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After decades of research in approximate query processing (AQP), its adoption in the industry remains
limited. Existing methods struggle to simultaneously provide user-speci!ed error guarantees, eliminate
maintenance overheads, and avoid modi!cations to database management systems. To address these challenges,
we introduce two novel techniques, TAQA and BSAP. TAQA is a two-stage online AQP algorithm that achieves
all three properties for arbitrary queries. However, it can be slower than exact queries if we use standard
row-level sampling. BSAP resolves this by enabling block-level sampling with statistical guarantees in TAQA.
We implement TAQA and BSAP in a prototype middleware system, PilotDB, that is compatible with all DBMSs
supporting e"cient block-level sampling. We evaluate P!"#$DB on PostgreSQL, SQL Server, and DuckDB
over real-world benchmarks, demonstrating up to 126→ speedups when running with a 5% guaranteed error.
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1 Introduction
Approximate query processing (AQP) is widely studied to accelerate queries in big data analytics
[1, 2, 5, 7, 11, 12, 16, 27, 32, 33, 57, 65, 71, 74, 77, 79, 92, 104, 106]. Although AQP has been extensively
explored in academia, its adoption is still limited in practice [21, 62, 94]. Prior research demonstrates
three properties that are crucial for real-world AQP applications: (P1) guaranteeing user-speci!ed
errors before the query is executed (i.e., a priori error guarantees) [5, 13, 27, 57, 65, 74, 104], (P2)
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Table 1. Characteristics of state-of-the-art AQP systems and algorithms. Online AQP inherently eliminates
sample maintenance overhead. P!"#$DB is the first one that achieves a priori error guarantees (P1), eliminates
maintenance overheads (P2), and avoids DBMS modifications (P3), at the same time.

AQP System A Priori Error
Guarantees (P1)

w/o Maintenance
Overhead (P2)

w/o Modifying
DBMSs (P3)

BlinkDB [5] ⊋ → →
Taster [74] ⊋ → →

Sample+Seek [27] ⊋ → →
Quickr [57] ⊋ ⊋ →
BAQ [65] ⊋ → ⊋

VerdictDB [79] → → ⊋
DBest [66] → ⊋ ⊋
PilotDB ⊋ ⊋ ⊋

no maintenance overheads [57, 66], and (P3) not modifying the underlying database management
system (DBMS) [65, 66, 68, 79].

However, none of the existing systems or algorithms achieves all three properties simultaneously
(Table 1). We can further categorize these techniques into two types: o!ine methods that pre-
compute samples and online methods that generate samples at query time.
Existing o#ine AQP methods require maintenance overheads [1, 2, 5, 7, 11, 12, 27, 33, 65, 79],

sacri!cing P2 and leading to limitations in deployment. O#ine methods operate in two stages. In
the o#ine stage, they pre-compute data samples based on expected workloads [5, 65]. At query time,
o#ine samples that satisfy the error speci!cation are selected to answer the query. Consequently,
when data or workloads are updated, re-computations and/or manual inspections are required to
maintain a priori error guarantees [5, 27, 65]. The cumulative costs of this maintenance can be a
signi!cant overhead that discourages deployment and commercial adoption [13, 70].
Although online methods eliminate maintenance overheads (P2) [9, 36, 39, 53, 57, 93, 105],

existing online AQP algorithms require modifying DBMSs to achieve a priori error guarantees
[57], sacri!cing P3. These algorithms depend on sophisticated samplers and optimization logic for
query acceleration and error guarantees [57]. However, these techniques are tightly integrated
with DBMSs and lack widespread support. AS a result, adopting them requires modifying existing
DBMSs, which can be infeasible for commercial applications [68, 69, 79].

In this paper, we propose two novel techniques to simultaneously achieve P1, P2, and P3, while
accelerating queries compared to executing exact queries. First, we introduce a two-stage online
AQP algorithm, TAQA, that achieves all three properties through query rewriting. However, TAQA
alone cannot accelerate query processing due to sampling overhead. Therefore, we develop BSAP, a
set of statistical techniques that formalizes block-level sampling—a more e"cient sampling method
than the widely used row-level sampling—with error guarantees. Finally, we build a middleware
AQP system, P!"#$DB, which implements TAQA and BSAP.

