
MISAAL: Synthesis-Based Automatic Generation of E!icient
and Retargetable Semantics-Driven Optimizations
ABDUL RAFAE NOOR, University of Illinois at Urbana-Champaign, USA
DHRUV BARONIA, University of Illinois at Urbana-Champaign, USA
AKASH KOTHARI, University of Illinois at Urbana-Champaign, USA
MUCHEN XU, University of Illinois at Urbana-Champaign, USA
CHARITH MENDIS, University of Illinois at Urbana-Champaign, USA
VIKRAM S. ADVE, University of Illinois at Urbana-Champaign, USA

Using program synthesis to select instructions for and optimize input programs is receiving increasing
attention. However, existing synthesis-based compilers are faced by two major challenges that prohibit the
deployment of program synthesis in production compilers: exorbitantly long synthesis times spanning several
minutes and hours; and scalability issues that prevent synthesis of complex modern compute and data swizzle
instructions, which have been found to maximize performance of modern tensor and stencil workloads. This
paper proposesM!"##$, a synthesis-based compiler that employs a novel strategy to use formal semantics
of hardware instructions to automatically prune a large search space of rewrite rules for modern complex
instructions in an o!ine stage. M!"##$ also proposes a novel methodology to make term-rewriting process in
the online stage (at compile-time) extremely lightweight so as to enable programs to compile in seconds. Our
results show that M!"##$ reduces compilation times by up to a geomean of 16x compared to the state-of-the-
art synthesis-based compiler, H%&’!&(.M!"##$ also delivers competitive runtime performance against the
production compiler for image processing and deep learning workloads, Halide, as well as H%&’!&( across
x86, Hexagon and ARM.

CCS Concepts: • Theory of computation→ Program semantics; Automated reasoning; Rewrite systems;
Grammars and context-free languages; • Software and its engineering→ Retargetable compilers.

Additional Key Words and Phrases: Code Optimization, Static Analysis, Compilers, Synthesis, Semantics

ACM Reference Format:
Abdul Rafae Noor, Dhruv Baronia, Akash Kothari, Muchen Xu, Charith Mendis, and Vikram S. Adve. 2025.
MISAAL: Synthesis-Based Automatic Generation of E"cient and Retargetable Semantics-Driven Optimizations.
Proc. ACM Program. Lang. 9, PLDI, Article 198 (June 2025), 24 pages. https://doi.org/10.1145/3729301

1 Introduction
Domain-speci#c extensions to existing hardware architectures are emerging to meet the perfor-
mance demands of modern workloads in domains such as deep learning, image processing, etc.
For instance, Qualcomm’s Hexagon DSP [5, 13], Intel’s AVX ISA [8] and ARM’s Neon ISA [3] have
been extended with specialized instructions to optimize vector, tensor and stencil computations

Authors’ Contact Information: Abdul Rafae Noor, University of Illinois at Urbana-Champaign, Urbana, USA, arnoor2@
illinois.edu; Dhruv Baronia, University of Illinois at Urbana-Champaign, Urbana, USA, baronia3@illinois.edu; Akash Kothari,
University of Illinois at Urbana-Champaign, Urbana, USA, akashk4@illinois.edu; Muchen Xu, University of Illinois at Urbana-
Champaign, Urbana, USA, muchenx2@illinois.edu; Charith Mendis, University of Illinois at Urbana-Champaign, Urbana,
USA, charithm@illinois.edu; Vikram S. Adve, University of Illinois at Urbana-Champaign, Urbana, USA, vadve@illinois.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/6-ART198
https://doi.org/10.1145/3729301

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0002-9979-3252
HTTPS://ORCID.ORG/0009-0001-8557-8770
HTTPS://ORCID.ORG/0000-0002-4023-1175
HTTPS://ORCID.ORG/0009-0001-3381-2190
HTTPS://ORCID.ORG/0000-0002-8140-2321
HTTPS://ORCID.ORG/0000-0002-0760-9690
https://doi.org/10.1145/3729301
https://orcid.org/0000-0002-9979-3252
https://orcid.org/0009-0001-8557-8770
https://orcid.org/0000-0002-4023-1175
https://orcid.org/0009-0001-3381-2190
https://orcid.org/0000-0002-8140-2321
https://orcid.org/0000-0002-0760-9690
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729301
https://creativecommons.org/licenses/by/4.0/


198:2 A.R. Noor, D. Baronia, A. Kothari, M. Xu, C. Mendis, V. Adve

including vector instructions that perform dot products, reductions, in-register data movement
across vector lanes (swizzle operations), etc.

For nearly a decade, the conventional practice of supporting emerging ISAs and new extensions
to existing ISAs has been to manually implement back ends for each hardware target in high-
performance and/or domain-speci#c compilers such as Halide [14], TVM [4], MLIR [10], etc. This
entails implementing a large set of pattern-matching rules to map sequences of input operations
to complex target instructions — a practice that has three major limitations: it is error-prone;
it requires an enormous amount of engineering time and e$ort; and pattern-matching rules are
brittle – i.e., these rules dictate exactly what operations must appear and in what order in the input
code to map to output code – and consequently are invariably incomplete and miss occasional
high-performance cases.

In order to address these limitations, recent papers have proposed the use of program synthesis
techniques to implement back end code generators for modern hardware targets [1, 9, 15, 17, 19].
These works eliminate the need to manually implement compiler back ends using pattern-matching
rules since they leverage the semantics of an input language, an intermediate representation,
and target hardware instruction, to automatically generate target code using some form of search.
Moreover, these approaches provide formal correctness guarantees for the generated code which are
not directly inferable from traditional methods. These correctness guarantees do not compromise
performance, as program synthesis-based approaches o$er competitive performance compared to
hand-implemented compiler backends.

Prior related work o$er point solutions to applying synthesis in automated compiler construction
for speci#c limited contexts. Diospyros [19] is a vectorizer that uses a set of manually-de#ned
rewrite rules for a set of 12 vector instructions to vectorize scalar code using equality saturation [16]
for a Tensilica DSP. Isaria [17] improves on Diospyros by automatically generating rewrite rules
using an ISA speci#cation in an o!ine stage. However, both works don’t support generation of
complex compute and data swizzle instructions supported by modern ISAs. Rake [1] uses program
synthesis to lower small sequences of input code operations to target vector instructions at compile
time. Because it requires engineers to manually implement semantics of target instructions, it only
supports small subsets of target ISAs (a few hundreds of instructions). It uses specialized heuristics
to make generation of target cross-lane compute instructions, and data interleave and deinterleave
instructions possible; however, synthesis still takes several minutes/hours to complete. Pitchfork
[15] uses Rake in an o!ine stage to synthesize rewrite rules for short sequences of enumerated
input IR operations with target-speci#c #xed-point compute vector instructions. It then uses a
custom lightweight term rewriter to apply the rewrite rules on input code at compile time – this
enables it to compile programs in a few seconds. However, Pitchfork does not support generation
of complex data movement instructions unlike Rake.

Hydride [9] attempts to address some of the limitations of the aforementioned synthesis-based
compilers. It automatically generates formal semantics of instructions from their pseudocode de-
scriptions in o"cial documentation to avoid the tedium and error-proneness of hand-implementing
semantics for thousands of instructions, while maximizing instruction coverage and achieving
competitive performance to manually written compiler backends. Hydride uses these semantics to
create similarity classes of target ISA operations, and automatically generates a mid-level compiler
IR called AutoLLVM using each class as one parameterized IR operation, representing all instruc-
tions in each class by di$erent combinations of parameter values. Hydride uses program synthesis
to translate the Halide front-end IR to AutoLLVM IR, greatly reducing complexity by targeting
equivalence classes of instructions instead of individual ones. Nevertheless, Hydride still su$ers
from serious performance limitations like previous synthesis-based compilers: exorbitant synthesis

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



MISAAL: Synthesis-Based Automatic Generation of E!icient and Retargetable Semantics-Driven Optimizations 198:3

times spanning several minutes/hours; and using specialized heuristics to enable generation of
complex data swizzle instructions.
Collectively, the recent synthesis-based compilers have achieved four major advances: (a) the

use of synthesis techniques instead of pattern matching for code generation in compilers, with the
added bene#t of formal veri#cation of the code generators; (b) automatic generation of translation
components from formal semantic speci#cations of input languages, compiler IRs, and target ISA se-
mantics; (c) partial progress towards better instruction coverage for complex instruction sequences,
especially cross-lane vector compute and data movement operations; and (d) demonstrating that
generating rewrite rules in an o!ine stage and performing term rewriting at compile time helps
circumvent long program synthesis times at compile time.

Nevertheless, synthesis-based compilers are faced with a few remaining fundamental challenges
that prohibit their deployment in real-world production systems, all essentially about obstacles to
scalability for supporting large, real-world ISAs such as x86, Hexagon and ARM:

• Challenge 1: Program synthesis for large ISAs (and even for multiple ISAs) is intractable in
today’s approaches because it requires navigating an exponentially large search space with
su"cient coverage in order to generate a large number of high-quality candidate rewrite
rules.

• Challenge 2: Complex cross-lane vector instructions with implicit data movements exac-
erbate the scaling problem because they require enumerating relatively long sequences of
compute and explicit data swizzle operations in order to generate high-quality rewrite rules
for high performance code.

• Challenge 3: Generating rewrite rules using program synthesis enables the cost of synthesis
to be moved o!ine instead of online (i.e., during compile time), but the size and complexity
of target ISAs causes an explosion in the number of rewrite rules, which makes the rewriting
systems used at compile time intractable with today’s approaches.

We design a system, M!"##$, that addresses these major challenges. Because enumerating
equivalence relations between sequences of thousands of instructions from large ISAs (such as x86,
Hexagon and ARM) to generate a system of rewrite rules is infeasible (challenge 1), in the o!ine
stage,M!"##$ performs enumeration on the equivalence classes of target instructions generated
by H%&’!&( instead since the number of equivalence classes is signi#cantly lower than the total
number of supported instructions across di$erent hardware targets. In order to support generation
of complex rewrites for complex cross-lane compute and data swizzle instructions (challenge 2),
M!"##$ uses the formal semantics of target-independent instructions to automatically derive the
appropriate data swizzle patterns required to use those instructions and then runs H%&’!&(’s
similarity analysis to represent those data swizzle patterns in the search space using equivalence
classes to further aggressively prune the search space. This approach results a large number of
candidate rewrite rules which when applied to input code using equality saturation at compile-time
(the online stage) lead to formation of large e-graphs (i.e., large amount of memory consumption)
and substantially long compilation times (challenge 3).M!"##$ addresses this challenge by using
the knowledge of semantics of target instructions to automatically abstract target-speci#c rewrite
rules to produce a signi#cantly smaller set of target-independent rewrite rules. This prevents the
explosion of the sizes of e-graphs and enables the overhead of performing term rewrites at compile
time to be small.

In summary, the key contributions of this paper are:

• A novel methodology that uses the equivalence classes of target instructions to reduce the
exponentially large search space to enumerate equivalence relationships between di$erent

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



198:4 A.R. Noor, D. Baronia, A. Kothari, M. Xu, C. Mendis, V. Adve

sequences of operations to generate a large system of candidate rewriting rules even for ISAs
like x86 and ARM with thousands of instructions.

• A novel scalable semantics-based pruning strategy that automatically derives equivalence
classes for complex data swizzle patterns in the search space to aggressively prune the search
space and enable generation complex rewrite rules for complex cross-lane vector instructions
with implicit data movements with large sequences of compute and explicit data swizzle
operations. We observe that this approach reduces the number of data swizzle patterns in
the search space by ↑11x.

• A new methodology to abstract the automatically-generated target-speci#c rewrite rules into
target-independent rewrite rules. We observe thatM!"##$ signi#cantly reduces size of the
system of rewrite rules down to little over 2,200 rules, by ↑19x.

• A comprehensive evaluation of M!"##$ for real-world image processing and deep learning
kernels on x86, Hexagon, and ARM architectures. Our results show thatM!"##$ compiles
workloads 16x times faster than the state-of-the-art compiler,H%&’!&( for x86, 9x times faster
for Hexagon and 10x faster for ARM; and that M!"##$ achieves competitive performance
relative to the carefully engineered production compiler for Halide and H%&’!&( for all three
architectures.

