2. A thread-block 𝑡𝑗𝑏 consisting of𝑠 ↓ 𝑀 threads that partially covers a point-set
𝑚 is de"ned by a tuple: (𝑉, 𝑂), 𝑉 ↑ N ↓ N, 𝑂 ↑ N. We further de"ne the compute of a thread-block as
𝑆𝑄𝑠𝑟 (𝑡𝑗𝑏 ) = {𝑉 + (𝑘 ⇒ 𝑂, 𝑙 ⇒ 𝑂) |𝑘 ↑ {0, . . . ,𝑠 ↔ 1}, 𝑙 ↑ {0, . . . ,𝑀 ↔ 1}}.

Finally, we de"ne its cover, anchor-point, and stretch factor as:

𝑆𝑄𝑢 (𝑡𝑗𝑏 ) = 𝑆𝑄𝑠𝑟 (𝑡𝑗𝑏 ) ⇑ 𝑚, 𝑑𝑀𝑇 (𝑡𝑗𝑏 ) = 𝑉, 𝑣𝑉𝑃 (𝑡𝑗𝑏 ) = 𝑂

The cover and anchor-point represent the points a thread-block computes and its top-left corner
(its translation from the origin) respectively. For example, in #gure 7 (g), the cover of the two thread-
blocks is 𝑆𝑄𝑢 (𝑡𝑗0) = {(0, 0), (0, 2), (2, 0), (2, 2)} (green thread-block), with 𝑑𝑀𝑇 (𝑡𝑗0) = (0, 0), and
𝑆𝑄𝑢 (𝑡𝑗1) = {(1, 1), (3, 1), (1, 3), (3, 3)} (blue thread-block), with 𝑑𝑀𝑇 (𝑡𝑗1) = (1, 1). The stretch
factor of a thread-block determines how far apart threads in neighboring rows and columns will be
placed when covering a point-set. For example, the two thread-blocks in #gure 7 (g) have a stretch
factor of 2.

6.2.1 Factors a!ecting performance. De#nition 3 gives the mathematical formulation of the four
factors impacting the performance of a R-SDDMM kernel. We give intuitions for those de#nitions
next. Note that thread-divergence and redundant compute are aggregate sums, while reuse and
memory coalesced requests are averages across all thread-blocks.
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Thread-divergence. Within a thread-block, threads that exceed the boundary conditions of a
mask deviate control $ow from threads that do not. Although thread-divergence happens within
a warp, due to the irregular boundary conditions in regularly sparse masks, oftentimes threads
that exceed the boundary of a mask exhibit thread-divergence. Therefore, we de#ne the collective
thread-divergence of an arrangement as the number of threads that do not cover a point in the
point-set. (See 𝑤𝑅𝑋 in de#nition 3).

Redundant Compute. An arrangement’s redundant compute is the number of excess threads
that do not do useful work across all thread-blocks. This amounts to a sum of all the threads in the
arrangement subtracted by both the number of points in the point-set and the number of threads
that have divergent control $ow. (See 𝑤𝑉 in de#nition 3).

Reuse of Thread-block. Threads within a thread-block that do useful work usually reuse values
of the input rows or columns. The threads that do not do useful work fall into two categories: (1)
Divergent threads, (2) redundant threads. To compute the reuse of a thread-block, we compute the
fraction of threads within a thread-block that are both not divergent and redundant. Hence, we
de#ne the reuse of an arrangement to be the average reuse across all thread-blocks. (See 𝑤𝑉𝑖 in 3).
Degree memory requests are coalesced. The degree to which memory requests of a warp

within a thread-block are coalesced is inversely proportional to a thread-block’s stretch factor. Since
both the inputs are dense, the larger the stretch factor, the larger the stride in reads issued to inputs,
and writes issued to outputs. Hence, we de#ne the amount of memory coalescing as the average
stretch factor across all the thread-blocks in an arrangement. (See 𝑤𝑗𝑌𝑉 in 3).

D!"#$#%#&$ 3. Consider an arrangement of thread-blocks,𝑡𝑗 = {𝑡𝑗1,𝑡𝑗2, ...𝑡𝑗𝑘} each containing
𝑠↓𝑀 threads, covering a point-set, 𝑚 such that

⋃
𝑅𝑙𝐿 ↑𝑅𝑙 𝑆𝑄𝑢 (𝑡𝑗𝑂 ) = 𝑚 . We de"ne its collective thread-

divergence (𝑤𝑅𝑋 ), redundant compute (𝑤𝑉), reuse (𝑤𝑉𝑖 ), and coalesced memory-requests (𝑤𝑗𝑌𝑉):

𝑤𝑅𝑋 =
&&&&
( ⋃
𝑅𝑙𝐿 ↑𝑅𝑙

𝑆𝑄𝑠𝑟 (𝑡𝑗𝑂 )
)
\𝑚

&&&& 𝑤𝑉 = 𝑥𝑠𝑀 ↔ |𝑚 | ↔ 𝑤𝑅𝑋

𝑤𝑉𝑖 =
𝑠𝑀 ↔ 𝑚𝑅𝑆

𝑘 ↔ 𝑚𝑇

𝑘

𝑠𝑀
=

|𝑚 |
𝑥𝑠𝑀

𝑤𝑗𝑌𝑉 =
1
𝑥

∑
𝑅𝑙𝐿 ↑𝑅𝑙

1
𝑣𝑉𝑃 (𝑡𝑗𝑂 )

We illustrate divergent threads and redundant threads in #gure 7 (c) as gray and orange respectively,
with 𝑤𝑅𝑋 = |{(1, 3), (3, 1), (6, 4), (6, 7), (7, 7), (7, 6)}| = 6, and 𝑤𝑉 = 7 ⇒ 4 ↔ 20 ↔ 6 = 2. We compute
the reuse of 7 (g): 2↓2↔0↔0

2↓2 = 1 and 7 (h): 2↓2↔8/4↔0
2↓2 = 1

2 , as well as the coalesced memory requests
of 7 (g): 1

2 ( 12 + 1
2 ) = 1

2 , and 7 (h): 1.
Cost Model. A performant tiling arrangement will minimize redundant compute, thread-

divergence, and stretch-factors of thread-blocks whilst maximizing reuse and coalesced memory
requests. This amounts to minimizing 𝑤𝑅𝑋 , and 𝑤𝑉 , whilst maximizing 𝑤𝑉𝑖 and 𝑤𝑗𝑌𝑉 .
On one hand, minimizing both 𝑤𝑅𝑋 and 𝑤𝑉 and maximising 𝑤𝑉𝑖 corresponds to reducing 𝑥,

since the dimensions of thread-block:𝑠, 𝑀 and the size-of the point-set: 𝑚 , are all #xed. Therefore,
optimal tiling arrangements that reduce the costs of thread-divergence, redundant-compute, and
low reuse will minimize the number of thread-blocks used. On the other hand, maximising 𝑤𝑗𝑌𝑉

corresponds to reducing 𝑣𝑉𝑃 (𝑡𝑗𝑂 ) for all thread-blocks in the arrangement. Therefore, a good cost
function will increase with the number of thread-blocks used, and decrease when 𝑤𝑗𝑌𝑉 increases.