TAQA. Our online AQP algorithm, TAQA, achieves all three properties through two stages of query
rewriting and online sampling. In the !rst stage, we rewrite the input query and execute it to
determine the optimal sampling plan that (1) satis!es the user’s error speci!cation and (2) minimizes
the execution cost. In the second stage, we rewrite the input query with the optimal sampling plan
and execute it, delivering results directly to users. For both stages, the rewritten queries leverage
existing samplers in the DBMS.
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Fig. 1. Sampling 3% data from a table with a block size of 100 rows: in expectation, the row-level method
requires scanning approximately 95% blocks, while the block-level method scans approximately 3% blocks.

However, naively using samplers of existing work in TAQA either fails to accelerate queries
or requires modifying DBMSs. Speci!cally, row-level samplers are ine"cient in databases that
read data at the block level, resulting in query latencies as high as exact queries (§4.1) [6, 89].
This is especially the case for analytical queries where data scanning is often the primary latency
bottleneck [15, 98]. To address the ine"ciency of row-level samplers, researchers have developed
more e"cient sampling techniques, such as index-assisted sampling [99, 109]. Unfortunately, these
techniques require modifying DBMSs and are not widely supported, sacri!cing P3.
As a promising solution to accelerate TAQA without modifying DBMSs, block sampling, which

samples data at the block level, achieves high e"ciency by skipping non-sampled blocks (Figure
1).1 Quantitatively, sampling 0.01% data from a table with 6B rows using block sampling can be
up to 500→ faster than uniform row-level sampling (Figure 5). Furthermore, our analysis reveals
that for the same error speci!cation, the sample size required for uniform block sampling can be
comparable or even smaller than that of uniform row-level sampling (§4.1).2

BSAP. Although block sampling has been included in the ISO standard SQL [61] and is widely
supported [22, 24, 29, 42, 50, 87, 100], existing error analysis techniques are insu"cient to handle
block sampling in nested or Join queries. Naively applying existing techniques can lead to errors up
to 52→ higher than the user-requested error (§5.2), sacri!cing P1. We introduce new statistical tech-
niques, BSAP, to formalize block sampling in approximate queries with statistical error guarantees.
For deep nested queries, we establish sampling equivalence rules to reason about the interaction
between block sampling and relational operations. For Join queries, we analyze the asymptotic
distribution and the variance of the Join result over block samples, extending the standard central
limit theorem (CLT) that fails when block sampling is executed on multiple tables [14, 47, 108].

With BSAP, we can further accelerate prior online AQP systems. In particular, we can use block
sampling to replace the heavily-used uniform row-level sampling [57], while preserving the error
guarantees. We empirically show that BSAP can accelerate %!&’( by up to 60→ (§5.4) and TAQA by
up to 219→ (§5.5), compared to uniform row-level sampling.

We build a prototype middleware AQP system, P!"#$DB, that implements TAQA and BSAP. We
evaluate P!"#$DB on various DBMSs, showing that it can achieve substantial query speedups
on diverse benchmarks, including TPC-H [23], Star Schema Benchmark [75], ClickBench [20],
Instacart [52, 79], and DSB [26]. When connected to transactional databases—PostgreSQL [96]
and SQL Server [67]—P!"#$DB achieves up to 126→ speedup. When connected to an analytical
1Throughout the paper, “block” refers to the minimum unit of data accessing in the storage layer.
2In an extreme case where the variance and expectation of a block is similar to the entire dataset, sampling one block can
be su"cient for a small error rate.
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database—DuckDB [88]—P!"#$DB achieves up to 13→ speedup. Furthermore, P!"#$DB consistently
achieves a priori error guarantees across various settings.

We summarize our contributions as follows:
(1) We propose TAQA, an online AQP algorithm that simultaneously achieves P1, P2, and P3 (§3).
(2) We develop BSAP, a set of statistical techniques that enable block sampling to answer approxi-

mate nested and Join queries with statistical guarantees (§4).
(3) We build and evaluate P!"#$DB, which implements TAQA and BSAP, achieving a priori error

guarantees and up to two orders of magnitude speedup on various DBMSs (§5).

2 Overview
In this section, we present an overview of P!"#$DB. We !rst discuss the background and challenges
of building P!"#$DB (§2.1). Next, we introduce the work$ow of P!"#$DB (§2.2). Finally, we describe
the types of queries (§2.3) and the semantics of errors (§2.4) that P!"#$DB supports.

2.1 Background and Challenges
In Table 1, we summarize the characteristics of state-of-the-art AQP systems in terms of a priori
error guarantees (P1), maintenance overheads (P2), and DBMS modi!cations (P3). We then present
the background and challenges of simultaneously achieving P1, P2, and P3 from the perspective of
algorithmic and statistical techniques.