2 Background
H%&’!&( [9] is a retargetable synthesis-based compiler infrastructure for automatically generating
code generation support for di$erent hardware ISAs. H%&’!&( comprises two major components
described below and depicted in Figure 1.

H!"#$"% Automatic IR Generator. This component operates in an o!ine stage to automati-
cally generate formal semantics of hardware instructions by parsing their pseudocode descriptions
in o"cial documentation. It eliminates the need to go through the tedious and error-prone pro-
cess of hand-implementing semantics for thousands of instructions, while maximizing instruction
coverage. Using these semantics, it performs a similarity analysis across the semantics of target-
speci#c instructions to automatically put similar target instructions – i.e., instructions that perform
represent similar computational and data movement patterns regardless of hardware-speci#c char-
acteristics such as register sizes, precision types, etc. – in equivalence classes, each of which are
then represented as parameterized target-independent instructions that represent multiple target-
speci#c instructions as a part of a language-independent and target-independent intermediate
representation, AutoLLVM IR. This component also automatically generates support for performing
one-on-one translation from AutoLLVM IR to target-speci#c instructions in LLVM.
H!"#$"% Code Synthesizer. This component is a program synthesizer that compiles expres-

sions in a front end language, such as Halide IR or MLIR [10] dialects, to AutoLLVM IR expressions.
It synthesizes code at compile time; it employs various heuristics to make synthesis tractable, such
as partitioning large expressions into non-overlapping sub-expressions which are synthesized
separately, selectively excluding AutoLLVM IR operation in synthesis, hand-crafting specialized
swizzles to enable generating cross-lane operations, and caching synthesis results for reuse across
expressions. While H%&’!&(’s Code Synthesizer is retargetable, the compilation with H%&’!&(
can several minutes and, in some cases, several hours despite using several heuristics primarily
due to the inherent scalability issues associated with the synthesizer exploring a search space of
thousands of target instructions to synthesize code.
Because H%&’!&( provides formal semantics for AutoLLVM IR instructions, support for per-

forming Similarity Analysis between target-speci#c instructions, and basic support for translating
AutoLLVM IR instructions to target-speci#c instructions, M!"##$ builds on top of the H%&’!&( to

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



MISAAL: Synthesis-Based Automatic Generation of E!icient and Retargetable Semantics-Driven Optimizations 198:5

Halide IR

Hydride Code 
Synthesizer

Language-Independent 
AutoLLVM IR

LLVM IR + 
x86 Intrinsics

HVX Neon

Autogenerated 
Pattern Matching-Based InstSelector 

LLVM IR + 
ARM Intrinsics

LLVM IR + 
Hexagon Intrinsics

MMXAVX /  AVX2 / 
AVX-512 / VNNISSE / SSE2

Hydride Automatic 
IR Generator

x86 
Semantics

Hexagon 
Semantics

ARM 
Semantics

Target-agnostic semantics

LLVM intrinsics

LLVM Pass in C++

Fig. 1. Hydride’s Workflow diagram largely consisting of two phases. O!line, the Hydride Automatic IR
generator produces formal semantics for ISAs and abstracts the semantics into parameterized AutoLLVM.
Online, the Hydride Code Synthesizer uses program synthesis to compile Halide IR expressions to concretely
parameterized AutoLLVM IR.

replace its Code Synthesizer and generate code in a matter of a few seconds as opposed to several
minutes or hours.

3 Design
In this section, we describe in detail howM!"##$ mitigates the challenges described above.M!"##$
operates in two phases: 1) An o!ine compiler construction phase which performs synthesis to
derive retargetable rewrite rules, and 2) An online lightweight term rewriting phase which uses
those rules to compile the application to the target architecture. Figure 2 illustrates the work%ow
for the o!ine phase.

Scaling Synthesis for Large ISAs.M!"##$ uses the formal semantics of the target ISAs and the
frontend IR to derive retargetable rewrite rules. Enumeration is required to generate a rich collection
of rewrite rules including complex cross-lane vector and data-swizzling operations. However, the
large size of the ISAs with potentially thousands of ISA operations makes naive enumeration
infeasible. To this end, M!"##$ employs a novel semantics-driven enumeration methodology to
enable both enumeration and synthesis to scale to required expression depths. First, the ISA formal
semantics are generated and abstracted into the AutoLLVM IR representation. The AutoLLVM
IR representation, also referred to as equivalence classes, folds multiple semantically ’similar’
operations into a target agnostic representation with parameterizations to exactly represent each of
the folded operations. At the core of M!"##$ is a novel enumeration methodology (Section 3.1) that
enumerates expressions using these exponentially more compact AutoLLVM IR representations to
derive rewrite rules, which can be abstracted into retargetable rewrite rules.
After this, M!"##$ systematically decouples required data-swizzling generation from the ISA’s

computational instruction semantics to synthesize rewrite rules with both complex computation
and data-swizzling semantics. To support enumeration of rewrite rules with complex data-swizzling
operations (often realized by stitching together multiple simpler swizzles), M!"##$ uses the seman-
tics of the target ISAs to extract the data-access patterns from each ISA operation. These access
patterns are used to create complex data-swizzling operations which themselves can be folded into
new AutoLLVM IR operations for use in enumeration (Section 3.3).
Synthesizing rewrite rules for large depths inevitably requires pruning the enumeration space.

M!"##$ uses the formal semantics of the AutoLLVM IR operations to systematically prune the
enumeration space such that it is automatically tailored to each target architecture’s ISA. Only

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



198:6 A.R. Noor, D. Baronia, A. Kothari, M. Xu, C. Mendis, V. Adve

Hydride 
CodeGen 
Generator AutoLLVM 

IR

ISA Formal 
Semantics

Generate
Complex 
Swizzle 

Semantics

Derive Swizzle 
AutoLLVM 

Classes

Compute-
Only

Relevance

Emit Semantic 
Relevance 

Mapping for 
AutoLLVM IR

Concretization
Grammar 

Based 
Enumeration

Concrete 
Pattern 

Abstraction

Relevance Sets of Layout-Independent 
Compute Instructions

Relevance Sets of Compute-Independent 
Layout Instructions

x86 Pseudocode

ARM Pseudocode

HVX Pseudocode

Halide IR

3.23.1

3.4

3.3

3.x Section Number 

Fig. 2. M!"##$Workflow for o!line Compiler Construction phase

AutoLLVM IR operations that share some semantic relatedness, regardless of their data access
patterns, are to be enumerated together (Section 3.4).
After the enumeration terminates, yielding rewrites on AutoLLVM IR operations with speci#c

concrete parameterizations (referred to as concrete patterns), M!"##$ abstracts the generated
rewrite rules into higher-order retargetable rewrite rules with symbolic parameterizations that are
automatically veri#ed to be correct. Additionally, the retargetable rewrite rules drastically compress
the number of rewrite rules (Section 3.2).
Lightweight Online Compilation. Retargetable rewrites generated o!ine by M!"##$ are

fed to a term rewriting system (EggLog [20] for this work) to compile applications to the target
architecture (Section 5.1). The generated AutoLLVM IR is target-speci#c (i.e., parameter values for
AutoLLVM IR operations have been selected) and is #nally lowered to the equivalent target ISA
operations. The remainder of this section elaborates on the described work%ow in detail.

3.1 Equivalence Class Based Enumeration
Using enumeration o!ine to generate rewrite rules for compiling to target architectures is an
increasingly common approach to enable reasonable compilation times online. However, for large
ISAs containing thousands of instructions, enumeration itself is intractable even when performed
o!ine. To address this inherent scalability problem in enumeration, M!"##$ uses AutoLLVM IR [9]
as the target agnostic representation for target ISAs to perform enumeration. H%&’!&( has shown
that performing synthesis online using the AutoLLVM IR representation can enable synthesis to be
tractable, but can still be expensive, taking hours of synthesis time for a single expression in some
cases. We describe a novel enumeration and synthesis methodology using AutoLLVM IR to not
only make enumeration for rewrite rules tractable, but also enable fast synthesis while importantly
covering the equivalent space of programs as when using the target ISA.

A rewrite rule can be de#ned by a 3-tuple (𝐿𝑀𝑁 , 𝑂𝑀𝑁 , ↓) where 𝐿𝑀𝑁 and 𝑂𝑀𝑁 describe the left-
hand-side and right-hand-side expressions respectively and ↓ describes the relation under which
the expressions are related. An example of ↓ is the equivalence relation. Traditionally, 𝐿𝑀𝑁 ↔ 𝑂𝑀𝑁
(is equivalent to) for all symbolic inputs with type𝑃 , where𝑃 are the input types for 𝐿𝑀𝑁 . As a valid-
rewrite rule requires equivalence (i.e. equality over all symbolic values of the required types), 𝐿𝑀𝑁
and 𝑂𝑀𝑁 are consequently target speci#c ISA operations with #xed types. These rewrite rules are
not portable to other operations across di$erent target ISAs or even within similar instructions of
the same architecture. Consider an example of rewrites for dot-product on x86. Figure 3(a) shows the
program rewrite rule (in Halide IR) for the 128-bit dot-product operation, while Figure 3(b) presents
the corresponding 512-bit dot-product program. These programs represent distinct instructions in
the x86 ISA, and operate on di$erent vector register sizes. Additionally, the intermediate values
span di$erent intermediate vector sizes (256, and 1024 respectively). To derive these rewrite rules

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



MISAAL: Synthesis-Based Automatic Generation of E!icient and Retargetable Semantics-Driven Optimizations 198:7

(b) _mm512_dpwssd_epi32
%0 = <8xi32> sign-extend <8xi16> %arg0
%1 = <8xi32> sign-extend <8xi16> %arg1
%2 = <8xi32> vector-mul %0, %1
%3 = <4xi32> vector-reduce-add 2 %2
%4 = <4xi32> vector-add %3, <4xi32> %arg2

%0 = <32xi32> sign-extend <32xi16> %arg0
%1 = <32xi32> sign-extend <32xi16> %arg1
%2 = <32xi32> vector-mul %0, %1
%3 = <16xi32> vector-reduce-add 2 %2
%4 = <16xi32> vector-add %3, <16xi32> %arg2

%0 = <16xi32> sign-extend <16xi16> %arg0
%1 = <16xi32> sign-extend <16xi16> %arg1
%2 = <8xi32> vector-mul %0, %1
%3 = <8xi32> vector-reduce-add 2 %2
%4 = <8xi32> vector-signed-sat-add %3, <8xi32> %arg2

%0 = (choose* {sign-extend, zero-extend, truncate, saturate}) (choose* {%arg0, %arg1, %arg2})
%1 = (choose* {sign-extend, zero-extend, truncate, saturate}) (choose* {%arg0, %arg1, %arg2})
%2 = (choose* {vector-mul}) %0, %1
%3 = (choose* {vector-reduce-add, vector-reduce-signed-sat-add, ...}) (choose* {2,4,8}) %2
%4 = (choose* {vector-add, vector-signed-sat-add, ...}) %3, (choose* {%arg0, %arg1, %arg2})

(a) _mm_dpwssd_epi32 (c) _mm256_dpwssds_epi32

(d) autollvm.dot.prod

Fig. 3. Program representation of the semantics of multiple dot product instructions in x86. (a) and
(b) describe the semantics of dot-product on di!erent vector sizes while (c) describes a dot product
operation with saturating accumulation. Subfigure (d) describes an example of the concretization
grammar during enumeration which captures (a), (b), and (c).

under the ↔ equivalence relation, the enumeration must consist of a range of vector sizes. Coupled
with the additional range of element bit-widths of the intermediate values in the programs and
the required sequence length of 5 operations, it is easy to see how enumeration quickly becomes
intractable.
To illustrate the complexity, Figure 3(c) shows the rewrite rule for a similar x86 dot-product

variant using signed saturating accumulation. The programs are not equivalent but are structurally
similar. Figures 3(a) and 3(b) use di$erent vector register sizes, while Figures 3(a) and 3(c) di$er in
vector sizes and accumulation methods. This redundancy worsens as the rewrite length increases.
Manually identifying and folding these cases is error-prone and impractical for large ISAs.
To mitigate this redundancy in enumeration, we employ H%&’!&(’s Similar Instruction anal-

ysis [9] to automatically create an abstraction which represents multiple semantically similar
instructions, namely, the AutoLLVM IR. We leverage the insight that rewrite rules capture semantic
equivalence while AutoLLVM IR captures semantic similarity. Therefore similar rewrite rules
on speci#c ISA operations representing di$erent element bitwidths, vector sizes and bitvector
operation variants (as shown in Figures 3(a-c)) can be represented under a single rewrite rule on
AutoLLVM IR operations (with di$erent parameterizations). The pair of AutoLLVM IR expressions
in such a rewrite rule represent a template under which similar rewrite rules can be represented.