D!"#$#%#&$ 4. Consider an arrangement of thread-blocks,𝑡𝑗 = {𝑡𝑗1,𝑡𝑗2, ...𝑡𝑗𝑘} each containing
𝑠 ↓ 𝑀 threads covering a point-set, 𝑚 . Its cost is denoted as 𝑆𝑄𝑂𝑉 (𝑡𝑗) and is computed as follows:
𝑆𝑄𝑂𝑉 (𝑡𝑗) = 𝑘

𝑚𝑈𝑉𝑇
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6.3 Poset Tiling
We develop a tiling strategy - poset tiling - to tile patterns with optimality guarantees according to
our cost model. Given a mask,𝑓 , whose point-set is 𝑚 , it outputs an arrangement of thread-blocks
that covers 𝑚 by computing the anchor-points where thread-blocks should be placed. It computes
these anchor-points by successively computing a set ⇓, using the comes-before (CB) relation.

D!"#$#%#&$ 5. Suppose we have a point-set, 𝑚 that is partially tiled by 𝑡𝑗 = {𝑡𝑗1,𝑡𝑗2, ...𝑡𝑗𝑏 }.
Then given two points, (𝑛1,𝑜1), (𝑛2,𝑜2) ↑ 𝑚 , we say that 𝑛 ⇔ 𝑜 (i.e. x CB y) i# 𝑛1 ↖ 𝑛2 ⇐ 𝑜1 ↖ 𝑜2.
Moreover, let 𝑚 ↙ be the set of un-covered points of 𝑚 . We de"ne ⇓ to be the set of points in 𝑚 ↙ such that:
≃𝑟𝑂 ↑ ⇓, ∝𝑟 𝑕 ↑ 𝑚 ↙ such that 𝑟 𝑕 ⇔ 𝑟𝑂 .

Algorithm 1: Poset Tiling
Inputs :𝑚,𝑠,𝑀

1 𝑑𝑀𝑇𝑚𝑉 ⇔ ′;
2 𝑦𝑋𝑠 ⇔ 𝑚 ;
3 𝑂 ⇔ 𝑂𝑉𝑃𝑋𝑉𝑇𝑧𝛥𝑈𝑇𝑉𝑄𝑃𝑣𝑋𝑖𝑋𝑇𝑉𝑘𝑄𝑀(𝑚);
4 while ∞𝑅𝑙𝐿 ↑𝑅𝑙𝑆𝑄𝑢𝑋𝑃 (𝑡𝑗𝑂 ) ω 𝑚 do
5 ⇓𝑛𝑜𝑝𝑝 ⇔ 𝛩⇓ (𝑦𝑋𝑠);
6 𝑑𝑀𝑇𝑚𝑉 ⇔ 𝑑𝑀𝑇𝑚𝑉 ∞ ⇓𝑛𝑜𝑝𝑝 ;
7 for (𝑛,𝑜) ↑ ⇓𝑛𝑜𝑝𝑝 do
8 𝑦𝑋𝑠 ⇔ 𝑚 ↔ {⋃𝑂↑ [𝑞] 𝑛 + 𝑘 ↓ 𝑂} ↓

{⋃𝑕↑ [𝐿] 𝑜 + 𝑙 ↓ 𝑂};
9 end

10 end
Output :AncPt

Intuitively, the set ⇓ de#ned over a partially
covered point-set, 𝑚 , represents a set of un-
covered points that, when used as the anchor-
points of thread-blocks, cover a large uncovered
portion of 𝑚 . For example, in #gure 7 (b) (Iter-
ation 2) when the points in ⇓ = {(4, 5), (5, 4)}
are treated as the anchor-points of thread-
blocks, we produce the arrangement in 7 (b)
(Iteration 3). These additionally placed thread-
blocks cover 6 uncovered points.
Algorithm 1 demonstrates how poset tiling

covers a point-set, 𝑚 , using the set ⇓. It takes
as input a point-set, 𝑚 , to cover, and the di-
mensions of the thread-blocks (𝑠 ↓ 𝑀) used to
cover 𝑚 . It outputs a list of points representing
the anchor-points of an arrangement of thread-
blocks that covers 𝑚 . It begins by initializing
the answer (𝑑𝑀𝑇𝑚𝑉 ) to ′ in line 1, and the set of
uncovered points (𝑦𝑋𝑠) to 𝑚 in line 2. It decides a suitable stretch factor to apply to thread-blocks
(line 3) by calling a sub-routine 𝑂𝑉𝑃𝑋𝑉𝑇𝑧𝛥𝑈𝑇𝑉𝑄𝑃𝑣𝑋𝑖𝑋𝑇𝑉𝑘𝑄𝑀 (described in 6.3.1). The main loop in line
3 iterates until 𝑦𝑋𝑠 is ′, which occurs when we have a cover of 𝑚 . At each loop iteration, line
4 computes the current ⇓ (⇓𝑛𝑜𝑝𝑝 ) over the uncovered points 𝑦𝑋𝑠, adding this to the solution set
𝑑𝑀𝑇𝑚𝑉 . Finally, using ⇓𝑛𝑜𝑝𝑝 as the anchor-points of thread-blocks stretched by a factor of 𝑂 , lines
6-8 remove points from 𝑦𝑋𝑠 that will be covered.

Figure 7 (b) Iterations 0-4 represent each iteration of the main loop in poset tiling.

T’!&(!) 1. Given point-set 𝑚 and an arrangement of thread-blocks
𝑡𝑗𝑍𝑟𝑎𝑠𝑔 = {𝑡𝑗1,𝑡𝑗2, ...,𝑡𝑗𝑘𝑊𝑋𝑂𝑌𝑍 }, each of size 𝑠 ↓ 𝑀, generated by algorithm 1 to cover 𝑚 . Let
𝑡𝑗𝑟𝑍𝑔 = {𝑡𝑗1,𝑡𝑗2, ...,𝑡𝑗𝑘𝑋𝑊𝑍 } be the arrangement of lowest possible cost to cover 𝑚 . For the de"nitions
of the windowed, blocked & strided patterns in appendix B, we have for the windowed and blocked
pattern that:

𝑆𝑄𝑂𝑉 (𝑡𝑗𝑍𝑟𝑎𝑠𝑔 )
𝑆𝑄𝑂𝑉 (𝑡𝑗𝑟𝑍𝑔 )

↖ 1 + 𝑠

𝑖
(2)

Where 𝑖 is the maximum number of points in a row of the mask. Moreover, for the strided pattern,
the cost of the arrangement is optimal. See Appendix E for the proof.

6.3.1 Stretch Factor Selection. The stretch factor of thread-blocks may in$uence the number of
thread-blocks used in a tiling arrangement. For example, take the strided pattern in #gure 7 (g) and
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7 (h). By increasing the stride from 1 to 2, we go from the arrangement in 7 (h) which uses 4 thread-
blocks, to the arrangement in 7 (a) which uses 2 thread-blocks. Therefore, a good stretch factor will
balance the cost of issuing un-coalesced memory requests with the number of thread-blocks used
in an arrangement.