Algorithmic Challenges. Given a query and an error speci!cation (§2.4), an AQP algorithm must
plan sampling properly to achieve a priori error guarantees (P1). A sampling plan speci!es the
sampling method, table(s) to sample, and the sample size, which determines whether the query can
be accelerated and whether the error speci!cation can be satis!ed. To determine the sampling plan,
prior work either pre-computes samples based on knowledge of the query workload [5, 27, 65, 74]
or inserts samplers to the query plan at query time based on online statistics [57]. However, these
methods break either P2 or P3. The pre-computation method requires maintenance e%orts to refresh
samples when data changes [5, 27, 65, 74], while the method of inserting samplers at query time
requires modifying the execution and optimization logic of DBMSs [57].
We aim to resolve the tension among P1, P2, and P3. As we explained, the key challenge is

to determine the sampling plan without pre-computation or controlling the query execution. To
address it, we propose a novel online AQP algorithm that processes a query in two stages to plan
and execute sampling (§3).

Statistical Challenges. Con!dence intervals derived from statistical theories, such as CLT, are
widely used to analyze errors of AQP [3–5, 12, 27, 28, 36–39, 46, 53, 57, 65, 72–74, 79, 103]. However,
deriving valid con!dence intervals for AQP with block sampling brings up two challenges that are
not addressed in existing literature.

First, we need to analyze errors when there are intermediate relational operations (e.g., Join and
Group By) between block sampling and aggregations. Prior work studies con!dence intervals for
simple Select-Aggregation query with block sampling [44, 78]. However, realistic queries often
have more relational operations after executing the sampling, which can potentially a%ect the
con!dence interval computation. Previous research on interactions between row-level sampling
and relational operations cannot be applied to block-level sampling because it cannot handle the
dependence of rows from the same block [57, 72]. In this work, we propose sampling equivalence
rules that establish the commutativity between block sampling and relational operations (§4.2),
allowing us to analyze errors of deep approximate queries that use block sampling.
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SELECT l_returnflag , l_linestatus ,

SUM( l_extendedprice ) as agg_1 , AVG( l_extendedprice ) as agg_2

FROM lineitem

WHERE l_shipdate <= date '1998 -12 -01' - interval '90!day'

GROUP BY l_returnflag , l_linestatus

-- error specification

ERROR WITHIN 5%

PROBABILITY 95%

Fig. 2. An example query supported by P!"#$DB.

User TAQA DBMS

Query
rewriter

SQL query ( )
error spec.

Query
execution

Pilot query ( )

BSAP

Pilot query
results ( )

Query
rewriter

Candidate sampling
plans ( )

Final query ( )

Approx. answer
Query

execution

Plan
optimizerOptimal sampling

plan ( )

Cost
model

Candidate query

Estimated cost

Fig. 3. Workflow of P!"#$DB.

Second, we need to obtain valid con!dence intervals when multiple tables in a Join query are
sampled at the block level. Existing literature studies the asymptotic distribution of the Join result
when tables are sampled with the same sample size [38]. However, it is insu"cient in our case
because we target a richer sampling space where sample sizes for tables can be arbitrarily di%erent.
To address that, we extend the theoretical result of Hass et al. [38] to a general form and derive an
estimation of the upper bound of the sampling variance to achieve error guarantees (§4.3).
Those challenges are crucial to formalizing block sampling in AQP with error guarantees. We

unify our theoretical results into BSAP, which can also be used to further accelerate other online
AQP algorithms beyond P!"#$DB (§5.4).

2.2 Workflow
P!"#$DB operates as a middleware between the user and the DBMS. As shown in Figure 2, users
may issue queries to P!"#$DB in the same way that they interact with a DBMS except that P!"#$DB
takes additionally the error speci!cation (§2.4) as input and produces an approximate answer.

On receiving the user’s input, P!"#$DB processes it with the TAQA algorithm. TAQA !rst rewrites
the input query 𝐿𝐿𝑀 into a pilot query 𝐿𝑁𝐿𝑂𝑃𝑄 that computes necessary statistics for error analysis.
Then, TAQA issues 𝐿𝑁𝐿𝑂𝑃𝑄 to the DBMS and obtains the pilot result 𝑀𝑁𝐿𝑂𝑃𝑄 . Based on 𝑀𝑁𝐿𝑂𝑃𝑄 and the
error speci!cation, TAQA incorporates BSAP to decide whether 𝐿𝐿𝑀 can be approximated e"ciently
using block sampling. Speci!cally, TAQA uses BSAP to analyze the error (§4) and generates a set of
candidate sampling plans, ω̃, that guarantee the error speci!cation (§3.1). If TAQA cannot identify
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any feasible sampling plans, P!"#$DB will proceed to execute the original query 𝐿𝐿𝑀 . Otherwise,
TAQA interacts with the cost model of the DBMS to determine the optimal sampling plan ω that
minimizes the estimated cost (§3.2). Finally, TAQA rewrites 𝐿𝐿𝑀 to a !nal query 𝐿 𝑅 𝐿𝑀𝑆𝑂 based on ω
and issues 𝐿 𝑅 𝐿𝑀𝑆𝑂 to the DBMS. We visualize this work$ow in Figure 3.