To formalize this notion, we de#ne two functions.

𝑄𝑅𝑆𝑇𝑈𝑉𝑊𝑇𝑋𝑌𝑍(𝑃𝑉𝑈𝑎𝑏𝑇𝑐𝑍𝑆𝑇𝑑𝑒𝑓𝑈 𝑔) = AutoLLVM IR representation of C

For example, 𝑄𝑅𝑆𝑇𝑈𝑉𝑊𝑇𝑋𝑌𝑍(__mm_dpwssd_epi32) =
autollvm.dot.prod, where autollvm.dot.prod is the automatically derived target agnostic ab-
straction for dot-product-like target instructions. The abstraction function can also be applied to
expressions of target instructions. Conversely we de#ne:

𝑔𝑌𝑍𝑊𝑈𝑏𝑇𝑋𝑕𝑉𝑇𝑋𝑌𝑍(𝑄𝑖𝑇𝑌𝐿𝐿𝑗𝑘𝑐𝑍𝑆𝑇𝑑𝑒𝑓𝑈 𝑄) =

{ Set of all concretely parameterized programs represented by expression A }.
Note that the abstraction function returns a single AutoLLVM IR program parameterized with

symbolic parameters, while the concretization function returns a set of programs.
In existing approaches for deriving rewrite rules, two expressions are sampled from the ISA

operation enumeration space and tested for equality using symbolic inputs. Instead of enumerating
using target speci#c ISA operations,M!"##$ enumerates using automatically generated AutoLLVM
IR to generate rewrite rule templates. Table 1 describes the size of AutoLLVM IR with respect to
multiple targets. The smaller IR size enables far more scalability in enumeration by de#ning a
new ↓. In this setting we de#ne 𝐿𝑀𝑁𝐿𝑀 and 𝑂𝑀𝑁𝐿𝑀 to be the left-hand-sided and right-hand-sided
AutoLLVM IR expression for a possible rewrite rule. M!"##$ proposes a new de#nition of ↓,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



198:8 A.R. Noor, D. Baronia, A. Kothari, M. Xu, C. Mendis, V. Adve

Table 1. AutoLLVM IR statistics across di!erent target architectures [9].

Architecture ISA Size AutoLLVM IR Size Reduction in ISA size
x86 2,029 136 14.9x
HVX 307 115 2.7x
ARM 1,221 177 6.9x

denoted ↓𝐿𝑀 such that (𝐿𝑀𝑁𝐿𝑀 , 𝑂𝑀𝑁𝐿𝑀 , ↓𝐿𝑀) is a valid template for a rewrite rule if and only if:

↗𝑙 ↘ 𝑔𝑌𝑍𝑊𝑈𝑏𝑇𝑋𝑕𝑉𝑇𝑋𝑌𝑍(𝐿𝑀𝑁𝐿𝑀), ↗𝑈 ↘ 𝑔𝑌𝑍𝑊𝑈𝑏𝑇𝑋𝑕𝑉𝑇𝑋𝑌𝑍(𝑂𝑀𝑁𝐿𝑀), 𝑙 ↔ 𝑈 (1)

Finding these 𝑙 and 𝑈 which satisfy the equivalence in Problem 1 can be e"ciently solved by
formulating it as a SyGus (Syntax Guided Synthesis) problem. The syntax for both expressions is
derived from the structure of the AutoLLVM IR programs being enumerated, but we introduce a
symbolic choice (denoted with choose* according to Rosette’s[18] convention) for which target
instruction (i.e. concretizations) to use for each AutoLLVM IR operation. Formally, the choose*
function is used to create symbolic choices from a set of possible values and must evaluate to exactly
one of the possible provided choices while satisfying some speci#ed constraints. The symbolic
choices may be from a set of operands, intermediate values, or AutoLLVM IR concretizations.
We refer to the synthesis grammar for such a SyGus formulation as Concretization Grammar
for AutoLLVM IR. The corresponding Concretization Grammar for the dot-product expressions
described previously is shown in Figure 3(d). The structure of the concretization grammar shown
is equivalent to the programs described previously, but the choice of which operations to use is
expressed as symbolic choices. Note that while sign-extend is listed once in Figure 3(d) for brevity,
the symbolic choice includes all variants of sign-extension for di$erent element-bitwidths and
vector register sizes. Additionally, the concretization grammar folds in the choice of input argument
combinations into a symbolic choice (i.e. (choose* {%arg0, %arg1, %arg2)}) so that multiple
enumerations are not required for aligning terminals of the source and target expressions. All x86
(2-point) dot product variants on di$erent element bit-widths, accumulation operations, signedness,
and vector sizes are captured in the above single concretization grammar providing equivalent
coverage to the separate multiple explicit enumerations. Figure 4 describes the AutoLLVM IR
rewrite rule template derived from the x86 dot-product instructions in Figure 3(a-c) with a valid
concretization of the template corresponding to _mm_dpwssd_epi32.
More generally, for any given rewrite rule 𝐿𝑀𝑁𝐿𝑀 ↓𝐿𝑀 𝑂𝑀𝑁𝐿𝑀 , the synthesis problem jointly

searches for any concretizations of both expressions under which they produce symbolically equiv-
alent outputs. This greatly reduces the enumerated terms by a factor of |𝑔𝑌𝑍𝑊𝑈𝑏𝑇𝑋𝑕𝑉𝑇𝑋𝑌𝑍(𝐿𝑀𝑁𝐿𝑀) | ≃
|𝑔𝑌𝑍𝑊𝑈𝑏𝑇𝑋𝑕𝑉𝑇𝑋𝑌𝑍(𝑂𝑀𝑁𝐿𝑀) |. The output of this phase produces only a single valid concretization as
a template, if it exists, for a pair of AutoLLVM IR expressions. Other concretizations may exist
for the pair of AutoLLVM expressions which would need to be captured. Section 3.2 describes
how the derived concretization template is abstracted to apply across these (potentially) multiple
concretizations.

3.2 Target-Agnostic Rewrite Rule Abstraction
After Equivalence class based enumeration (Section 3.1) identi#es any single concretizations for pairs
of AutoLLVM IR expressions for which the rewrite would be semantically equivalent, M!"##$ uses
synthesis to abstract the rewrite into a retargetable rewrite rule. The existence of at least one possible
valid pair of concretizations signals that others may also exist. M!"##$ uses this concretization as a
template to extract the possible concretizations which may exist for which the rewrite rule may be
valid (i.e. the pair of concretized expressions are equivalent symbolically). First, other potential

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



MISAAL: Synthesis-Based Automatic Generation of E!icient and Retargetable Semantics-Driven Optimizations 198:9

%0 = @autollvm.dot.prod %arg0 %arg1 %arg2 %accType %vsize %bitwidth

(a) LHS
IR
 for abstract rewrite rule template

%0 = @autollvm.extend %arg0 %vsize %bitwidth <numeric params>

%1 = @autollvm.extend %arg1 %vsize %bitwidth <numeric params>

%2 = @autollvm.vector-mul %0, %1 <numeric params>

%3 = @autollvm.vector-reduce-add 2 %2 <numeric params>

%4 = @autollvm.vector.add %3, %arg2  %accType <numeric params>

(b) RHS
IR
 for abstract rewrite rule template

// _mm_dpwssd_epi32

%0 = @autollvm.dot.prod %arg0 %arg1 %arg2 0 128 16

(c) Possible Concretization for LHS
IR

%0 = <8xi32> sign-extend <8xi16> %arg0

%1 = <8xi32> sign-extend <8xi16> %arg1

%2 = <8xi32> vector-mul %0, %1

%3 = <4xi32> vector-reduce-add 2 %2

%4 = <4xi32> vector-add %3, <4xi32> %arg2

(d) Possible Concretization for RHS
IR

Fig. 4. Example for an abstract rewrite rule template for x86’s dot-product. (a) and (b) denote the LHS and
RHS AutoLLVM IR expressions template. Some numeric parameters have been elided for space and simplicity.
(c) and (d) describe a valid concretization for the 128-bit dot-product instruction for which (a) and (b) would
be symbolically equivalent.

concretizations are extracted by issuing synthesis queries from Section 3.1 with additional semantic
constraints. These constraints include di$erent vector register sizes for the inputs and/or outputs, as
well #xing the usage of a given parametrization a given AutoLLVM IR operation within the source
and / or target expression. Once these expressions have been enumerated, yielding potentially
tens of various valid concrete rewrite rules,M!"##$ abstracts the numeric parameters such that a
single higher order complex rewrite represents all the enumerated concretizations for the pair of
AutoLLVM IR expressions in the template. This is achieved by synthesizing arithmetic expressions
for the numeric parameters which appear in the target expression using the numeric parameters
from the source expression. Consider the example of performing element-wise addition on 256
bit-vectors with 8-bit elements shown in Figure 5(a). Another semantically equivalent program is
shown in Figure 5(b). This program, slices the vector inputs into two halves, adds the corresponding
halves of the inputs separately, and then #nally concatenates the results.
This rewrite rule corresponds to a single concretization derived byM!"##$. It is apparent that

this rule corresponds to a more general rule which can be abstracted. Speci#cally, the slicing
o$set, number of elements, bitwidth, and vector sizes can be lifted to symbolic expressions. The
numeric parameters are extracted at the corresponding parameter position across the multiple

%0 = <32 x i8 > vec-add %arg0 %arg1
(a) Element-wise add on 256-bit vector

// Slice Low Half ...
%0 = <16 x i8> slice_vector %arg0
      /* offset */    0, /* Stride */ 1,
      /* Num Elements */ 16,
      /* Bitwidth */     8,
      /* Vector Size */ 256
%1 = <16 x i8> slice_vector %arg1
      /* offset */    0, /* Stride */ 1,
      /* Num Elements */ 16,
      /* Bitwidth */     8,
      /* Vector Size */ 256
// Elided Slice High Half for space ...
%4 = <16 x i8> vector-add   %0 %1
%5 = <16 x i8> vector-add    %2 %3
%6 = <32 x i8> concat_vector %4 %5 8 128

(b) Concatenation of two 128-bit vector 
additions

%0 = vec-add %arg0 %arg1 %bitwidth %vectorsize
(c) Abstracted Element-wise add on full vector

// Slice Low Half ...
%0 = slice_vector %arg0 
  /* offset */    0, /* Stride */ 1, 
  /* Num Elements */(%vectorsize/(%bitwidth*2)), 
  /* Bitwidth */   %bitwidth,
  /* Vector Size */ %vectorsize
%1 = slice_vector %arg1
  /* offset */    0, /* Stride */ 1,
  /* Num Elements */(%vectorsize/(%bitwidth*2)),
  /* Bitwidth */   %bitwidth,
  /* Vector Size */ %vectorsize
// Elided Slice High Half for space ...
%4 = vector-add  %0 %1 %bitwidth (%vectorsize/2)
%5 = vector-add  %2 %3 %bitwidth (%vectorsize/2)
%6 = concat_vector %4 %5 %bitwidth (%vectorsize/2)

(d) Abstracted vector addition by slicing and 
concatenating

Fig. 5. (a) and (b) describe the rewrite rule derived from Halide IR programs which compute element-wise
vector addition 512-bit vectors with 8-bit elements. (a) computes the sum directly from the inputs, while (b)
computes the results by spli"ing the operands and concatenating the partial sums. (c) and (d) describe the
abstracted version of the same rewrite rule with symbolic parameters. The appropriate symbolic expression is
synthesized for corresponding parameters as shown in (d). This abstracted rule captures multiple di!erent
vector sizes and element bitwidths in a single rule compactly.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



198:10 A.R. Noor, D. Baronia, A. Kothari, M. Xu, C. Mendis, V. Adve

concrete rewrite instances, and are replaced with a symbolic expression which ’#t’ the parameters.
Figures 5(c) and 5(d) describe the abstracted rewrite rule for the concrete 256-bit vector add example
described previously. This abstraction enables M!"##$ to represent a large number of rewrite
rules compactly while covering the larger number of potentially valid concretizations. In the next
subsections, we describe howM!"##$’s enumeration incorporates generating rewrite rules with
complex data-swizzling operations (Section 3.3) and how we can further scale generating rewrite
rules for large program sequences with systematic semantics-based pruning of the enumeration
space (Section 3.4).