1 rSDDMMKernel(map <int , coord > idxToOut ,
2 int s, coord* metadata , float** A,
3 float** B,float**C) {
4 tx = threadIdx.x; ty = threadIdx.y;
5 bx = blockIdx.x; by = blockIdx.y;
6 blockId = by*gridDim.x+bx;
7 out_ix = idxToOut[blockId ].x+tx*s;
8 out_iy = idxToOut[blockId ].y+ty*s;
9 out = 0;
10 for (k = 0; k <= K; k++) {
11 out+=A[out_iy ][k]*B[k][ out_ix ];
12 }
13 // fast indexing to place in ACSR
14 a = metadata[out_iy ].a;
15 b = metadata[out_iy ].b;
16 C[iy][(ix-b/a)] = out;
17 }

Listing 1. R-SDDMM naive Kernel

A naive stretch factor selection sub-routine
will run poset tiling for every possible stretch
factor, enumerating the cost of each ar-
rangement and selecting the factor that cor-
responds to the lowest cost arrangement.
Since the stretch-factor is bounded by the
sequence length, 𝑒 , this will return: 𝑂 =
argmin𝑂↑ [𝑈 ]

𝑘𝐿

𝑚𝐿
𝑈𝑉𝑇

. Where 𝑥𝑂 and 𝑤𝑂
𝑗𝑌𝑉 are the

number of thread-blocks and degree of coa-
lescedmemory-requests of an arrangement pro-
duced by poset tiling with stretch factor 𝑘 , re-
spectively. However, wemake two observations
that reduces the number of arrangements to
search through.
For polygonal patterns, stretching a thread-

block will only reduce its cover (see Appendix
C for the proof). Hence, for polygonal patterns,
we return 1.

1 cudaFunc codeGenRSDDMM(mask M) {
2 // Runs Algorithm 1.
3 int TBCount ,
4 map <int , coord > anchorPoints ,
5 int s = gen_map(M);
6 // Compile with number of TBs.
7 cudaFunc func =
8 compile(launcher <TBCount ,s>);
9 return func ,anchorPoints ;}
10
11 template <int TBCount , int s>
12 void launcher(A,B,metadata ,C,
13 map <int , coord > idxToOut) {
14 // Launch kernel.
15 Dim3 TBDim(/*TB Size.*/);
16 rSDDMMKernel <<<TBCount ,
17 TBDim >>>(idxToOut ,
18 s, A, B,C);}

Listing 2. R-SDDMM code-generator and launcher

However, for strided patterns, stretching a
thread-block may increase its cover. To aid
us in cutting down the space of stretch fac-
tors to search through, we make the following
observation. Consider a strided pattern with
mask,𝑓 . De#ne its stride to be the number of
points between two successive non-zero values
in a row of 𝑓 , denoted as X. Then we have
that the cost of an arrangement is minimized
when applying algorithm 1 with stretch factor
𝑂 = argmin𝑀𝐿 ↑ 𝑡 𝑒𝑛𝑔𝑟𝑝𝑎 (𝑢 )

𝑘𝑎𝐿

𝑚
𝑎𝐿
𝑈𝑉𝑇

(See Appendix C

for the proof).

6.4 R-SDDMM Kernel Code-Generation
We show the code-generation pass and a naive
R-SDDMM kernel in listing 2 and listing 1 re-
spectively. The code-generation pass takes in
an input-mask (line 1) and #rst applies poset
tiling to generate the thread-block count, anchor-points, and stretch factor (line 5). It then uses the
thread-block count to instantiate the R-SDDMM launcher and compiles this function (lines 7-8),
returning the function pointer, func. Finally, it returns the function pointer and anchor-points (line
9).

We illustrate a naive implementation of the R-SDDMM kernel for brevity. The R-SDDMM kernel
takes as input the anchor-points (idxToOut), stretch-factor (s), left (A), and right (B) input matrices,
and space to store the output (C). Lines 7-8 use the thread-block id to index the map to recover the
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anchor-point of the thread-block the current thread belongs to. It uses this anchor-point to compute
the row of A, 𝑄𝑕𝑉𝑂𝑐 , and column of B, 𝑄𝑕𝑉𝑂𝑓 , to dot-product in lines 10-12. Finally, it indexes the ACSR
metadata to get the a!ne-indices for the 𝑄𝑕𝑉𝑂𝑐 row, applying the correct linear-transformation and
translation to store the answer, out, at the correct index in the ACSR non-zero values array, C (in
lines 14-16).

7 High-Performance R-SpMM
Similar to the R-SDDMM kernel, we need to devise novel techniques to generate high-performance
R-SpMM code to leverage the full potential of the ACSR properties mentioned in Section 5. We
#rst show how to construct a naive R-SpMM kernel that uses the ACSR format, then incrementally
present two optimizations that enables SPLAT to generate high-performance R-SpMM implementa-
tions.

7.1 Observations
The Algorithm in listing 3 shows a naive implementation of the R-SpMM kernel 𝑆 = 𝑑𝑗, where 𝑑
is a sparse matrix represented in the ACSR format and 𝑗 is a dense matrix. Traditionally, SpMM
kernels iterate over the non-zero values of 𝑑 and multiply these with a corresponding value from
𝑗 (see #gure 3 (d) for an example). However, in R-SpMM kernels, up to 50-70% of 𝑑 can contain
non-zero values. Rather than iterating over only the non-zero values, we treat the R-SpMM kernel
as a dense computation and iterate over the size of the entire trailing dimension (leading dimension
of B) of matrix 𝑑. To reduce redundant computation, we place a guard condition (see listing 3 line
10) to skip iterations where values in 𝑑 are 0. We can leverage the ACSR metadata to implement
the guard condition in 𝐿 (1) through the observation that 𝑑[𝑌𝑋𝑀𝑂𝑋𝑐] [𝑌𝑋𝑀𝑂𝑋𝑓 ] exists i":(

𝑌𝑋𝑀𝑂𝑋𝑓%𝑑𝛩 𝛩 𝑘𝑀𝑋𝛬𝑀𝑌𝑘𝑇𝑋𝑂 [𝑌𝑋𝑀𝑂𝑋𝑐] .𝑈 == 0
)
⇐
(
𝑌𝑋𝑀𝑂𝑋𝑓 ↔𝑑𝛩 𝛩 𝑘𝑀𝑋𝛬𝑀𝑌𝑘𝑇𝑋𝑂 [𝑌𝑋𝑀𝑂𝑋𝑐] .𝑝 >= 0

)

Nevertheless, listing 3 has two issues. (1) In SpMM kernels, non-zero values in the product of 𝑑𝑗
are produced only when non-zero values from 𝑑 multiply with non-zero values from 𝑗. However,
by letting the loop in line 4 iterate across the entire trailing dimension of𝑑 (leading dimension of 𝑗),
we end up with identical loop counts regardless of the degree of sparsity in 𝑑. (2) The predicate in
line 10 will result in control divergence between threads in a warp when corresponding attempts to
read values from 𝑑 are non-zero for certain threads, but zero for others. Moreover, this divergence
is exacerbated by being placed within a loop that may run for 1000s of iterations. We propose
optimizations to mitigate each issue in section 7.2.