2.3 Supported!eries
P!"#$DB is designed to answer all queries the underlying DBMS supports by directly executing
the original query on the DBMS when necessary. There are two cases where P!"#$DB may fail to
accelerate a query: (1) TAQA does not support the query or (2) the cost model indicates that block
sampling cannot accelerate the query. In the !rst case, P!"#$DB directly passes the query to the
DBMS without intercepting it. In the second case, P!"#$DB intercepts the query processing with
TAQA but executes the original query eventually.

P!"#$DB tries to intercept and accelerate arbitrary aggregation queries using TAQA with the
following exceptions. First, P!"#$DB does not support non-linear aggregates, (e.g., COUNT DISTINCT,
MAX, and MIN), or aggregates in Group By clauses (e.g., GROUP BY COUNT(*)). These queries are
challenging for AQP and not supported in prior techniques [5, 27, 57, 79]. Moreover, if any subqueries
are correlated [91], P!"#$DB tries to replace correlated subqueries with Joins using pre-de!ned
rules. If P!"#$DB fails to apply rules, it falls back to executing the exact query, since executing the
pilot query is expensive if the query is correlated [79].
P!"#$DB may fail to accelerate extremely selective queries or queries with a large group car-

dinality. These two cases are challenging to support for sampling-based AQP [57, 79]. However,
prior online AQP may still use sampling on those queries, which results in errors larger than the
user-speci!ed error [57]. By contrast, P!"#$DB incorporates sampling plan optimization (§3.2) to
determine that sampling is infeasible or not e"cient for such queries. P!"#$DB defaults to executing
exact queries in this case.

2.4 Error Specifications and Semantics
Finally, we describe how users can specify error requirements in P!"#$DB and then de!ne the
statistical semantics of the error speci!cation. P!"#$DB allows users to specify a maximum relative
error for all aggregates together with a probability or con!dence, which are the same speci!cations
prior work allows [5, 57, 74, 104].

Taking the query in Figure 2 as an example, the error speci!cation means that the probability of
relative errors of agg_1 and agg_2 being simultaneously less than 5% is at least 95%. Generally,
consider a query with 𝑁 aggregations and𝑂 groups, resulting in a set of 𝑁 ·𝑂 aggregates: {𝑃𝐿, 𝑇 |1 ↓
𝑄 ↓ 𝑁, 1 ↓ 𝑅 ↓ 𝑂}. We denote 𝑃𝐿, 𝑇 as the estimate of the aggregate 𝑃𝐿, 𝑇 . An error speci!cation with
a relative error 𝑆 and con!dence 𝑇 means that P!"#$DB will output a set of estimated aggregates
such that the probability that all estimates simultaneously have a relative error no greater than 𝑆
(i.e., the probability of the intersection of events) is at least 𝑇 . Namely,

P


⋂
1↓𝐿↓𝑈,1↓ 𝑇↓𝑉

%%%%𝑃𝐿, 𝑇 ↔ 𝑃𝐿, 𝑇
𝑃𝐿, 𝑇

%%%% ↓ 𝑆


↗ 𝑇 (1)

Our error speci!cation limits the joint probability of all estimates having unexpected errors
across aggregations and groups. This is stronger and more intuitive for users to interpret than prior
work that only reasons about the error of each estimate independently [5, 57]. We will tackle the
joint probability in the next section.
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3 Two-Stage!ery Approximation
In this section, we focus on addressing the algorithmic challenges mentioned in Section 2.1. We
introduce our two-stage query approximation algorithm to answer the following three questions:

(1) How can we !nd a valid sampling plan that satis!es the user’s error speci!cation (§3.1)?
(2) How can we !nd an e"cient sampling plan that minimizes the execution cost of TAQA (§3.2)?
(3) How can we achieve (1) and (2) via query rewriting (§3.3)?