3.3 Automatic Complex Swizzle Discovery
To discover e"cient rewrite rules using complex cross-lane operations, rewrite rules must include
the required data-swizzling. The issue however is that is not entirely obvious what the required
data-swizzle is and when to use such a data-swizzle. Synthesizing this required swizzle from a
general permute instruction which takes the swizzle mask is intractable. The swizzle patterns
are often not only target-dependent, but also instruction dependent within a target architecture.
Compiler writers have to manually reason about the semantics of the ISA operations and relate
swizzling instructions to computation instructions. For architectures such as x86, multiple simpler
swizzling ISA operations have to be stitched together to realize a complex data movement. It is
easy to see how scaling to the required depths of expressions for these architectures is infeasible.
Existing works either do not generate rewrite rules with swizzles [15, 17], or used #xed sets

of crafted swizzle patterns [1, 9] to enable synthesizing programs with data-movement. For new
architectures, new swizzles patterns would need to be created which requires expert knowledge of
the target semantics. Additionally, there is little guarantee of completeness of the swizzles being
su"cient to capture the many complex data-movements which may arise.
To address this limitation and enable generating rewrite rules with complex data-swizzling,

M!"##$ automatically derives a set of complex data-swizzles o!ine purely from the semantics of
each target architecture ISA. This is performed by leveraging the availability of the pseudo-code
of the ISA operations to analyze the data-access patterns and to create swizzles which produce
vectors in the required data-access patterns.

Consider the illustrative example of HVX’s widening multiplication operation shown in Figure
6(a). The target instruction vmpybv accesses the operands in an ’even-odd’ interleaved manner after
sign-extending the values. To leverage this instruction for an input program which needs to apply
widening multiplication and accumulation on contiguous values C0-C3, the input program must
apply some form of swizzling within the above sequence such that the #nal result is correct with
respect to the ordering of the input contiguous values (i.e. A0-A3).M!"##$ analyzes the bitvector
slices accessed across output lanes and creates two categories of swizzles for this instruction since
either swizzling transformation is valid and di$erent programs may require either (or both) variants:

(1) Interleaves (i.e. interleaving even-odd elements) the operands of the widening multiplication
(Figure 6(b))

(2) Deinterleaves (i.e. interleaving elements from #rst half and second half) the result of the
widening multiplication intrinsic ((Figure 6(c))).

Sets of swizzle patterns are automatically derived from each target instruction’s semantics
access patterns while accounting for di$erent variants of vector register sizes, element bit-widths,
o$sets, and number of operands. In cross-lane vector operations, multiple elements (of the same
operand) may be accessed to produce a single output lane value. For these instructions, some
form of packing is necessary to layout the data. The input vectors for this packing operation may
come from a single vector operand, or across multiple vector operands. For such instructions,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



MISAAL: Synthesis-Based Automatic Generation of E!icient and Retargetable Semantics-Driven Optimizations 198:11

%arg0 = [A0, A1, A2, A3]
%arg1 = [B0, B1, B2, B3]
// Sign Extend Inputs
%arg0.sext = [A0.s, A1.s, A2.s, A3.s]
%arg1.sext = [B0.s, B1.s, B2.s, B3.s]
// Interleaved Access Pattern
%widen.mul = [(A0.s x B0.s), (A2.s x B2.s), (A1.s x B1.s), (A3.s x B3.s)]

(a) Simplified version of HVX’s widening multiplication

%arg0 = [A0, A1, A2, A3]
%arg1 = [B0, B1, B2, B3]
// Interleave Operands
%arg0.i = [A0, A2, A1, A3]
%arg1.i = [B0, B2, B1, B3]
// Sign Extend Inputs
%arg0.sext = [A0.s, A2.s, A1.s, A3.s]
%arg1.sext = [B0.s, B2.s, B1.s, B3.s]
%widen.mul = [(A0.s x B0.s),(A1.s x B1.s),
              (A2.s x B2.s),(A3.s x B3.s)]
%result = vector-add %widen.mul [C0, C1, C2, C3]

(b) Interleave Operands before widening 

multiplication
%arg0 = [A0, A1, A2, A3]
%arg1 = [B0, B1, B2, B3]
// Sign Extend Inputs
%arg0.sext = [A0.s, A1.s, A2.s, A3.s]
%arg1.sext = [B0.s, B1.s, B2.s, B3.s]
%widen.mul = [(A0.s x B0.s), (A2.s x B2.s),
              (A1.s x B1.s), (A3.s x B3.s)]
// Deinterleave product after widening
%widen.mul.d = [(A0.s x B0.s), (A1.s x B1.s),
                (A2.s x B2.s), (A3.s x B3.s)]
%result = vector-add %widen.mul.d [C0, C1, C2, C3]

(c) Deinterleave result after widening 

multiplication

Fig. 6. (a) Simplified illustration of the implicit data-swizzling in the semantics of HVX’s widening multipli-
cation. Operands are accessed in an even-odd interleaved fashion. (b) describes the swizzling of the vector
operands before widening multiplication. (c) describes performing the deinterleaving swizzle on the output of
widening multiplication before accumulation.

// Interleave 16-bit elements 2 from 128-bit
vectors
%0 = misaal.interleave.16b.2op.128b %arg0 %arg2
%1 = misaal.interleave.16b.2op.128b %arg1 %arg3

// Apply dot product ( cross-lane access )
// on interleaved vectors
%2 = _mm256_dpwssd_epi32 %accum %0 %1

(b) Dot-product with cross-lane accesses
requiring swizzles

%0 = <8xi32> sign-extend <8xi16> %arg0
%1 = <8xi32> sign-extend <8xi16> %arg1
%2 = <8xi32> vector-mul %0, %1
%3 = <8xi32> sign-extend <8xi16> %arg2
%4 = <8xi32> sign-extend <8xi16> %arg3
%5 = <8xi32> vector-mul %3, %4
%6 = <8xi32> vector-add %2, %5
%7 = <8xi32> vector-add %6, %accum

(a) Dot-product with non-cross lane access
with elements from across operands

Fig. 7. Equivalent programs for realizing the dot-product semantics. (a) Implements the dot-product using
element-wise SIMD operations without data-swizzling. (b) Implements the dot-product usingM!"##$ auto-
matically generated swizzles and cross-lane target dot-product instruction.

M!"##$ explicitly generates the swizzle which produces the desired packing from n input vector
registers (where 1 ⇐ 𝑍 ⇐ 4). Figure 7 illustrates an example of the derived packing swizzles in the
context of x86 dot-product instructions. The programs shown produce equivalent output, however
Figure 7(b) interleaves alternating elements of %𝑉𝑈𝑎0 and %𝑉𝑈𝑎2 using M!"##$ derived swizzles to
produce a packed vector which is twice as long as the individual operands. This enables the higher
performance _mm256_dpwssd_epi32 instruction to perform a 2-point horizontal dot-product on
the packed vectors producing equivalent output to the non-swizzled program in Listing 7(a).
After deriving these swizzle patterns from the target instruction semantics, M!"##$ applies

H%&’!&(’s Similarity analysis on these swizzles to create AutoLLVM IR of target speci#c swizzles
to abstract away parameters such as element-bitwidth, swizzle-o$sets, number of elements, and
vector register sizes. Figure 8 shows an example of the AutoLLVM IR representation of the swizzle
used in Figure 7 with di$erent parameterizations implementing di$erent swizzling behavior.

Table 2 describes the number of concrete swizzles with their AutoLLVM IR representation. This
compact representation captures the possible data swizzling required while marginally increasing
the size of the IR (up to a maximum of 7% for HVX) to be enumerated. M!"##$ also maintains
a mapping of which swizzle AutoLLVM IR equivalence class was derived from which target
instruction. As a result of this analysis, M!"##$ can now enumerate expressions with the required

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



198:12 A.R. Noor, D. Baronia, A. Kothari, M. Xu, C. Mendis, V. Adve

// AutoLLVM parameterization for complex swizzle
@autollvm.interleave(%arg0, %arg1, %bitwidth, %vectorsize, %offset, %numElem)

Dot-product with cross-lane accesses requiring swizzles

// Fully interleave alternating 16-bit elements from 128-bit vectors
@autollvm.interleave(%arg0, %arg1, 16, 128, 0, 8)
// Interleave the first half of alternating 32-bit elements from 1024-bit vectors
@autollvm.interleave(%arg0, %arg1, 32, 1024, 0, 16)
// Interleave the second half of alternating 32-bit elements from 1024-bit vectors
@autollvm.interleave(%arg0, %arg1, 32, 1024, 16, 16)

Fig. 8. AutoLLVM IR representation of complex data-swizzles created from the automatically derived data-
swizzling semantics generated byM!"##$ from ISA semantics. The prototype is described in blue with the
named parameters. The parameterization immediately below the prototype corresponds to the target specific
swizzle used in Figure 7(b).

Table 2. Derived swizzles AutoLLVM IR statistics across di!erent target architectures.

Architecture # Swizzles Swizzle AutoLLVM IR Size Reduction in # Swizzles
x86 243 10 24.3x
HVX 74 9 8.2x
ARM 59 8 7.4x
Total 376 27 13.9x

swizzle operations. The methodology of enumerating using equivalence classes from the previous
subsection is extended to include these additionally derived swizzle AutoLLVM IR. Note that
enumeration captures swizzle lowering rules as well which are needed to compile these high-level
complex swizzles into sequences of target supported instructions.

3.4 Semantics-Based Search Space Pruning
Enumerating using equivalence classes greatly reduces the enumeration space by orders of mag-
nitude. For example, enumerating x86 expressions to depth 2 (i.e. sequence length up to 4) with
target instructions produces 3𝑒1012 terms, while using equivalence classes results in 2.9𝑒108 terms
(approximately 9000x reduction). Scalability issues of enumerating deeper expressions still persist.
For example, enumerating AutoLLVM IR expressions derived from x86 to depth 3 results in a search
space exceeding 1032 terms. This implies some manner of pruning is inevitable. The challenge
however is how to prune such that desirable rewrite rules are not pruned out, while at the same
time keeping enumeration tractable.
The ideal design would automatically derive a pruning strategy directly from the target ISA

semantics. Hence M!"##$ proposes the use of the ISA semantics in automatically deriving pruning
policies. We motivate deriving these policies by example. Consider the program corresponding to
the 4-point dot product instruction _mm256_dpbusd_epi32 in x86 shown in Figure 9.
Figure 9 states the individual Halide IR operations required in synthesizing this complex in-

struction. Intuitively, we know that a dot-product-like instruction would consist of extension

// _mm256_dpbusd_epi32
%0 = <32xi16> sign-extend <32xi8> %arg0
%1 = <32xi16> zero-extend <32xi8> %arg1
%2 = <32xi16> vector-mul %0, %1
%3 = <8xi16> vector-reduce-add 4 <32xi16> %2 // Horizontal vector reduction with reduction factor 4
%4 = <8xi32> sign-extend <8xi16> %3
%5 = <8xi32> vector-add %4, %arg2

4-point dot product in x86

Fig. 9. Halide IR program 4-point dot product in x86. %arg0 is zero-extended, while %arg1 is sign-extended.
Another sign-extension is applied on the product of the two extended vectors. Finally the extended vector
is reduced and added to the accumulation registers. The following program exhibits multiple vector size,
bitwidths, extension variants.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