7.2 Optimizations
Span specialisation. To mitigate issue 1, we observe that sparse-MHSA structures tend to have

chunks of non-zero values. For example, the windowed pattern contains all its non-zero values in
chunks surrounding the matrix’s main diagonal. Therefore, a thread-block reading a selection of
rows from a sparse matrix 𝑑 in the window pattern need not iterate across all dense indices in the
trailing dimension and can start at the #rst non-zero value and end at the last non-zero value: its
column-span. Suppose a thread-block is reading a collection of rows, 𝑃1, 𝑃2, ...𝑃𝑏 from sparse matrix
𝑑. Its column-span can be computed in 𝐿 (𝑞) time through:

𝑂𝑟𝑈𝑀(𝑃1, 𝑃2, ...𝑃𝑏 ) = [ min
𝑝𝐿 ↑ [𝑝1,𝑝𝑏 ]

(𝑑𝛬 [𝑃𝑂 ] .𝑝), max
𝑝𝐿 ↑ [𝑝1,𝑝𝑏 ]

(𝑑𝛬 [𝑃𝑂 ] .𝑀𝑀𝑁𝑂 · 𝑑𝛬 [𝑃𝑂 ] .𝑈 +𝑑𝛬 [𝑃𝑂 ] .𝑝)]

where𝑑𝛬 are the𝑑𝛩 𝛩 𝑘𝑀𝑋𝛬𝑀𝑌𝑘𝑇𝑋𝑂 . Figure 8 (a) demonstrates this span-specialisation. The thread-block
that reads values from the #rst two rows of 𝑑 iterates from index 0 to 2 in line 4 of listing 3.
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(a) Span Specialization

block 0

block 1

block 2
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(1, 5)
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(b) Linear-Transformation-Alignment

Fig. 8. Di#erent SpMM optimizations. (a) span-specialisation, white are redundant reads. (b) - linear-
transformation-alignment, colors represent points whose a#ine-indexes are identical (aligned), hashed boxes
correspond to values loaded into the same thread-block.

1 template <int layout >
2 rSpMMKernel(A,B,metadata ,metaOpt) {
3 ix = threadIdx.x + blockIdx.x
4 * blockDim.x;
5 iy = threadIdx.y + blockIdx.x
6 * blockDim.x;
7 out = 0;
8 for(dense_i =0; dense_i <=K;dense_i ++){
9 // Leverage O(1) indexing
10 if (index(A,iy, dense_i ,layout )){
11 out += value(A,iy,dense_i ,
12 layout )*B[dense_i ][ix];}}
13 C[iy][ix] = out;}

Listing 3. Naive SpMM Kernel With Guard Clause

Linear transformation Alignment. To
mitigate issue 2, we observe that if rows in
the ACSR have the same a!ne-indices, data is
placed in identical indices across the trailing di-
mension. We can re-map threads within a warp
to operate on rows with identical a!ne-indices,
ensuring that threads execute the body of the
main loop in tandem. Figure 8 (b) demonstrates
this optimization; when loading from 𝑑, only
2 out of 9 threads diverge in control $ow, as
opposed to 4 out of 9 without this optimization.

7.3 R-SpMM Code-Generation

1 void codeGenRSpMM(densityCls ,metadata ,
2 metaOpt) {
3 // The spmm kernel and optimisations
4 // depend on the metadata.
5 spmmFunc spmmFunc ,TBCount ,
6 spmmMetaOpt ,layout=genSpMM(metadata ,
7 densityCls );
8 // Compile the launcher
9 launchFunc func
10 = compile(launcher <TBCount ,
11 spmmFunc ,layout >);
12 return func ,spmmMetaOpt ;}
13
14 template <int TBSpmm ,typename spmm ,
15 int layout >
16 void launcher(A,B,metadata ,C,metaOpt ){
17 dim3 TBDim(/*TB dimensions */);
18 spmm <layout ><<<TBSpmm , TBDim >>>(AT,
19 B,C,metadata );}

Listing 4. RSpMM code-generation

The R-SpMM code-generation pass, shown
in listing 4, ingests ACSR metadata and code-
generates a R-SpMM kernel. It returns an R-
SpMM kernel (spmmFunc), thread-block count
(TBCount), metadata required for optimizations
(spmmMetaOpt), and layout of the ACSR (lay-
out), (see lines 5-7). The optimizations meta-
data, spmmMetaOpt, contains a map of thread
indices to 2 pieces of information. (1) The
respective start and end loop indices, imple-
menting span-specialisation. (2) The respec-
tive row of the ACSR to load, implementing
linear-transformation-alignment. The boolean
layout $ag indicates the data-layout the ACSR
should be for correct data indexing. For high-
performance, the layout of the ACSR depends
on the density of the input mask, see section 8
for more details.
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1 codeGenSparseMHSA(float** Mask , int sequenceLength) {
2 // Analsis passes
3 checkRegularity(Mask);
4 metadata = generateACSRMetadata(Mask);
5 densityCls = densityAnalysis(metadata , sequenceLength);
6 // Code -generation passes.
7 rsddmmFunc , anchorPoints = codeGenRSDDMM(Mask); // Section 7
8 softmaxFunc = codeGenSoftmax(Mask , metadata);
9 rspmmFunc ,rspmmMetaOpt = codeGenRSpMM(densityCls , metadata); // Section 8
10 // Memory allocator & Auxiliary Data creation.
11 rsddmmOut , softmaxOut , transposeOut , rspmmOut = allocateMemory(metadata);
12 auxiliaryData.memoryAllocations ={rsddmmOut ,softmaxOut ,transposeOut ,rspmmOut

};
13 ... // Store: metadata , anchorPoints and rspmmMetaOpt in auxiliaryData.
14 // data layout reordering optimisation
15 transposeFunc = codeGenTranspose(Mask , metadata , densityCls);
16 // Finally , sparseMHSA function generation.
17 sparseMHSA = compile(sparseMHSAlauncher <rsddmmFunc , softmxFunc ,
18 transposeFunc , rspmmFunc >);
19 return sparseMHSA ,auxiliaryData ;}
20
21 template <typename rsddmm , typename softmax , typename transpose , typename rspmm >
22 sparseMHSAlauncher(Q,K,V,auxiliaryData) {
23 // Unpack memory allocations , metadata , anchor -points , and metadata
24 rsddmmOut ,softmaxOut ,transposeOut ,rspmmOut=auxiliaryData.memoryAllocations;
25 ... // Unpack the rest.
26 // Launch all kernels in sequential order.
27 rsddmm(Q,K,metadata ,rsddmmOut ,anchorPoints);
28 softmax(out ,metadata ,softmaxOut);
29 transpose(out ,metadata ,transposeOut);
30 rspmm(out ,V,metadata ,rspmmOut);
31 return rspmmOut;
32 }

Listing 5. End-to-End Code-generator Psuedocode

8 Final Code-Generation of Sparse-MHSA
Tying everything together, SPLAT generates high-performance code for end-to-end implementa-
tions of sparse-MHSA. Its code-generation mechanism is shown in algorithm 5, proceeding in four
passes. (1) An analysis pass (see lines 3-5) analyzes the input mask to generate information used
by later code-generation passes and ensures the legality of optimizations and code-generation. (2)
A code-generation pass (see lines 7-9), which ingests the information produced by the analysis
pass to generate: R-SDDMM, Softmax, and R-SpMM kernels. (3) A memory allocation and auxiliary
data creation pass (see lines 13-15) which allocates enough memory to hold output tensors and
creates a data object required for any optimizations for R-SDDMM and R-SpMM kernels. (4) A
data-layout reordering pass (see line 15), which reasons about the data-layout of the input tensor
to the R-SpMM kernel, inserting a relevant transposition whenever necessary.
Analysis pass. The analysis pass #rst checks if the mask is regular (see line 3), terminating

otherwise. It then generates the a!ne-indices (see line 4) as described in section 5. Finally, it
analyzes the number of non-zero values in the mask (density analysis - see line 5), and if this
number is greater than a threshold 𝛯 , sets the classi#cation returned to dense, else to sparse. This
information is required for data-layout re-ordering optimizations for good end-to-end sparseMHSA
performance.