3.1 Sample Planning via Pilot!ery Processing
We determine sampling plans that satisfy the user’s error speci!cation by executing a pilot query
that inspects the statistical property of the input query. To understand what should be inspected
through the pilot query, we !rst parametrize the sampling plan.
Given a query with 𝑁 tables, a sampling plan should specify the sampling method and corre-

sponding sampling parameters for each table. To avoid modifying the DBMSs, we use Bernoulli
sampling where each unit (e.g., a row or a block) is independently selected with a !xed sampling
rate or probability 𝑈 without replacement. In many DBMSs [61], row-level Bernoulli sampling is
supported through the TABLESAMPLE BERNOULLI clause while block-level Bernoulli sampling is
expressed via TABLESAMPLE SYSTEM.

Although Bernoulli sampling produces variable sample sizes, we can still provide error guarantees
by parameterizing the 𝑁-table sampling plan into a list of 𝑁 sampling rates: ω = [𝑈1, . . . , 𝑈𝑈 ]. This
approach allows us to account for the variability in sample sizes when deriving guarantees. In the
rest of this section, we present the statistical intuition and formulation underlying this approach.

Statistical Intuition. Consider the scenario where the query involves one aggregation computed
on one group. We can calculate the con!dence interval to analyze the relative error of the estimate.
Suppose we have a population with mean 𝑃 that is estimated with a sample mean 𝑃. We denote
𝑉𝑊𝑋 [𝑃] as the variance of 𝑃. We can establish the following CLT-based con!dence interval for 𝑃:

P
[
𝑃 ↔ 𝑌 (1+𝑁 )/2

√
𝑉𝑊𝑋 [𝑃] ↓ 𝑃 ↓ 𝑃 + 𝑌 (1+𝑁 )/2

√
𝑉𝑊𝑋 [𝑃]

]
↗ 𝑇 (2)

where 𝑌 (1+𝑁 )/2 is the (1 + 𝑇)/2 percentile of the standard normal distribution. When 𝑃 is positive,
Inequality 2 can be equivalently converted to an inequality on the relative error of 𝑃:

P

[%%%%𝑃 ↔ 𝑃

𝑃

%%%% ↓ 𝑌 (1+𝑁 )/2
√
𝑉𝑊𝑋 [𝑃]

𝑃

]
↗ 𝑇

That is, to satisfy the error speci!cation with a maximum relative error 𝑆 and a con!dence 𝑇 , it is
su"cient to ensure that

𝑌 (1+𝑁 )/2 ·
√
𝑉𝑊𝑋 [𝑃] · 𝑃↔1 ↓ 𝑆 (3)

With Inequality 3, we observe that determining 𝑃 and 𝑉𝑊𝑋 [𝑃] is the key to satisfying the error
speci!cation. However, 𝑃 and 𝑉𝑊𝑋 [𝑃] are unknown unless we execute the input query. To address
this, prior work maintains pre-computed samples [5, 27, 65] or modi!es DBMSs to monitor statistics
during the query execution [57]. In TAQA, we estimate 𝑃 and𝑉𝑊𝑋 [𝑃] by executing a pilot query that
is dynamically rewritten from the input query.
To minimize the latency overhead, the pilot query samples the table that is most expensive to

load. This is achieved in two steps. First, P!"#$DB obtains an execution plan of the original query to
inspect the table loading method used by the DBMS. A table is considered as a candidate to sample
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if the DBMS uses scanning.3 Second, P!"#$DB queries the estimated table cardinality maintained
by the DBMS and samples the largest table that will be scanned.

From the pilot query result, we can estimate the lower bound of 𝑃 and the upper bound of𝑉𝑊𝑋 [𝑃]
where 𝑃 will be computed using a sampling plan ω in the !nal query. We !rst focus on sampling
one table in the !nal query and then address sampling multiple tables in Section 4.3. Assuming 𝑃
is sub-Gaussian,4 these bounds are estimated using standard technique based on the CLT [43], a
widely used approach in AQP [5, 27, 57, 79]. The sub-Gaussian assumption implies that 𝑃 has a
fast decaying tail bounded above by a Gaussian distribution. Then, the analytical expression of the
bounding distribution can be derived using CLT asymptotically.
For instance, given sample size 𝑍 and sample variance 𝑎̂ , we have 𝑊↔𝑊

𝑋̂/𝑀 ↑ 𝑏𝑀↔1 as 𝑍 ↑ ↘. With
su"ciently large 𝑍, we have:

P
[
𝑃 ↗ 𝑃 ↔ 𝑏𝑀↔1,1↔𝑌 · 𝑎̂ · 𝑍↔1] ↗ 1 ↔ 𝑐

where 𝑐 is a pre-speci!ed failure probability and 𝑏𝑀↔1,1↔𝑌 is 1↔𝑐 percentile of Student’s t distribution.
We can obtain the upper bound of 𝑉𝑊𝑋 [𝑃] similarly since the ratio between the variance 𝑎2 and its
estimate 𝑎̂2 converges to chi-squared distribution: (𝑍 ↔ 1)𝑎̂2/𝑎2 ↑ 𝑑2𝑀↔1. Furthermore, as 𝑍 follows
the binomial distribution 𝑒𝑄𝑍(𝑓 , 𝑈 ), we can estimate the lower bound of 𝑍 given the upper bound
of the population size 𝑓 that is obtained using the pilot query result.
However, this is not su"cient to guarantee the con!dence 𝑇 since these bounds obtained from

statistical distributions are probabilistic. A probabilistic bound can fail with a controllable probability
[43]. Therefore, to ensure the overall validity, we adjust the con!dence 𝑇 based on the failure
probability of all probabilistic bounds we used in the derivation, which leads to the con!dence 𝑇≃
in Procedure 1.

Formal Description. We formalize the intuition as follows.

P(#&)*+() 1. Consider an input query 𝐿𝐿𝑀 that computes a linear aggregate 𝑃. Suppose a user
speci#es a maximum relative error 𝑆 and a con#dence 𝑇 . In the #rst stage, we rewrite 𝐿𝐿𝑀 into a pilot
query𝐿𝑁𝐿𝑂𝑃𝑄 with sampling rate 𝑈𝑁 . Based on the result of𝐿𝑁𝐿𝑂𝑃𝑄 , we can calculate (1) 𝑔𝑊 : a probabilistic
lower bound of 𝑃, and (2) 𝑕𝑍 [ω]: a probabilistic upper bound of 𝑉𝑊𝑋 [𝑃] given a sampling plan ω.
Namely, with pre-speci#ed failure probabilities 𝑐1 and 𝑐2, we can obtain the following inequalities:

P
[
𝑃 ↗ 𝑔𝑊

]
↗ 1 ↔ 𝑐1 (4)

P [𝑉𝑊𝑋 [𝑃] ↓ 𝑕𝑍 [ω]] ↗ 1 ↔ 𝑐2 (5)

We #nd a sampling plan ω such that the following inequality holds

𝑌 (1+𝑁≃ )/2 ·
√
𝑕𝑍 [ω] · 𝑔↔1

𝑊 ↓ 𝑆 (6)

where 𝑇≃ is the adjusted con#dence based on the probabilities in Inequalities 4 and 5:

𝑇≃ = 𝑇 + 𝑐1 + 𝑐2

Procedure 1 involves three tunable parameters: 𝑈𝑁 , 𝑐1, and 𝑐2. Intuitively, a smaller 𝑈𝑁 reduces
overhead of executing 𝐿𝑁𝐿𝑂𝑃𝑄 , while a larger 𝑈𝑁 results in tighter estimations. Similarly, an optimal
allocation of probabilities (con!gurations of 𝑐1 and 𝑐2) can lead to smaller sampling rates and
thus higher query speedups. By default, we set 𝑈𝑁 = 0.05% and 𝑐1 = 𝑐2 = 1 ↔ 𝑇≃ = 1↔𝑁

3 . In line
with existing literature [40, 45, 57, 58, 90], we recommend con!guring 𝑈𝑁 to ensure that the pilot
3Due to the overhead, sampling is often slower than index seeking, which is often used when the table is indexed and
predicates are highly selective.
4Sub-Gaussian assumption holds for any bounded distribution based on Hoe%ding’s inequality. Estimates of aggregate are
bounded as tables have !nite cardinality.
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Table 2. Upper bounds of relative errors of composite estimators with multiplication, division, and addition.

Composite
estimator Upper bound of relative error

𝑃1 · 𝑃2 𝑆𝑊1 + 𝑆𝑊2 + 𝑆𝑊1 · 𝑆𝑊1
𝑃1/𝑃2 (𝑆𝑊1 + 𝑆𝑊2 )/(1 +min(𝑆𝑊1 , 𝑆𝑊2 ))
𝑃1 + 𝑃2 max(𝑆𝑊1 , 𝑆𝑊2 )

sample typically includes more than 30 units. For those requiring optimal performance, we suggest
e"ciently tuning 𝑐1 and 𝑐1 using cached pilot query results.
Following Procedure 1, we can obtain an estimated aggregate 𝑃 that satis!es the user’s error

speci!cation. We formally state the guarantee in Theorem 3.1.