MISAAL: Synthesis-Based Automatic Generation of E!icient and Retargetable Semantics-Driven Optimizations 198:13

%0 = <4xi16> rdsl-sext <4xi8> BVSlices(_mm256_dpbusd_epi32, /* output lane */ 0, /* %arg0 */ 0)
%1 = <4xi16> _mm_cvtepu8_epi16 <4xi8> BVSlices(_mm256_dpbusd_epi32, /* output lane */ 0, /* %arg1 */ 1)
%2 = <4xi16> rdsl-mul %0, %1
%3 = <1xi16> rdsl-vector-reduce-add 4 <4xi16> %2 // Horizontal vector reduction with reduction factor 4
%4 = <1xi32> rdsl-sext <1xi16> %3
%5 = <1xi32> rdsl-add %4, %arg2

Compute-Only Instruction Relevance: _mm_cvtepu8_epi16 for _mm256_dpbusd_epi32 

Fig. 10. RDSL program containing __mm_cvtepu8_epi16 (i.e. zero-extend 8-bit elements to 16-bit) instruction
which implements the semantics of _mm256_dpbusd_epi32 (i.e. 4-point dot-product) output lane 0. Note
that since the reduction factor for this dot-product instruction is 4, the __mm_cvtepu8_epi16 instruction is
uniformly scaled down to operate on 4 vector lanes.

instructions, multiplication, reduction and addition. Hence, when enumerating for complex dot-
product instructions, for larger sequence lengths we should include these operations, and therefore
other operations are reasonable to exclude when enumerating for _mm256_dpbusd_epi32. While
this is su"cient for dot-product, this ’intuition’ may not be portable to other complex instructions.
Furthermore, it requires expert knowledge of the semantics of the instructions to de#ne this pruned
set of operations to enumerate.
The high-level algorithm M!"##$ employs is inspired by this motivation. We create distinct

sets (possibly overlapping) of AutoLLVM IR operations to enumerate rather than enumerating
all AutoLLVM IR operations with respect to each other. These sets are referred to as Relevance
Sets. Brie%y, given AutoLLVM IR Expression 𝑂, if 𝑐 ↘ 𝑂𝑏𝑙𝑏𝑚𝑉𝑍𝑊𝑏𝑁𝑏𝑇 (𝑂) then AutoLLVM IR 𝑐 can be
used, either as part of or fully, in an AutoLLVM IR expression 𝑑 such that 𝑑 ↓𝐿𝑀 𝑂. Intuitively, 𝑐
represents part of the required semantics which may be necessary when synthesizing AutoLLVM
IR expression 𝑂.

Creating these relevance sets is non-trivial as:
• AutoLLVM expression 𝑂 may contain various intermediate vector register sizes and element
bit-widths.

• AutoLLVM expressions may only produce the required semantics only if the data are swizzled
in a particular layout.

• Relevance sets need to be derived using equivalence over symbolic inputs which is not
entirely straightforward to evaluate with partial expressions.

M!"##$ yet again uses program synthesis to create these relevance sets by de#ning a ’Compute-
Only’ synthesis problem . For this problem, we de#ne the Relevance Domain Speci#c Language,
(RDSL) which consists of vectorized bit-vector operations and reduction operations described
in Figure 11. We then de#ne the following equivalence over symbolic inputs as synthesizing a
relevance program 𝑑 such that:

𝑐 ↘ 𝑂𝑏𝑙𝑏𝑚𝑉𝑍𝑊𝑏𝑁𝑏𝑇 (𝑂) ⇒⇑ ↗𝑑 ↘ (𝑂𝑛𝑁𝐿 ⇓ {𝑐 }) ⇔ (𝑐 ↘ 𝑑) ⇔ (𝑂 ↓𝐿𝑀 𝑑)
RDSL does not contain any data swizzle operations, hence it does not immediately rectify all of

the relevance set creation challenges described. Synthesis complexity grows exponentially with
bitvector sizes. Therefore, we would like the AutoLLVM IR operation and the synthesized relevance
program use minimal bitvector sizes. M!"##$ resolves both these limitations by leveraging the
following insight. For every vector operation, simple or complex, there is a repeating pattern for
groups of lanes. The group may be a single lane for simple vector operations (e.g element-wise
addition) or 2-4 (e.g. horizontal subtraction, dot-product). If the synthesized program 𝑑 can be
restricted to this small subset of lanes, the relevance property still holds but is more e"cient to
evaluate. This formulation requires automatically scaling down the vector lanes of the AutoLLVM
IR operation semantics to operate on the required vector lanes. We leverage this transformation

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



198:14 A.R. Noor, D. Baronia, A. Kothari, M. Xu, C. Mendis, V. Adve

Expr ::=
# Operations between vector operands producing vector
         BinaryOperator Expr Expr ElementBitwidth VectorSize
# Operation on single vector operand producing vector
      |  UnaryOperator Expr ElementBitwidth VectorSize
# Folding operation on single vector operand producing scalar
      | ReductionOperator Expr ElementBitwidth VectorSize
# Terminals are either slices of Operands, Intermediate
# values per lane, or constants
      | BVSlices | IntermediateValues | Const

BinaryOperator ::=  ReductionOperator | concatenate
                |   absolute-signed-difference
# Fold left these operations across vector-lanes 

ReductionOperator ::= 
        add | signed-sat-add | unsigned-sat-add
      | sub | signed-sat-sub | unsigned-sat-sub
      | unsigned-div | signed-div |  bitwise-or
      | bitwise-and | bitwise-xor | arithmetic-shift-right
      | logical-shift-right | shift-left | signed-max
      | unsigned-max | unsigned-min | mul 
      | signed-remainder | unsigned-remainder

UnaryOperator ::=
        bitwise-not | zero-extend | sign-extend | extract
      | signed-saturation | unsigned-saturation

RDSL Specification

Fig. 11. Description of the Relevance Domain Specific Language (RDSL) for Compute-Only Instruction
Relevance. RDSL primarily contains unary and binary arithmetic operations on scalar and vector operands. It
also provides operations for reducing vectors into scalars to capture cross-lane vector ISA semantics. Finally,
the terminals in RDSL denote constants, bitvector slices from the AutoLLVM IR operation’s vector operands,
as well as intermediate values extracted from the semantics of the AutoLLVM IR operation.

from H%&’!&(. However, even for a single output lane, AutoLLVM IR operations may access vector
data arbitrarily requiring data-swizzling.

To this end, we de#ne a semantics-based property of AutoLLVM IR expression: 𝑜𝑗𝑁𝑙𝑋𝑊𝑏𝑆(R, OIdx,
IIdx) as the set of bitvector slices accessed by AutoLLVM IR expression R for output lane index
OIdx by input operand at operand index IIdx. Consequently, the Relevance synthesis problem
directly includes the corresponding input operands bitvector slices accessed for the given output
lane as terminals rather than synthesizing expensive data swizzling instructions. This enables
e"ciently relating (according to our de#nition of relevance de#ned previously) the semantics of
two AutoLLVM IR operations independently of their respective data movements. For the example
in Figure 9, by analyzing the semantics of the dot-product instruction, we can infer that for output
vector lane 0:

𝑜𝑗𝑁𝑙𝑋𝑊𝑏𝑆(_mm256_dpbusd_epi32, /*output lane*/ 0, /*%arg1*/ 1) = %𝑉𝑈𝑎1[0 : 3].
Di$erent subset of lanes may implement di$erent computations. Thus to provide su"cient

coverage across lanes, we de#ne another semantics-based property of AutoLLVM IR expression:
𝑝𝑍𝑋𝑞𝑖𝑏𝐿𝑉𝑍𝑏𝑆 (𝑂) = {Minimal set of output lanes indices which perform distinct bitvector operations
in deriving the lane result}
For example, x86 addsub instructions perform an add on odd lanes indices and a sub on even

lanes indices.𝑝𝑍𝑋𝑞𝑖𝑏𝐿𝑉𝑍𝑏𝑆(addsub) = {0, 1} as lane 0 and 1 are the #rst instances where bvadd and
bvsub are performed (in increasing order of lane indices), and these operations can be replicated
across the lanes of the entire vector. This provides coverage across a minimal set of output lanes.
Finally,M!"##$ analyzes the AutoLLVM IR semantics to extract the reduction factors for a given
AutoLLVM IR operation. For Figure 9, the reduction factor is 4. Hence scalar and up to 4-long
vector RDSL operations are included when synthesizing the relevance program. Now that we have
de#ned these utilities we can update the de#nition of materializing relevance sets according to
Algorithm 1.

Figure 10 illustrates the concretized relevance program synthesized for identifying that a speci#c
x86 zero-extension instruction is relevant to the 4-point x86 dot-product instruction. The RDSL
operations used include 4-long vector and scalar RDSL operations. The x86 zero-extension vector
operation is uniformly scaled to 4-long vectors accordingly. Note that in practice, evaluating this
’Compute-Only’ relevance needs to occur only once for pairs of AutoLLVM IR equivalence classes.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



MISAAL: Synthesis-Based Automatic Generation of E!icient and Retargetable Semantics-Driven Optimizations 198:15

Algorithm 1 Relevance Set Computation
Relevance(R)↖ {}
for all Inst in AutoLLVM IR do

for OIdx in UniqueLanes(R) do
Inputs ↖ {}
for all IIdx in NumOperands(R) do

Inputs ↖ Inputs ⇓ BVSlices(R, OIdx, IIdx)
OutputValue ↖ R[OIdx]
if ↗𝑁 ↘ (𝑀𝑂𝑃𝑄⇓ {𝐿𝑅𝑆𝑇 }) , E↓𝐿𝑀 OutputValue then

Relevance(R).insert(Inst)

Generalized Instruction Relevance. As
the compute-only relevance problem operates
on extracted bitvector slices and is required to
produce a single scalar, the synthesis problem
can be e"ciently solved. However, for more
complex operations such as the one shown in
Figure 9, the synthesized program itself can
be large resulting in expensive synthesis times.
M!"##$ enables %exibility in the compute-only
program to more rapidly converge on the rel-
evance problem. This is achieved by optionally
enabling the intermediate values derived in the
complex instruction semantics as inputs to the compute-only program (in addition to the original
extract slices). This enables the relevance program to start from some intermediate state of the
complex program semantics. Additionally, the desired output of the compute-only synthesis prob-
lem can be made to be some (subsequent) intermediate value (in addition to the #nal output scalar).
This generalization captures the same relevance property while making the synthesized program
size small. The generalized algorithm for this property is expressed in Algorithm 2.

4 Implementation

Algorithm 2 Generalized Relevance Set Computation
Relevance(R) ↖ {}
for all Inst in AutoLLVM IR do

for all OIdx in UniqueLanes(R) do
Inputs ↖ {}
for all IIdx in NumOperands(R) do

Inputs ↖ Inputs ⇓ BVSlices(R, OIdx, IIdx)
IntValues↖ getIntermediateValues(R, OIdx)
for all Idx in 0 . . . IntValues.size() do

Inputs’ ↖ Inputs ⇓ IntValues[:Idx]
for all FIdx in (Idx + 1) . . . IntValues.size() do

OutputValue ↖ IntValues[FIdx]
if ↗𝑁 ↘ (𝑀𝑂𝑃𝑄 ⇓ {𝐿𝑅𝑆𝑇 }),𝑁 ↓𝐿𝑀 OutputValue then

Relevance(R).insert(Inst)

We implement a prototype version
of M!"##$ on top of Rosette [18], a
solver aided programming language
with constructs for synthesis and ver-
i#cation. Transformations on the Au-
toLLVM IR , Concretization Gram-
mar Generation, and Rewrite Rule
Enumeration are implemented in
Python. We leverage the EggLog [20]
programming language for express-
ing rewrite rules and applying term
rewriting using equality saturation.
For end-to-end compilation, we in-
tegrate M!"##$ into the Halide [14]
compiler.