Code-generation. The code-generation passes (see lines 7-9) produce high-performance imple-
mentations of the R-SDDMM (see section 6) and R-SpMM (see section 7) kernels, as well as objects
required to implement optimizations correctly. We use cuDNN’s softmax kernel to implement the
softmax over the ACSR.
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Memory Allocation & Auxiliary Data Creation. Lines 13-15 allocate the necessary amount
of memory required to store the output tensors of each of the kernels: R-SDDMM, Softmax, and
R-SpMM, and create an auxiliary data object. This data object contains information required for
the correctness of the optimizations detailed in sections 6.3 and 7.1. It contains the metadata (the
a!ne-indices and non-zero-values of the ACSR) required for fast-indexing, the anchor-points
for poset-tiling, and a rspmmMetaOpt structure that contains thread-level mappings for linear-
transformation-alignment and span-specialization.

Data-layout reordering. Reasoning about the data-layout of the ACSR in the R-SpMM kernel
is important for a high-performance implementation of sparse-MHSA. At moderate sparsity levels,
reading from an ACSR within the R-SpMM kernel is more expensive than writing to it within the
R-SDDMM kernel. The R-SDDMM kernel only writes to each output value once, but the R-SpMM
kernel reads each input multiple times (across multiple thread-blocks). We select the best format
for the R-SpMM kernel by considering the global computations and their formats and inserting
a transpose kernel before it whenever necessary according to the output of density analysis. For
input-masks with high-density, we transpose the ACSR to a column-compressed & column-major
layout, while for input-masks with low-density, we transpose the ACSR to a row-compressed &
row-major layout before the R-SpMM kernel. The column-compressed & column-major allows
threads to issue coalesced memory requests but requires complex arithmetic to index compared to
the row-compressed & row-major layout. At higher density levels, these un-coalesced requests
bottleneck kernels as the amount of data read is greater. Our ablations in section 9.5 illustrate this.

9 Evaluation
We evaluate SPLAT against state-of-the-art vendor-libraries (SOTA) and hand-optimized implemen-
tations across a variety of sparse patterns to demonstrate SPLAT’s generality and high-performance.
To this end, we conduct a series of run-time performance studies (section 9.3), memory & compute
pro#le analysis (section 9.4), and ablations & sensitivity studies (section 9.5). We perform run-time
performance studies at di"erent granularities: individual sparse-kernels (R-SDDMM & R-SpMM),
single layer sparse-MHSA, and end-to-end transformer to demonstrate the e!cacy of SPLAT’s
code-generation framework.

In summary, our results show that SPLAT exhibits considerable speedups against vendor-libraries
and hand-optimized implementations over a variety of sparse-MHSA patterns. SPLAT can achieve
speedups of up to 2.07x and 5.68x over cuBLAS and cuSPARSE across desired sparsity ranges of
[10%, 50%], respectively, further, it achieves up-to 2.05x and 4.05x over hand-optimized kernels in
Triton and TVM, respectively.

9.1 Implementation
We implement SPLAT’s GPU code-generation mechanism in C++ and Python. Currently, SPLAT is
a CUDA code generation system compatible with JAX. SPLAT outputs CUDA implementations of
sparse-MHSA that are just-in-time compiled through JAX’s CUDA compatible foreign-function-
interfaces (FFIs). We use the following software versions: cudatoolkit 11.6, jaxlib 0.4.6, triton 2.1.0,
TVM 0.6.0, and pytorch 2.1.0.

9.2 Experimental Setup
We evaluate SPLAT on multiple sparsity patterns, comparing SPLAT generated kernels to real world
sparse-MHSA implementations. For each sparsity pattern, we conduct experiments on di"erent
granularities in single-precision.
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Sparsity Patterns.We evaluate SPLAT’s e"ectiveness across 4 patterns: windowed, blocked,
strided, and global. We select these patterns due to their popularity in the deep-learning commu-
nity [8, 11, 16, 24, 34, 35, 59] as well as the availability of hand-optimized implementations of each
sparse-MHSA mechanism. We compare SPLAT generated kernels against each baseline on the
sparse-MHSA pattern the respective baseline was designed for.

Experimental Granularity. We compare SPLAT generated code to SOTA implementations at
three di"erent granularities: individual sparse-kernel primitives (comparing against cuSPARSE and
cuBLAS), single-layer sparse-MHSA (comparing against TVM and triton) & end-to-end transformer
(comparing against TVM and JAX), demonstrating speedups across each case.

Baselines.We compare SPLAT generated kernels to a variety of tensor-compilers, deep-learning
frameworks and vendor libraries. All individual kernels are compared against cuBLAS & cuSPARSE.
For single-layer sparse-MHSA and end-to-end transformer we give, for each pattern, the baseline
we compare against.

Strided Pattern. Sparse-MHSA transformer: longformer-strided. Single-Layer sparse-MHSA and
end-to-end transformer implementation: TVM1.

Windowed Pattern. Sparse-MHSA transformer: longformer-windowed. Single-layer sparse-MHSA
and end-to-end transformer implementation: TVM1.

Blocked Pattern. Sparse-MHSA transformer: reformer & sparse-transformer. Single-layer sparse-
MHSA implementation: triton2 (sparse-transformer). End-to-end transformer implementation: JAX3

(reformer).
Global Pattern. Sparse-MHSA transformer: big-bird. Single-layer sparse-MHSA and end-to-end

transformer implementation: JAX4.
We note that triton is a competitive baseline for block-sparse patterns, and is upto 5x faster

than cuSPARSE (NVIDIA’s sparse library) [57]. The TVM and JAX baselines are hand-written
implementations of longformer and reformer & big-bird respectively, where the index arithmetic is
specialised to a particular pattern.

Density Levels. Unless otherwise stated, all our comparisons are conducted at the density levels:
[0.4, 0.8, 1.6, 3, 6, 12, 24, 44, 75, 100] except for the triton block-sparse baseline which imposes a
lower limit on the block size of inputs (to 16↓16). We tune the sparsity of each pattern by varying
the width of the stride (strided-pattern), the size of the window (windowed pattern), the size of the
block (blocked pattern), or the number of rows/columns computed (global pattern).
Matrix and Model Sizes. All the matrix sizes for the sparse-kernel primitives are 1024x64

corresponding to a sequence length of 1024 and a head dimension of 64. We set the batch size to 32
with 12 attention heads resulting each kernel computing 32↓12=384 matrix multiplications. For the
rest of the model (in the case of the end-to-end transformer baselines), we set the FFN hidden size
to 3072 and set the number of layers to 12. These are common con#gurations for models such as
BERT [20], GPT-1 [58] and GPT-2 [43] base models.
Gemma-2 2B Transformer. Due to the rising popularity of sparse-MHSA, billion parameter

sparse-MHSA models have recently been pre-trained [24, 34]. Hence, we use SPLAT generated
sparse-MHSA kernels to implement the gemma-2 2B variant [24]. Its architecture consists of
alternating layers of dense full-attention and sparse-MHSA (the window pattern) with the window
size set to half the sequence length. We note that gemma-2, despite being a sparse-MHSA model, is
implemented as a dense computation with appropriate masking to simulate sparse-MHSA. Hence,
we #x the density level at its original 37.5% and vary the sequence length instead. Given that
1https://github.com/allenai/longformer
2https://github.com/ptillet/triton/tree/triton-mlir/python/triton/ops/blocksparse
3https://github.com/google/trax/tree/master/trax/models/reformer
4https://github.com/huggingface/transformers
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Fig. 9. Run-time performance of sparse-primitives: R-SDDMM and R-SpMM, comparing: SPLAT, cuBLAS
and cuSPARSE. The top and bo!om rows are the R-SDDMM and R-SpMM results, respectively. The desired
density levels observed in sparse-MHSA are in the [10,50]% and are highlighted within the dashed lines.

gemma-2 is trained at a sequence length of 8192, we evaluate on the sequence lengths [2048, 4096]
as 8192 results in an OOM on a single GPU. SPLAT only applies to the pre#ll stage of gemma-2 2B,
see our limitations section (section 11) for further clari#cation.