T,)#()- 3.1. Assuming that the aggregate to estimate is sub-Gaussian, if the input query 𝐿𝐿𝑀 is
rewritten into a #nal query 𝐿 𝑅 𝐿𝑀𝑆𝑂 based on the sampling plan ω obtained from the Procedure 1, the
estimated aggregate 𝑃 computed in 𝐿 𝑅 𝐿𝑀𝑆𝑂 satis#es the inequality: P [| (𝑃 ↔ 𝑃)/𝑃 | ↓ 𝑆] ↗ 𝑇 .

P(##. S’)$&,. The probability of relative error bound can be proved by integrating the estima-
tions in the Procedure 1 and the con!dence interval for 𝑃 using Boole’s inequality. We defer the
full proof to our technical report [110]. ⫅̸

In P!"#$DB, 𝑔𝑊 and 𝑕𝑍 [ω] cannot be naively obtained through standard techniques since
P!"#$DB uses block sampling, instead of row-level sampling. Block sampling introduces correlations
among data from the same block, which breaks the assumption of data independence in standard
techniques [5, 43, 57, 79]. We develop a set of novel statistical techniques, BSAP, to address that (§4).

Multi-Aggregate Queries. It is common to calculate more than one aggregate in a single query by
computing arithmetic combinations of multiple aggregations, specifying multiple aggregations, or
grouping a table by columns. To guarantee the overall error speci!cation on all aggregates, we need
to adjust the error requirement (i.e., the relative error 𝑆 and the con!dence 𝑇) for each aggregate.

First, we discuss how TAQA deals with composite aggregates that compute (nonlinear) arithmetic
combinations of simple aggregates, such as the product of two SUM aggregates. In TAQA, we handle
composite aggregates by propagating the relative error of simple aggregates (e.g., the sum aggre-
gates) into the composite aggregates (e.g., the product). In the case of estimating the product of two
simple aggregates, the relative error of the product can be bounded above by the relative errors of
the factors: %%%%𝑃1 · 𝑃2 ↔ 𝑃1 · 𝑃2

𝑃1 · 𝑃2

%%%% ↓
%%%%𝑃1 ↔ 𝑃1

𝑃1

%%%%
%%%%𝑃2 ↔ 𝑃2

𝑃2

%%%% +
%%%%𝑃1 ↔ 𝑃1

𝑃1

%%%% +
%%%%𝑃2 ↔ 𝑃2

𝑃2

%%%%
This inequality shows that it is su"cient to limit the relative error of factors for the relative error of
the product to satisfy the error speci!cation. In P!"#$DB, we allocate the relative error requirement
evenly across simple aggregates. Therefore, each simple aggregate will need to satisfy a relative
error of 𝑆≃ =

⇐
𝑆 + 1 ↔ 1.

We refer to this way of using the relative error of simple aggregates to limit the relative error
of a composite aggregate as error propagation. We introduce propagation rules for multiplication,
division, and addition in Table 2, which are inspired by uncertainty propagations [54, 76, 95]. The
validity of these rules can be proved with straightforward algebraic transformation. We defer the
detailed proof to [110].

Second, in the case where a query computes multiple aggregates, TAQA adjusts the con!dence 𝑇
and applies the procedures in Procedure 1 to each of them. Based on our error semantics (§2.4),
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TAQA should guarantee that the joint probability of the relative error of each estimate being less
than 𝑆 is at least 𝑇 . To analyze the joint probability, we apply Boole’s inequality, which decomposes
the probability of a union of events into the sum of probabilities of individual events:

P


⋂
1↓𝐿↓𝑈,1↓ 𝑇↓𝑉

𝑆𝐿, 𝑇 ↓ 𝑆


= 1 ↔ P




1↓𝐿↓𝑈,1↓ 𝑇↓𝑉
𝑆𝐿, 𝑇 ↗ 𝑆


↗ 1 ↔

𝑈
𝐿=1

𝑉
𝑇=1

P
[
𝑆𝐿, 𝑇 ↗ 𝑆

]

where 𝑆𝐿, 𝑇 = | (𝑃𝐿, 𝑇 ↔ 𝑃𝐿, 𝑇 )/𝑃𝐿, 𝑇 | is the relative error of the aggregate estimate 𝑃𝐿, 𝑇 . This inequality
shows that it is su"cient to limit the summation of the con!dence of individual aggregates for the
overall con!dence to hold. With such decomposition, we can conveniently allocate the con!dence to
each aggregate. In P!"#$DB, we allocate the con!dence evenly. Namely, if we have 𝑁 ·𝑂 aggregates,
each aggregate 𝑃𝐿, 𝑇 needs to satisfy its relative error requirement with con!dence of 𝑇𝐿, 𝑇 = 1 ↔ 1↔𝑁

𝑈𝑉 .