5 Evaluation
We evaluateM!"##$ against the state-of-the-art production compiler Halide (version 13) with its
back ends for x86, Hexagon and ARM [7, 14] and also against synthesis-based compilers H%&’!&(
[2, 9] and Rake [1], using 33 benchmarks from image processing and deep learning domains. We
can not do an evaluation against Isaria [17] (which builds on Diospyros [19]) as it does not target
the architectures M!"##$ compiles for, nor Pitchfork [15] as it does not support generation of
data-swizzling operations. We choose Halide’s production-quality back ends for x86, Hexagon and
ARM as baselines because they have been developed and aggressively optimized for commercial
users (e.g., YouTube, Google Photos, Android mobile devices, Adobe Photoshop, etc.) by teams
of engineers at Google, Qualcomm, Adobe, and others over nearly a decade. We consider three
hardware targets – x86, Hexagon and ARM. Halide programs must be tuned manually for each
hardware target by optimizing their schedules; these benchmarks have been hand-tuned by us for

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



198:16 A.R. Noor, D. Baronia, A. Kothari, M. Xu, C. Mendis, V. Adve

x86, and by Qualcomm and Adobe for ARM and Hexagon. The image processing kernels include
image dilation, blurs and edge detection #lters across a range of #lter sizes, and others. We also
include important deep learning kernels, such as matrix multiplication on tensors of low batch
sizes (1, 2 and 4) which have low arithmetic density and are commonly found in large language
models; and we also evaluate some fused versions of deep learning kernels that are commonly
found in various neural networks (such as average/max pool + add), and in MLP blocks, in particular
(matmul + bias + activation + matmul).

For our experiments, for x86, we use an Intel Xeon Silver 4216 CPU (16 cores, 2.1GHz, 22 MB L3
cache) with hyperthreading disabled; for HVX, a cycle-accurate simulator in Hexagon SDK v3.5.2
provided by Qualcomm; and for ARM, an Apple M2 CPU (3.49GHz, 16 GB memory, 16 MB L3
cache). We use AMD EPYC 7453 28-Core Processor 2.7 GHz for generating the o!ine components
of M!"##$.

5.1 EggLog Usage
M!"##$ uses EggLog [20] for online rewrite rule application to compile programs in Halide IR to
AutoLLVM IR. Abstracted rewrite rules are generated separately per architecture. The relevant
architecture-speci#c abstracted rewrite rules and the abstracted Halide rewrite rules are included
when compiling for a particular architecture (x86, HVX or ARM). Halide IR operations are given
cost 10,000 and AutoLLVM IR operations are given cost 1 (to ensure that the extracted expression is
in terms of AutoLLVM IR). Bursts of 5 iterations of equality saturation are run until the extracted
expression is purely in AutoLLVM IR. If the extracted expression contains abstract swizzles, then
equality-saturation is re-run with only swizzle lowering rules (with abstract swizzles now having
cost 10,000) to ensure the swizzles are legalized to operations in the target IR. We terminate when
the extracted expression is purely in terms of AutoLLVM IR corresponding to the target ISA.

5.2 Compilation Times
One of the two fundamental advances inM!"##$ is in speed and scalability (the other is in more
powerful support for swizzles).
We compare how long it takes to compile programs with M!"##$ against the state-of-the-art

synthesis-based compiler, H%&’!&(. Columns 1 and 2 of Table 4 list the compilation times with
H%&’!&( and M!"##$ across di$erent benchmarks. We observe that M!"##$ achieves order of
magnitude reduction in compilation times against H%&’!&( with a geomean reduction of 16x for
x86, 9x for HVX and 10x for ARM. Most notably, for kernels such as convolution and l2norm
where data swizzling and cross-lane vector operations such as dot-product are needed to achieve
performance,H%&’!&( can compile a single application for over 5 hours, whereasM!"##$ completes
compilation in the order of seconds resulting in a maximum reduction in compilation time of 224x,
illustrating the dramatic improvement in scalability. This is expected as the underlying technology
leveraged in H%&’!&( (and most other program synthesis based tool chains) is SMT (satis#ability
modulo theory) solvers whose complexity increases with the number of arithmetic operations such
as multiplication and division, where asM!"##$ instead leverages equality saturation at compile
time to perform program translation on AutoLLVM IR patterns.
H%&’!&( does achieve comparable compilation times on a few benchmarks such as the dilate

kernel and even faster compilation time on a single kernel of max pool for HVX. As H%&’!&(
prunes its synthesis grammar online according to each expression it compiles at a time, it achieves
lower overall compilation time for simpler kernels like Max Pool where only the target instructions
involving element-wise maximum and minimum are needed. On the other hand, M!"##$ does
not perform any pruning during compilation and includes all the front end and target rewrite

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



MISAAL: Synthesis-Based Automatic Generation of E!icient and Retargetable Semantics-Driven Optimizations 198:17

rules during compilation, which a #xed overhead which results inM!"##$ taking slightly longer
compilation times for simpler benchmarks.

Table 3. Comparing compilation times of
M!"##$ against Rake, a synthesis-based
compiler for HVX (in seconds). Rake fails
to compile 27 out of 33 benchmarks.
Speedups in compilation times achieved
by M!"##$ shown in parentheses.

Benchmark Rake M$&’’(
sobel3x3 5988 300 (20x)
dilate3x3 3398 100 (34x)
avgpool 3648 329 (11x)
maxpool 63 413 (0.2x)
add 1879 517 (3.6x)
fully_connected 3669 193 (19x)
Geomean 1784 272.2 (6.8x)

It’s worth noting that, due to inherent scalability lim-
itation with program synthesis, H%&’!&( compiles large
Halide IR programs by decomposing an expression into
small windows and synthesizing each window separately.
On the other hand,M!"##$ reasons about the entire ex-
pression at once, resulting in optimizations over larger
sequences of operations, potentially yielding better code
and also simplifying the compiler design. Despite this
more powerful approach, M!"##$ shows dramatically
faster compilation time than H%&’!&( (and Rake).
We also compare M!"##$ against Rake [1, 11], a

synthesis-based compiler for HVX and ARM. Rake fails
to compile 27 out of 33 benchmarks due to crashes in the
Rosette interpreter for HVX and all of the benchmarks for ARM despite our best e$orts. We show
the comparisons between the compilation times of Rake and M!"##$ in Table 3. M!"##$ compiles
6.84x faster than Rake for all the benchmarks for HVX we could evaluate, except max pool which
M!"##$ slightly slower because of the same reason why H%&’!&( is slower at compiling it.

5.3 Peak Memory Utilization
Excessive memory consumption is a major obstacle to scalability for previous synthesis-based
compilers, likeH%&’!&(. The last two groups of columns in Table 4 show the peak physical memory
usage for H%&’!&( andM!"##$ respectively.M!"##$ requires orders of magnitude less memory
to compile than H%&’!&(, which uses online synthesis. H%&’!&( achieves retargetability at the
cost of up to 15 Gigabytes (Gb) of memory for benchmarks such as depthwise convolution on
x86. In contrast, M!"##$ requires few megabytes to compile. For x86 and ARM, M!"##$ achieves a
geomean memory reduction of 18x and 26x compared to H%&’!&( respectively, where as for HVX
M!"##$ achieves a relatively modest geomean memory reduction of 3x. This can be attributed to
the characteristics of the ISA themselves; x86 and ARM provide mostly element-wise SIMD vector
operations with select cross-lane operation variants where all operations are supported across
various element bitwidths and vector registers whereas HVX is a DSP architecture with highly
specialized, complex instructions. As a result, compiled HVX programs require more complex data
swizzling operations in addition to vector slicing and concatenations. Despite this, M!"##$ reaches
a maximum memory usage of 2.5 Gb which remains feasible for edge devices whereas H%&’!&(
exceeds 15 Gb, limiting its practical use to server-class machines. Furthermore, M!"##$ is able
to scale compilation across much larger program sequences, unlike H%&’!&( which must split
programs into more manageable synthesis queries. We additionally report the peak memory usage
for the o!ine enumeration and synthesis work%ow forM!"##$. The o!ine %ow parallelizes the
enumeration across 64 processes. Across the target architectures ISAs, we observe a sustained peak
memory usage of 8 Gb demonstrating that M!"##$’s concretization-based grammar can be solved
e"ciently with regards to memory usage enabling a high degree of parallelism. In contrast, a single
synthesis task for H%&’!&( may require gigabytes of memory.

5.4 Performance Evaluation
We evaluate the performance of code generated by M!"##$ and H%&’!&( against the common
baseline of Halide’s manually-written and optimized target-speci#c back ends. Figure 12a, 12b, 12c
show the relative performance of the three compilers for x86, HVX and ARM respectively.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



198:18 A.R. Noor, D. Baronia, A. Kothari, M. Xu, C. Mendis, V. Adve

Table 4. Compilation times and Memory Usage with H%&’!&( and M!"##$ on x86, HVX, and ARM. Fused
kernels are abbreviated as M: Matmul, B: Bias Add, R: ReLU, G: GeLU and E: Element-wise Add

H!"#$"%
Compilation
Times (s)

M$&’’( Compilation
Times (s) (Compilation

Speedup)

H!"#$"%
Peak Memory

(Mb)

M$&’’( Peak Memory
(Mb) (Memory
Improvement)

Benchmark x86 HVX ARM x86 HVX ARM x86 HVX ARM x86 HVX ARM
sobel 3x3 8300 4740 590 81

(103x)
301
(16x)

86 (7x) 2.5K 1.6K 8.5K 146
(17x)

1.2K (1x) 82 (103x)

sobel 5x5 10511 9171 332 416
(25x)

629
(15x)

81 (4x) 2.3K 1.6K 1.9K 190
(12x)

2.3K (1x) 82 (23x)

dilate 3x3 90 80 251 45 (2x) 100 (1x) 36 (7x) 863 1.6K 913 124 (7x) 677 (2x) 78 (12x)
dilate 5x5 90 120 86 33 (3x) 111 (1x) 25 (3x) 849 1.9K 814 113 (8x) 630 (3x) 79 (10x)
dilate 7x7 45 120 41 36 (1x) 110 (1x) 27 (2x) 856 1.9K 676 119 (7x) 663 (3x) 80 (8x)
box blur 3x3 724 450 82 118 (6x) 210 (2x) 26 (3x) 667 1.1K 857 101 (7x) 767 (1x) 79 (11x)
box blur 5x5 943 226 8832 159 (6x) 268 (1x) 99 (89x) 868 1.1K 12.5K 101 (9x) 917 (1x) 96 (130x)
box blur 7x7 1155 6900 8274 204 (6x) 453

(15x)
224
(37x)

876 7K 12.3K 102 (9x) 1.7K (4x) 96 (129x)

median 3x3 429 960 7247 93 (5x) 37 (26x) 47
(155x)

2K 1.6K 7.5K 184
(11x)

1.4K (1x) 80 (93x)

gaussian 3x3 2600 11760 133 54 (48x) 225
(52x)

42 (3x) 3K 5.5K 5.4K 101
(30x)

904 (6x) 81 (66x)

gaussian 5x5 5326 10800 776 57 (93x) 558
(19x)

52 (15x) 2.4K 1.9K 6.5K 102
(23x)

2.5K (1x) 81 (80x)

gaussian 7x7 12041 39480 1574 92
(130x)

500
(79x)

92 (17x) 5K 2.6K 5.3K 110
(46x)

588 (5x) 96 (55x)

l2norm 6000 20600 7068 75.9
(79x)

224
(92x)

102.12
(69x)

14K 5K 8.8K 121
(116x)

693 (7x) 98 (89x)

conv_nn 22000 54000 18270 144
(153x)

454
(119x)

110
(167x)

4.1K 1.4K 6.7K 142
(29x)

1.2K (1x) 112 (60x)

conv3x3a16 23940 25200 304 131
(183x)

281
(90x)

105 (3x) 2.4K 2K 7K 114
(21x)

970 (2x) 99 (71x)

depthwise_conv 11000 60274 1672 59
(186x)

620
(97x)

55 (30x) 15K 1.7K 5.7K 118
(128x)

1.2K (1x) 98 (58x)

avgpool 640 4487 203 50 (13x) 329
(14x)

37 (6x) 1.6K 1K 877 116
(14x)

885 (1x) 82 (11x)

maxpool 100 68 58 49 (2x) 413
(0.2x)