9.3 Run-Time Performance Study
The primary motivation of the run-time performance study is to answer the question: Can SPLAT
be used to accelerate end-to-end sparse-MHSA-based models, and is this speedup as a result of
SPLAT’s code-generation methodology? To answer the #rst part of the question, we evaluate SPLAT
at three levels of granularity. To answer the second part of the question, we analyze the memory
pro#les of individual kernels and conduct a breakdown analysis of single layer sparse-MHSA
showing this speedup is a result of SPLAT’s code-generation mechanism.

9.3.1 Individual Kernels Speedups. Figure 9 shows our results for runtime performance. For the
R-SDDMM, SPLAT experiences geomean speedups of 2.46x & 5.68x (blocked pattern), 1.29x & 3.17x
(windowed pattern), 1.24x & 2.93x (strided pattern), 3.05x & 4.20 (global pattern) over cuBLAS and
cuSPARSE respectively. For the R-SpMM, SPLAT experiences geomean speedups of 2.81x & 3.37x
(blocked pattern), 2.07x & 2.47x (windowed pattern), 1.51x & 2.33x (strided pattern), 3.12x & 1.68
(global pattern) over cuBLAS and cuSPARSE respectively. All these speedups are reported in the
10%-50% density range.

9.3.2 Single Layer Sparse-MHSA Speedups. Figure 10 (top row) shows our results for runtime
performance. SPLAT realizes geomean speedups of 2.05x, 4.05x, 2.12x, and 2.78x over triton, TVM-
windowed, TVM-strided, and JAX respectively across the entire density range.

9.3.3 End-to-End Sparse Transformer Speedups. Figure 10 (bottom row) shows our results for
runtime performance. SPLAT experiences geomean speedups of 1.03x, 1.31x, 1.49x, and 1.78x over
Reformer (blocked pattern) implemented in JAX, Longformer (windowed and strided pattern)
implemented in TVM, and Big-bird (global pattern) implemented in JAX, respectively across the
entire density range.
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Fig. 10. Runtime performance of a single-layer MHSA and end-to-end sparse transformer, comparing SPLAT
against sparse transformer (implemented in Triton), longformer (implemented in TVM), reformer (imple-
mented in JAX), and big-bird (implemented in JAX). The top and bo"om rows are the single-layer sparse-
MHSA and end-to-end transformer implementations, respectively. Unplo!ed points are due to OOM issues,
except the Triton baseline, which places a lower limit on the block size. The desired density levels are high-
lighted within the dashed lines.

9.3.4 Gemma-2 2B. We use SPLAT generated sparse-MHSA kernels to implement the gemma-2
2B variant on the sequence lengths [2048, 4096].
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Fig. 11. A comparison of gemma-2 2B’s original imple-
mentation (Pytorch) against when its sparse-MHSA
mechanism is replaced with SPLAT generated kernels
(SPLAT) at varying sequence lengths. Le" is a single
sparse-MHSA layer and Right is an end-to-end trans-
former.

Speedups. Figure 11 shows our runtime
performance results. For a single-layer sparse-
MHSA SPLAT experiences speedups of 1.105x
and 1.109x at sequence lengths of 2048 and 4096
respectively. For an end-to-end transformer
SPLAT experiences speedups of 1.011x and
1.021x at sequence lengths of 2048 and 4096
respectively.

9.4 Analysis of Performance Results
Wenow analyze how SPLAT’s sparse-primitives
achieve speedups over optimized vendor-
libraries and hand-written kernels in Triton
and TVM. We show that SPLAT’s novel code-
generation algorithms leverage the meta-data
stored in the ACSR e"ectively to produce fa-
vorable memory access and write patterns bal-
anced with enough inter-warp parallelism to
hide read/write latencies. We show this by ana-
lyzing the memory pro#les of all vendor-libraries, hand-written kernels, and SPLAT at a density
level of 24% for the blocked pattern (except TVM, which is the windowed pattern). Favorable
memory access patterns will read similar amounts of data from global memory to L2 cache, and
from L2 to L1 cache, reducing extraneous data-movement through the memory hierarchy; we
compute how much more data is transferred from L2 to L1 (denoted as L2 → L1), compared to
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Table 1. Memory profiles of SPLAT, cuBLAS, cuSPARSE, Triton and TVM of the blocked pa!ern (except TVM
which is the window pa!ern) at a density level of 24%. Global → L2 and L2 → L1 is the amount of data
transferred from global-memory to L2 cache, and L2 to L1 cache, respectively, as a result of memory reads.
L1 → L2 and L2 → Global is the amount of data transferred from L1 to L2 cache, and L2 to global-memory,
respectively, as a result of memory writes. TVM spawns 32 kernels, hence the (x32) notation.

Kernel Method Threads/SM Read (GB) Write (GB) Cache Hit Rate (%)

Global → L2 L2 → L1 L1 → L2 L2 → Global L1 L2

SDDMM

SPLAT 1152 0.190 3.170 0.377 0.346 44.25 92.91
cuBLAS 512 0.201 1.610 1.610 1.590 00.41 92.34
cuSPARSE 576 0.206 7.830 0.662 0.365 42.02 96.98
Triton 128 0.201 0.432 0.681 0.360 59.21 82.25
TVM (x32) 2048 0.006 0.358 0.035 0.001 75.23 98.19

SpMM

SPLAT 1152 0.101 0.602 0.805 0.084 57.53 91.10
cuBLAS 512 1.720 2.420 0.100 0.970 00.10 43.43
cuSPARSE 1536 0.203 11.330 1.100 0.089 53.71 97.57
Triton 128 0.482 3.880 2.090 0.126 22.24 90.33
TVM (x32) 2048 0.002 0.172 0.060 102 KB 89.94 92.35

global memory to L2 (denoted as Global → L2) for all hand-written kernels, libraries, and SPLAT.
We apply a similar argument to memory write-back patterns, computing the excess data written
from L1 to L2 (L1 → L2), compared with L2 to global memory (L2 → Global). Our results are in
table 1. We systematically compare SPLAT to each vendor library and hand-written kernel.
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Fig. 12. A breakdown analysis of the three components:
R-SDDMM, So"max and R-SpMM of SPLAT, Triton
and TVM’s sparse-MHSA primitives. (a) is the blocked
pa!ern, (b) is the windowed pa!ern.