30 (2x) 838 1.3K 613 110 (8x) 909 (1x) 82 (8x)

fullyconnected 8563 36000 727 57
(150x)

193
(187x)

53 (14x) 2.4K 3.4K 4.2K 135
(18x)

668 (5x) 111 (38x)

add 2261 9480 259 98 (23x) 517
(18x)

38 (7x) 2.4K 1.9K 8.2K 118
(20x)

1.3K (2x) 98 (83x)

mul 6000 45000 2210 86 (70x) 245
(184x)

67 (33x) 2.2K 5.8K 7.6K 123
(18x)

860 (7x) 98 (78x)

softmax 4925 14000 3107 138
(36x)

549
(26x)

186
(17x)

5K 1.4K 2K 116
(43x)

1.5K (1x) 142 (14x)

matmul[b = 1] 125 500 97 48 (3x) 170 (3x) 30 (3x) 989 5.2K 628 102
(10x)

634 (8x) 81 (8x)

matmul[b = 2] 125 500 97 48 (3x) 170 (3x) 29 (3x) 989 5202 628 102
(10x)

634 (8x) 80 (8x)

matmul[b = 4] 125 500 97 48 (3x) 170 (3x) 29 (3x) 989 5202 628 102
(10x)

634 (8x) 80 (8x)

avgpool+add 3500 5000 15277 49 (71x) 364
(14x)

37
(412x)

1.6K 1.4K 4.5K 117
(14x)

964 (1x) 82 (54x)

maxpool+add 40 1000 83 52 (1x) 393 (3x) 31 (3x) 1.1K 545 1.4K 114 (9x) 909 (1x) 81 (18x)
M + B 198 500 142 49 (4x) 210 (2x) 31 (5x) 974 3.8K 679 106 (9x) 634 (6x) 81 (8x)
M + B + R 228 1000 188 62 (4x) 214 (5x) 36 (5x) 1.1K 5.4K 732 108

(10x)
634 (9x) 88 (8x)

M + B + G 2980 450 815 83 (36x) 235 (2x) 78 (10x) 9.8K 3.7K 4.6K 106
(93x)

634 (6x) 81 (56x)

M + B + E 227 1000 174 65 (4x) 223 (5x) 36 (5x) 1.4K 4K 765 106
(13x)

634 (6x) 88 (9x)

M + B + R + M 6274 350 868 87 (72x) 223 (2x) 85 (10x) 13.3K 5.2K 634 104
(128x)

638 (8x) 81 (8x)

M + B + G + M 3100 300 848 85 (37x) 223 (1x) 88 (10x) 8.4K 3.9K 635 112
(76x)

638 (6x) 81 (8x)

Geomean (33
benchmarks)

1196 2222 556 75 (16x) 258 (9x) 54 (10x) 2.1K 2.4K 2.3K 116
(18x)

891 (3x) 88 (26x)

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



MISAAL: Synthesis-Based Automatic Generation of E!icient and Retargetable Semantics-Driven Optimizations 198:19

+(
� 
%

0


+(
� 
%�
0�

�$
%�
, 

0



�$
%�
, 
�0
�

�$
%�
, 
�0
�

�%
-*

0



�%
-*
�0
�

�%
-*
�0
�

&
 �
$�
'

0


"�
-+
+$�

'

0


"�
-+
+$�

'�
0�

"�
-+
+�
$'
�0
�

%	
'(
*&

�(
'.
�'
'

�(
'.

0

�
�


� 
),
#/

$+ 
��
('
.

�.
 *
�"
 �
)(
(%

&
�0
�)
((
%

!-
%%1
��
('
' 
�,
 � ��

�
&
-%

+(
!,&

�0

�.
 *
�"
 �
)(
(%
��
��

&
�0
�)
((
%��
��

&
�,
&
-%
��
��

&
�,
&
-%
��
�	

&
�,
&
-%
��
��
�
��

�
��

��

�
��

��

�
��

��

�
��

��
���

��

" 
(&

 �
'

���

���

���

���

�
)
 
 
�
-
)

	��� �������0�
�� %�,$. �,(���%$� 

�1�*$� �0�
�� %�,$. �,(���%$� 

(a) Performance on x86

,)
�!
&

1


,)
�!
&�
1�

 %
&�
-!

1



 %
&�
-!
�1
�

 %
&�
-!
�1
�

�&
.+

1



�&
.+
�1
�

�&
.+
�1
�

'
! 
%�
(

1


#�
.,
,%�

(

1


#�
.,
,%�

(�
1�

#�
.,
,�
%(
�1
�

&	
()
+'

�)
(/
�(
(

�)
(/

1

�
�


 !
*-
$0

%,!
��
)(
/

�/
!+
�#
!�
*)
)&

'
�1
�*
))
&

".
&&2
��
)(
(!
�-
! � 

 
'
.&

,)
"-'

�1

�/
!+
�#
!�
*)
)&
��
  

'
�1
�*
))
&��
  

'
�-
'
.&
��
��

'
�-
'
.&
��
�	

'
�-
'
.&
��
��
�
��

�
��

��

�
��

��

�
��

��

�
��

��
���

��

#!
)'

!�
(

���

���

���

���

�
*
!
!
 
.
*

������������!&�-%/!�-)���&% !

�2 +% !������!&�-%/!�-)���&% !

(b) Performance on HVX

*'
��$


/


*'
��$

�/�

�#$�
+�


/


�#$�
+�

�/�

�#$�
+�

�/�

�$,
)


/


�$,
)�

/�

�$,
)�

/�

%
��

#�
&
/


!�,
**

#�
&
/


!�,
**

#�
&�/�

!�,
**

�#
&�/�

$	
&')

%

�'
&-�

&&

�'
&-


/

��




��(
+"

.#*�
��

'&
-

�-
�)

�!
��

(''
$

%
�/

�(
''

$

 ,
$$0

��
'&

&��
+�

�
��

�
%

,$

*'
 +%

�/

�-
�)

�!
��

(''
$��

��

%
�/

�(
''

$��
��

%
�+

%
,$��

��

%
�+

%
,$��

�	

%
�+

%
,$��

��
�

��

�
����

�
����

�
����

�
������

�
��

!�'
%

��
&

���

���

���

���

�
(
�
�
�
,
(

�������������$�+#-��+'���$#��

�0�)#���������$�+#-��+'���$#��

(c) Performance on ARM

Fig. 12. Performance of code generated by M!"##$ and H%&’!&( relative to Halide’s di!erent target-specific
back ends. Bars show speedups compared to Halide, so higher is be"er. Fused kernels are abbreviated as M:
Matmul, B: Bias Add, R: ReLU, G: GeLU and E: Element-wise Add.

Performance on x86. M!"##$ achieves a geomean 10% performance improvement on x86 com-
pared Halide’s x86 back end, with a maximum speedup of 2.08x, a slight improvement fromH%&’!&(
which outperforms the same back end by a geomean of 8% with a maximum speedup of 1.35x for
matrix multiplication benchmarks. In these benchmarks, M!"##$ e$ectively leverages e"cient x86
dot-product instructions, delivering competitive performance compared to the optimized Halide
x86 backend. In the batched matrix multiplication kernels, M!"##$ identi#es that a dot product
instruction can be repurposed as a widening multiply-add. Halide (as of version 13) does not know
this trick, and generates a longer sequence of instructions. For the fully connected benchmark,
both generate dot-product instructions, butM!"##$ achieves superior performance. This is because
M!"##$ identi#es opportunities to generate saturation instructions for 64-bit values, which Halide
cannot due to limited support. Additionally,M!"##$ reduces the number of shu!e vector operations
(data-swizzling) compared to the Halide generated code. Similar optimizations occur in the Add and
Sobel benchmarks, whereM!"##$ utilizes target-speci#c x86 instructions for better data movement.
Although Halide supports some x86-speci#c optimizations, its capabilities are limited by the large
size of the x86 ISA.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



198:20 A.R. Noor, D. Baronia, A. Kothari, M. Xu, C. Mendis, V. Adve

Performance on Hexagon. Compared to the x86 and ARM Halide backends, the Halide HVX
back end is the most aggressively optimized manually. It performs many optimizations, including
aggressively moving data swizzling instructions across multiple basic blocks in order to eliminate
redundant interleave and deinterleave swizzle patterns. However, these optimizations require
multiple years of development and #ne-tuning, and can be tedious and error prone to develop and
maintain as the ISA grows.
M!"##$ is able to synthesize strong enough rewrite rules o!ine to achieve competitive perfor-

mance against this highly optimized baseline, delivering a geomean relative performance of 0.98
against the Halide HVX back end, which is also what H%&’!&( delivers. For kernels such as sobel
and average pooling,M!"##$ and H%&’!&( generate appropriate scalar-vector widening multiplica-
tion operations whereas Halide’s HVX back end’s pattern matching rules fail to generate these
operations, and end up generating more expensive vector-vector widening multiplication opera-
tions using broadcasts instead. Conversely, for conv3x3a16, gaussian7x7 and a few other gaussian
variants, both H%&’!&( andM!"##$ incur similar, signi#cant slowdowns compared with Halide. For
gaussian7x7, M!"##$ and H%&’!&( generate e"cient cross-lane reduction operations with swizzle
operations. However, H%&’!&( is unable to optimize swizzle layouts across the entire program
due to limited scalability of program synthesis; but M!"##$ is able to automatically propagate
swizzles across operations such as interleaving and de-interleaving across instructions, resulting
in a 20% speedup over H%&’!&(. However, Halide is able to perform the same optimization more
aggressively so as to emit a 4-point dot-product, achieving signi#cantly higher relative performance.
Because HVX’s arithmetic operations do not support all vector register sizes, compilers must split
large vector registers into smaller vector sizes and concatenate them as needed. For the kernels
such as conv_nn, H%&’!&( and Halide generate code with vector addition operations operating
on the larger vector sizes; however,M!"##$ generates vector addition operations on the smaller
vector registers since it does not concatenate them, thereby leading to slowdowns.

Performance on ARM.M!"##$ achieves a geomean speedup of 1.02x against Halide on ARM,
with amaximum speedup of 1.21x over Halide’s productionARMbackend.Meanwhile,H%&’!&( gets
a geomean speedup of 3% and a maximum speedup of 1.21x. M!"##$ achieves similar performance
to H%&’!&( in most cases. Additionally,M!"##$ can recognize and rewrite dot product patterns
more %exibly compared to H%&’!&(. For fully connected benchmark, H%&’!&( fails to synthesize
dot product instructions since it requires synthesis over a larger sequence of input operations than
H%&’!&( supports; on the other hand, M!"##$ is able to synthesize the dot product operations by
reasoning about longer sequences of input operations. In Sobel kernels,M!"##$ andH%&’!&( reduce
the number of addition instructions by leveraging the umlal (unsigned multiply and accumulate)
instruction to combine addition and multiplication. In contrast, Halide generates ushll for constant
multiplication, missing the opportunity to combine it with addition. Speedups observed over
H%&’!&( for depthwise convolution and gaussian7x7 are serendipitous: H%&’!&( happens to
generate sequences of operations that LLVM’s ARM back end is unable to optimize, thereby leading
to slowdowns against M!"##$ and Halide.

5.5 Rewrite Rules Abstraction
Table 5 shows the numbers of rewrite rules identi#ed across the various target architectures in
M!"##$, and the number in Halide IR (the same Halide rewrite rules are used across the target
architectures). Across the target architectures, we observe the largest number of concrete rewrites
for x86, and is due to the relative ISA size of x86 compared to the other targets. The largest number
of concrete patterns are found in Halide IR, because it supports scalar and vector operations across
di$erent vector register sizes separately (from 8-bit up to 4096-bit vectors).M!"##$ automatically
abstracts these rewrites into parameterized, retargetable rewrite rules for both simple and complex

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



MISAAL: Synthesis-Based Automatic Generation of E!icient and Retargetable Semantics-Driven Optimizations 198:21

Table 5. Number of rewrites derived from each target and their corresponding number of abstracted rewrites.