Vendor-libraries. Analyzing thread access
patterns, we report the excess data moved
across the memory hierarchy due to the read-
ing of data: 2.98GB (0.501GB), 1.409GB (0.7GB),
and 7.624 (11.127GB) for SPLAT, cuBLAS, and
cuSPARSE respectively for the R-SDDMM (R-
SpMM) kernel. We observe SPLAT’s thread-
access patterns move signi#cantly less data
across the memory hierarchy compared to cuS-
PARSE, and slightly more compared to cuBLAS.
We note cuBLAS, as a dense mat-mul, has reg-
ular thread access patterns indexing dense 2-
D arrays (as opposed to complex sparse struc-
tures), and is thus amenable to favorable access
patterns. Nevertheless, SPLAT spawns more
threads per streaming-multiprocessor (SM),
thus e"ectively latency hiding expensive mem-
ory read operations through inter-warp paral-
lelism. Since cuBLAS’s kernel is compute-bound, there is enough reuse to circumvent the need to
latency hide memory reading costs.

We similarly report the excess data moved across the memory hierarchy as a result of write-backs:
0.031GB (0.721GB), 0.02GB (0.87GB), and 0.257GB (1.01GB) for SPLAT, cuBLAS, and cuSPARSE
respectively for the R-SDDMM (R-SpMM) kernel. We observe that the write-back pattern pro#le
of SPLAT is comparable to cuBLAS, and moves signi#cantly less extraneous data compared to
cuSPARSE. Overall, since SPLAT computes less than 1/4th of the values compared to cuBLAS, and
has favorable access/write-back patterns it is the fastest of the three.
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Fig. 13. A comparison of SPLAT gen-
erated single layer sparse-MHSA layer
with triton’s block-sparse kernels on
randomly generated regularly sparse
matrices at various sequence lengths.

Hand-written Kernels. Analyzing thread access patterns,
we report the excess data moved across the memory hierarchy:
2.98GB (0.501GB), 0.231 (3.398GB), and 0.352GB (0.17GB) for
SPLAT, Triton and TVM respectively for the R-SDDMM (R-
SpMM) kernel. We observe that SPLAT’s access patterns are
better than Triton’s R-SpMM and both of TVM’s kernels (TVM
spawns 32 kernels, one for each batch, thus operates on 1/32nd
the amount of data compared to SPLAT and Triton). Though
Triton’s R-SDDMM access patterns are slightly better than
SPLAT’s, it spawns 9x fewer threads per SM, inadequately
hiding read/write latencies. A closer inspection of the kernel
indicates this is a result of overusing shared-memory.
Similarly, we report the excess data moved through

the memory hierarchy as a result of write-backs: 0.031GB
(0.721GB), 0.321GB (1.964GB), and 0.034GB (0.06GB) for SPLAT,
Triton and TVM, respectively for the R-SDDMM (R-SpMM) kernel. We observe that SPLAT’s write-
back patterns are better than both Triton and TVM’s.
Breakdown Analysis. To show that end-to-end sparse-transformers are accelerated due to

SPLAT’s high-performance code-generation mechanism, we break down the run-times of SPLAT’s
R-SDDMM, softmax, and R-SpMM kernels in a single sparse-MHSA layer and compare it to triton
and TVM in 12. We breakdown these run-times across high, moderate, and low sparsity levels. We
see that across all sparsity levels, the collective run-time of SPLAT’s kernels is faster than Triton
and TVM’s.

9.5 Ablation & Sensitivity Studies
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Fig. 14. A comparison of the number of thread-blocks
used between di#erent Tiling Strategies for the window
(le") and blocked (right) pa!ern. Lower is be!er.

9.5.1 Randomly Generated Regular Matrices.
We compare SPLAT generated sparse-MHSA
kernels to triton’s block-sparse kernels on ran-
domly generated regularly sparse matrices at
a density level of 37% for a variety of matrix
sizes. We generate these matrices by randomly
generating the a!ne-indices, #xing the number
of non-zeros for each row to 37% of the size of
the trailing dimension. We pick this density be-
cause the newest SOTA sparse-MHSA models
have a density level of 37% [24, 34]. We vary
the sequence length of the matrix in [512, 768,
1024] and #x the head hidden dimension to 64
with 12 attention heads and a batch size of 32
(resulting in matrices of size: [512, 768, 1024]↓64). We compare a single layer sparse-MHSA only to
triton because of: (1) growing popularity of triton [4, 57], and (2) our experiments indicate that
they are the strongest baseline.
Speedups. Figure 13 shows our runtime performance results. SPLAT experiences speedups of

2.42x, 1.77x, and 1.58x on sequence lengths of 512, 768 and 1024 respectively.

9.5.2 R-SDDMM Tiling. High-performance arrangements use a minimal number of tiles. We
compare the number of thread-blocks used in poset-tiling against a Naive tiling approach for the
blocked and windowed pattern. We use a sequence length of 1024 and vary the density of each
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pattern across all possible values. The results are in #gure 14. Poset tiling reduces the number of
thread-blocks by 1.098 and 1.095 for the window and blocked pattern respectively, on average. The
maximum reduction is 1.83 and 1.72 which uses 13568 and 12544 fewer threads for the window and
blocked pattern respectively.

Fig. 15. A comparison between the runtimes of the
R-SpMM kernel with and without span-specialisation.
Le" and right are the window and blocked pa!erns
respectively.

9.5.3 R-SpMM Optimisations. We evaluate
the bene#t of the optimizations: span-specialization
and linear-transformation alignment on R-
SpMM kernels at varying density levels by com-
paring these optimizations to implementations
where they are disabled.

Figure 15 shows the results for the e"ects of
span-specialisation on the runtime of R-SpMM
kernels. We #x a sequence length of 1024 and
vary the density of the window and blocked
pattern in [0.4, 0.8, 1.6, 3, 6, 12, 24, 44, 75, 100].
Across these density levels, span-specialization
results in geomean speedups of: 3.4x and 3.96x
for the windowed and blocked pattern respec-
tively. This shows for the density ranges ob-
served in sparse-MHSA [10,50]%, span-specialization achieves speedups. However, for extremely
dense inputs where loop counts span the entire trailing dimension, span-specialization can be
costly due to extra integer arithmetic to compute the loop start and end indices.
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Fig. 16. A comparison between the percentage of
threads that exhibit control divergence of loads to a
regularly sparse matrix in the R-SpMM kernel for the
strided pa!ern (figure 2 middle). Lower is be!er.

Figure 16 shows the results for the e"ects of
linear-transformation alignment on loads from
a regularly sparse matrix in the R-SpMM kernel
(algorithm 3 line 8). We #x a sequence length of
1024 and vary the density for the strided pattern
across all possible values (varying the stride
from 1 to 1024). We compare to a R-SpMM
kernel without this optimization (naive loads).
Linear-transformation alignment reduces con-
trol divergence of loads by 2.73, on average,
with a maximum reduction of 8.1.

9.5.4 Data-Layout Exploration. We evaluate
the bene#ts of di"erent ACSR layouts in R-
SpMM kernels in #gure 17. We compare two
layouts combined with the cost of transposing
data into these layouts: row-compressed & row-
major against column-compressed & column-
major as these produce the fastest R-SpMM ker-
nels across various density levels. We compare
the runtimes of the R-SpMM kernels with these
layouts across density levels [0.4, 0.8, 1.6, 3, 6, 12, 24, 44, 75, 100], categorizing these density levels
into sparse inputs (density <10%) and dense inputs (density ∈10%).
Sparse Inputs. Across density levels lower than 10%, the R-SpMM kernel which uses the

row-compressed & row-major layout experiences a geomean speedup of 1.37x compared to a
column-compressed & column-major layout. The row-compressed & row-major layout requires
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less complex index arithmetic to reference data at the cost of un-coalesced accesses to non-zero
values which happens due to contiguous elements in a column being placed far apart in memory. At
these sparsity levels, the bandwidth has not yet saturated, hence the cost of un-coalesced accesses
is relatively low, resulting in faster R-SpMM kernels in this layout.

Fig. 17. A comparison of the combined runtimes of the
transposition and R-SpMM kernels for di#erent ACSR
layouts at various density levels. We use the window
pa!ern. Lower is be!er.

Dense Inputs. Across density levels greater
than 10% the R-SpMM kernel which uses the
column-compressed & column-major layout ex-
periences a geomean speedup of 1.6x compared
to a row-compressed & row-major layout. The
column-compressed & column-major layout en-
ables coalesced reads of data, since contiguous
elements in a column are placed in contiguous
memory addresses, at the cost of more com-
plex arithmetic to reference this data. For dense
inputs where we read a lot of data, the perfor-
mance bene#ts of memory coalescing outweigh
that of simpli#ed arithmetic, resulting in faster
R-SpMM kernels in this layout.

10 Related Work
Sparse Compilers TACO [36] uses iteration graphs and merge lattices to generate code for
compositions of sparse kernels. SparTA [60] proposes sparse tensor annotations to capture the
sparsity of moderately sparse pruned nerual networks. Sympiler [13] leverages symbolic analysis to
guide an inspector to perform code transformations that are speci#c to the structure of non-zeros
in a matrix. Parsy [14] extends this idea by proposing to inspect sparse kernel data dependencies
to produce e!cient parallel codes for sparse kernels. These compilers are e"ective and support
a variety of data-formats, however do not support the ACSR format we introduced since it is
challenging to leverage the symbolic a!ne-indices (that represent a variety of indexes in the
trailing dimension of a matrix) in sparse-kernels.
Sparse Kernel Optimizations [32] proposes a lightweight tiling strategy for SDDMMs and

SpMMs to enhance reuse but is tied to the CSR. [26] proposes a novel 1-d tiling and load-balancing
strategy for moderately sparse inputs but is also tied to the CSR. [56] proposes a novel inspector-
executor approach that uses an ILP formulation to produce high-performance SpMMs on CPUs.
[15] proposes a novel inspection and code-transformation strategy to fuse two sparse kernels where
at least one has loop-carried dependencies. [18] proposes a data-aware SpMM that considers input
dynamics, targeting GPUs. Though e"ective, these optimizations do not target the ACSR with its
unique metadata layout.
Compiling compositions of regular and irregular sparse programs. There has been a

variety of work gone into exploiting the structure of irregular programs at compile time [6, 45, 47, 50],
similar to SPLAT. [6] leverages polyhedral compilation to operate on sparse-immutable data-
structures, proposing novel algorithms to uncover regular sub-structures within the non-zero
coordinates of a sparse structure, however they target the sparse-matrix vector kernel, whereas
SPLAT targets the R-SDDMM and R-SpMM kernels. [45] proposes a technique to compile loop nests
that have both regular and irregular compute, using static analysis to compile the regular portion
combined with an inspector for the irregular portion. [47] is a dynamic analysis technique that
proposes a novel folding-based analysiswhich uses run-time information from instrumented binaries
to build compact polyhedral program representations; their technique can support programs that are
not fully a!ne. However, these compilation techniques do not support the ACSR, with its compact
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representation of sparse-MHSA patterns, that we introduced. General polyhedral frameworks such
as tiramisu [7], PLUTO [9] and others [30, 37, 54] that perform optimizations on regular loops are
ine"ective in performing the same on sparse-MHSA kernels with indirect array accesses.
Structured Sparsity NVIDIA introduced a new specialized data-path in the Ampere [39]

architecture to compute structured-sparsity [41]. These instructions and special hardware units
compute 1:2, 2:4 structured-sparsity where the largest absolute value of every 2 (or two largest
values out of every 4) elements is kept, and the rest are pruned. Although these instructions target
moderate sparsity levels, they can only represent the strided pattern with a stride of 2 (see #gure 7 e
for an example), and cannot represent the global, blocked or windowed patterns precisely. Adapting
these instructions to represent the global, blocked, or windowed sparse-MHSA patterns will result
in storing extraneous non-zeros as padding, similar to CSFs.
Sparse Formats There have been a wide variety of sparse-formats proposed in the literature,

please look at the survey in [28] for further details (e.g. CSR, COO, ELLPACK, DCSR, DIA, BCSR,
CSB, CSF to name a few). We categorize sparse formats into: general sparse-formats or custom
sparse-formats. General sparse-formats (e.g. CSR, COO, CSF, DCSR [23, 46, 49]) incur high metadata
in 𝐿 (𝑀𝑀𝑁𝑂), while custom sparse formats (e.g. BCSR, DIA [21, 22]) are specialized to a particular
sparse-MHSA pattern. The ACSR format we introduce has low metadata in 𝐿 (𝑃𝑄𝑅𝑂), lower than
GSFs, whilst having greater coverage of sparse-MHSA patterns over CSFs.

11 Limitations and Future Work
The ACSR and its supporting code-generation scheme, SPLAT, represent an advancement in code
generating high-performance sparse-MHSA kernels. Though SPLAT is able to generate high-
performance kernels for a variety of sparse-MHSA patterns, it has some limitations.

Regularity constraint. Input sparse-MHSA patterns need to be regularly sparse and therefore
row-wise a!ne-compressible, placing a constraint on the types of sparse patterns the ACSR can
represent. However, there are several sparse-MHSA patterns that do not #t this constraint [31, 44].
Static sparsity. SPLAT’s code-generation scheme relies on a static sparsity pattern. However,

several sparse-MHSA patterns are input dependent and dynamic like in [59].
Applications beyond sparse-MHSA. Leveraging statically structured sparsity to enhance the

performance of deep learning algorithms has been explored beyond sparse-MHSA. For example,
butter$y matrices [19] have been introduced to sparsify the dense feed-forward networks (post
attention) as well as linear transformations (pre attention). Mixers [25] have been introduced to
replace dense full-attention with a sub-quadratic variant using short and long convolutions. We
leave an investigation into extracting performance from such methods to future work.
Autoregressive Decoding. SPLAT’s code-generation scheme is specialised to the R-SDDMM

and R-SpMM kernels present in the pre#ll stage of sparse-MHSA. However, autoregressive decoding
operates on individual tokens resulting in sampled dense dense matrix-vector and sparse-matrix-
dense-vector multiplications instead. We leave an investigation into extracting performance in
these kernels to future work.

12 Conclusion
We have described SPLAT, an optimized code-generation framework that targets a variety of
sparse-MHSA patterns. SPLAT exploits the regular nature of sparse-MHSA patterns, introducing
a new sparse-format: ACSR, that enables SPLAT’s code-generation schemes to have favorable
memory-access patterns. We use SPLAT to implement a variety of sparse-MHSA patterns and
transformers, demonstrating its generality and high-performance. Our experiments show that
SPLAT realizes geomean speedups of 2.05x and 4.05x over hand written kernels written in Triton
and TVM respectively in single-precision.
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Data Availability Statement
Our artifact is a repository of code written in Python and C++ that implements a CUDA code
generation system compatible with JAX. These pieces of code can then be just-in-time compiled
through JAX’s CUDA compatible foreign-function-interfaces (FFIs).
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