Target # Concrete Rewrites # Abstracted Rewrite Reduction in # Rewrite
x86 5,806 329 17.6x
HVX 4,586 412 11.1x
ARM 4,085 190 21.5x
Halide 27,364 1,284 21.3x
Total 41,841 2,215 18.9x

Table 6. Compiler Construction times for automatically generated components of M!"##$. Enumeration is
done up to a depth of 4 with up to 5 terminals. NA : Not applicable.

Category x86 HVX ARM Halide
Compute-Only Relevance 16 hours 14 hours 21 hours 10 hours

Swizzle-Generation 37 mins 9 mins 8 mins NA
AutoLLVM IR Enumeration 1 month+ 1 month+ 1 month+ 1 month+

Extracting Concrete Rewrite Rules 5.9 hours 6.3 hours 3.5 hours 52 hours
Rewrite Rules Abstraction 10 mins 20 mins 6 mins 56 mins

cases. Across the target architectures, x86 and ARM observe the largest reduction of 17.6x and 21.5x
in the number of rewrites rules which is to be expected; x86 and ARM’s ISA are mostly generic
and provide various versions of the same operations with di$erent element-bitwidths and vector
register sizes enabling M!"##$ to abstract more concrete rewrite rules. In contrast, HVX exhibits a
relatively modest reduction of 11.1x due to it being a DSP architecture with specialized instructions
with fewer variations of element-types and vector register sizes.

5.6 Compiler Construction
We provide the compiler construction times across di$erent hardware targets and Halide in Table 6
for reference. Enumeration is performed up-to a depth of 4 (with up-to 5 terminals) which results
in over a month long enumeration time per target. Further engineering optimizations can be taken
to improve this time. For example, pruning commutative, associative and distributive variants
of equivalent expressions during enumeration can signi#cantly improve enumeration e"ciency.
Halide IR requires signi#cantly higher time for extracting concrete rewrite rules and rewrite rules
abstraction, which is directly a product of the large variation of ’concretizations’ for Halide IR
operations with respect to AutoLLVM IR. While we exhaustively extract all possible concretizations
for rewrite rule abstraction, a su"cient cut-o$ in the number of concretizations which are to be
extracted can be provided as a parameter to reduce the times for these two phases.

Halide uses greedy term-rewriting systems in its backends. Naturally, one might ask whether the
synthesized rewrite rules can be integrated. This presents challenges, particularly in determining
the rule application order. These systems often require careful tuning of both the rules and their
application order to ensure good performance and fast compilation times. However, insights
from e-graph-based rewriting can guide faster rule application in other systems. For example,
compiling benchmarks with e-graphs can reveal the most used rules during equality saturation.
Abstracting these rules reduces their number compared to concrete rules, especially when factors
like vectorization, element types, or bitvector operation variant vary. Although equality saturation
makes it di"cult to extract rule order directly, manual analysis might uncover heuristics for applying
these rules in other systems.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



198:22 A.R. Noor, D. Baronia, A. Kothari, M. Xu, C. Mendis, V. Adve

6 Related Work
Autovectorization. Porcupine [6] uses hand-implemented semantics for a small set of SIMD
instructions to synthesize code for homomorphic encryption. It requires users to provide reference
and sketch implementation with holes for their input programs. Diospyros [19] is a vectorizer for
Tensilica DSP; it uses a set of manually-de#ned rewrite rules to vectorize scalar code using equality
saturation at compile time. It de#nes a large space of rewrites that leads to an explosion in the
size of e-graphs and causes the equality saturation at compile time to take several minutes, if not
hours, even for small tensor kernels. Isaria [17] improves on Diospyros by automatically generating
rewrite rules using an ISA speci#cation in an o!ine stage and using heuristics to contain the
explosion in the size of e-graphs which enables it to reduce compilation times to a few minutes.
Neither Diospyros nor Isaria supports generation of complex compute and data swizzle instructions
which contribute enormously to the size and complexity of the synthesis process.

Instruction Selection. Rake [1] uses program synthesis to lower small sequences of input code
operations to target vector instructions at compile-time. Because it requires manually-implemented
semantics of target instructions, it only supports small subsets of target ISAs (a few hundreds of
instructions). Rake uses specialized heuristics to make generation of target cross-lane compute
instructions, and data interleave and deinterleave patterns tractable; however, synthesis still takes
several minutes and, in some cases, several hours. Pitchfork [15] uses Rake in an o!ine stage to
synthesize rewrite rules for short sequences of enumerated input IR operations with target-speci#c
#xed-point compute vector instructions. It then uses a custom lightweight term rewriter to apply
the rewrite rules on input code at compile time – this enables it to compile programs in a few
seconds. However, Pitchfork does not support generation of complex data swizzles. The rewrite
rules from Pitchfork have been partially merged into Halide’s main branch, though this occurred
after the Halide version we compare to in this work (version 13), so we do not directly compare
to Pitchfork. Enumo [12] is a DSL that can guide rewrite rule inference using equality saturation-
driven enumeration. Enumo can be used to infer rewrite rules for instruction lowering, however it
does not scale for larger ISA sizes and depths over the space we require. H%&’!&( [9] uses program
synthesis to generate code in a target-independent IR to target x86, ARM and Hexagon. H%&’!&(
uses several heuristics to make synthesis of complex compute and swizzle instructions feasible;
however, it still takes several minutes and hours, in some cases, to generate code.

7 Conclusion
We have presentedM!"##$, a retargetable compiler for Halide based on o!ine synthesis and online
(compile-time) rewriting for multiple target architecture families: x86, HVX and ARM. MostM!"##$
components are generated fully automatically from vendor-provided pseudocode speci#cations
of the target ISA semantics and an existing formal semantics of the Halide front-end IR.M!"##$
addresses three major challenges faced by previous compilers based on program synthesis: scalable
enumeration for synthesis of rewrite rules; optimized code for complex cross-lane compute and data
movement operations, without hurting scalability; and greatly reducing the number of rewrite rules
in order to make compile-time rewriting fast and e"cient. Moreover, M!"##$ delivers competitive
and sometimes even better performance than the highly tuned, production compiler for Halide
on all three architectures, except for a few cases on HVX. Overall, we believe M!"##$ takes the
development of synthesis-based compilers forward to a major new milestone, in particular, showing
that such compilers can be fast and scalable enough for deployment in real-world compiler systems.
Our results further show that mostly-automatically generated compilers can be competitive with
hand-crafted and heavily tuned manually implemented ones, even when performance is at a
premium.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.



MISAAL: Synthesis-Based Automatic Generation of E!icient and Retargetable Semantics-Driven Optimizations 198:23

Acknowledgments
We thank the anonymous reviewers and our shepherd for their helpful feedback on this paper. This
work was supported by funding from Amazon Research Awards programs, Qualcomm, Intel, the
University of Illinois Urbana-Champaign, and PRISM and ACE, two of the seven centers in JUMP
2.0, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

References
[1] Maaz Bin Safeer Ahmad, Alexander J Root, Andrew Adams, Shoaib Kamil, and Alvin Cheung. 2022. Vector instruction

selection for digital signal processors using program synthesis. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems. 1004–1016.

[2] Akash Kothari. [n. d.]. Hydride. https://github.com/akothen/Hydride.
[3] Arm. 2024. Neon. https://developer.arm.com/Architectures/Neon.
[4] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,

Yuwei Hu, Luis Ceze, et al. 2018. TVM: An automated end-to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI’18). 578–594.

[5] Lucian Codrescu. 2015. Architecture of the Hexagon™ 680 DSP for mobile imaging and computer vision. In 2015 IEEE
Hot Chips 27 Symposium (HCS). IEEE, 1–26.

[6] Meghan Cowan, Deeksha Dangwal, Armin Alaghi, Caroline Trippel, Vincent T Lee, and Brandon Reagen. 2021.
Porcupine: A synthesizing compiler for vectorized homomorphic encryption. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation. 375–389.

[7] Halide. [n. d.]. Halide. https://github.com/halide/Halide.
[8] Intel. 2019. Intel Deep Learning Boost. https://www.intel.com/content/dam/www/public/us/en/documents/product-

overviews/dl-boost-product-overview.pdf.
[9] Akash Kothari, Abdul Rafae Noor, Muchen Xu, Hassam Uddin, Dhruv Baronia, Stefanos Baziotis, Vikram Adve,

Charith Mendis, and Sudipta Sengupta. 2024. Hydride: A Retargetable and Extensible Synthesis-based Compiler for
Modern Hardware Architectures. In Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 514–529.

[10] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana
Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain
Speci#c Computation. In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). 2–14.
https://doi.org/10.1109/CGO51591.2021.9370308

[11] Maaz Ahmad, Hongpu Ray Gong, Andrew Adams. [n. d.]. Rake. https://github.com/uwplse/rake/tree/hvx-artifact.
[12] Anjali Pal, Brett Saiki, Ryan Tjoa, Cynthia Richey, Amy Zhu, Oliver Flatt, Max Willsey, Zachary Tatlock, and Chan-

drakana Nandi. 2023. Equality Saturation Theory Exploration à la Carte. Proc. ACM Program. Lang. 7, OOPSLA2,
Article 258 (Oct. 2023), 29 pages. https://doi.org/10.1145/3622834

[13] Qualcomm. 2020. Exploring the AI capabilities of the Qualcomm Snapdragon 888 Mobile Platform [video]. https://
www.qualcomm.com/news/onq/2020/12/02/exploring-ai-capabilities-qualcomm-snapdragon-888-mobile-platform.

[14] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013.
Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines.
Acm Sigplan Notices 48, 6 (2013), 519–530.

[15] Alexander J Root, Maaz Bin Safeer Ahmad, Dillon Sharlet, Andrew Adams, Shoaib Kamil, and Jonathan Ragan-Kelley.
2023. Fast Instruction Selection for Fast Digital Signal Processing. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Volume 4. 125–137.

[16] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality saturation: a new approach to optimization.
In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 264–276.

[17] Samuel Thomas and James Bornholt. 2024. Automatic Generation of Vectorizing Compilers for Customizable Digital
Signal Processors. In Proceedings of the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1. 19–34.

[18] Emina Torlak and Rastislav Bodik. 2014. A lightweight symbolic virtual machine for solver-aided host languages. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (Edinburgh,
United Kingdom) (PLDI ’14). Association for Computing Machinery, New York, NY, USA, 530–541. https://doi.org/10.
1145/2594291.2594340

[19] Alexa VanHattum, Rachit Nigam, Vincent T Lee, James Bornholt, and Adrian Sampson. 2021. Vectorization for digital
signal processors via equality saturation. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 874–886.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.

https://github.com/akothen/Hydride
https://developer.arm.com/Architectures/Neon
https://github.com/halide/Halide
https://www.intel.com/content/dam/www/public/us/en/documents/product-overviews/dl-boost-product-overview.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-overviews/dl-boost-product-overview.pdf
https://doi.org/10.1109/CGO51591.2021.9370308
https://github.com/uwplse/rake/tree/hvx-artifact
https://doi.org/10.1145/3622834
https://www.qualcomm.com/news/onq/2020/12/02/exploring-ai-capabilities-qualcomm-snapdragon-888-mobile-platform
https://www.qualcomm.com/news/onq/2020/12/02/exploring-ai-capabilities-qualcomm-snapdragon-888-mobile-platform
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340


198:24 A.R. Noor, D. Baronia, A. Kothari, M. Xu, C. Mendis, V. Adve

[20] Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosenthal, Zachary Tatlock, and Max
Willsey. 2023. Better Together: Unifying Datalog and Equality Saturation. Proc. ACM Program. Lang. 7, PLDI, Article
125 (June 2023), 25 pages. https://doi.org/10.1145/3591239

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 198. Publication date: June 2025.

https://doi.org/10.1145/3591239

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Equivalence Class Based Enumeration
	3.2 Target-Agnostic Rewrite Rule Abstraction
	3.3 Automatic Complex Swizzle Discovery
	3.4 Semantics-Based Search Space Pruning

	4 Implementation
	5 Evaluation
	5.1 EggLog Usage
	5.2 Compilation Times
	5.3 Peak Memory Utilization
	5.4 Performance Evaluation
	5.5 Rewrite Rules Abstraction
	5.6 Compiler Construction

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