Handling Missing Groups. Till now, we have been focusing on analyzing the error of estimations.
However, for queries with Group By clauses, it is possible to miss groups in the pilot query due to
block sampling. In this case, we may result in a sampling plan that does not guarantee errors of
aggregates of missed groups. To address it, TAQA controls the sampling rate of the pilot query to
ensure that groups larger than a user-speci!ed value 𝑖 are not missed with a high probability. If
all groups output by the query are smaller than 𝑖, TAQA will end up generating a sampling plan
with large sampling rates, making the approximate query more expensive than the original query.
Such sampling plans will be rejected during the sampling plan optimization (§3.2). Consequently,
P!"#$DB will execute these queries exactly.
To ensure that all groups with size greater than 𝑖 are included in the pilot query results with a

high probability, we propose the following lemma that computes the required sampling rate of the
pilot query. We defer the proof of the lemma to [110].

L)--/ 3.2. For a table 𝑗 with a block size 𝑘, block sampling with a sampling rate 𝑈 satisfying the
condition below ensures that the probability of missing a group of size greater than 𝑖 is less than 𝑇 𝑅 .

𝑈 ↗ 1 ↔

1 ↔


1 ↔ 𝑇 𝑅

 ⇒𝑎/𝑏 ⇑/|𝑐 |
1/⇒𝑎/𝑏 ⇑

(7)

Intuitively, Lemma 3.2 calculates the minimum sampling rate to maintain a high group coverage
probability. This result extends the group coverage probability of row-level sampling in prior work
(i.e., Proposition 4 of [57]) to block sampling. Empirically, with 𝑖 = 200 and 𝑇 𝑅 = 0.05, no groups
are missed for the queries we evaluated (§5.3). Nevertheless, there is an opportunity to integrate
block sampling with indexes, such as the outlier index [11], to better support small-group queries;
such an extension is left for future work.

3.2 Sampling Plan Optimization
For queries with multiple input tables, Procedure 1 often results in multiple valid sampling plans.
TAQA uses optimization methods to !nd the most e"cient plan. We formulate sampling plan
optimization as a mathematical optimization problem and derive a solution using cost models.

Problem Formulation.According to Procedure 1, the error speci!cation is satis!ed if the sampling
plan satis!es each constraint 𝑙𝐿, 𝑇 of 𝑄-th aggregation and 𝑅-th group, as de!ned below:

𝑙𝐿, 𝑇 (ω) :⇓ 𝑌 (1+𝑁𝐿,𝑀 )/2 ·

𝑕𝑍𝐿,𝑀 [ω] · 𝑔↔1

𝑊𝐿,𝑀 ↓ 𝑆𝐿, 𝑇

where 𝑇𝐿, 𝑇 , 𝑆𝐿, 𝑇 are the adjusted con!dence and the relative error requirement, respectively. The
overall constraint ε(ω) is de!ned as the conjunction of all individual 𝑙𝐿, 𝑇 (ω).
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However, the sampling plan space de!ned by ε(ω) is too broad to locate the most e"cient
sampling plan quickly. To further narrow down the plan space, we introduce the following additional
conditions. First, due to the overhead of sampling, a query with a sampling rate larger than 10%
can be as expensive as the exact query (Figure 5). Thus, we only consider sampling plans with
sampling rates smaller than 10%, which is consistent with prior work [57]. Second, we only consider
sampling plans that minimize the sample rate of one of the tables. Finally, we only sample large
tables that are expensive to load, using a similar approach to how we identify tables to sample in
the pilot query. We choose tables that will be scanned (not seeked) by the DBMS and are of high
cardinality (e.g., fact tables [59]). In our experiment, we set a threshold of 1 million rows. These
constraints result in the following space of sampling plans for a query with 𝑚 large tables.

ω̃ :=

argmin

ω
𝑈𝐿 , 𝑛 .𝑏 . ε(ω) ⇔ 𝑜 (ω, 𝑝)

%% 𝑝 ↖ {1, . . . , 𝑚}, 𝑄 ↙ 𝑝


where 𝑜 (ω, 𝑝) de!nes the domain of sampling plans:

𝑜 (ω, 𝑝) :⇓ (∝𝐿↙𝑑 0 < 𝑈𝐿 ↓ 0.1) ⇔ (∝𝐿ω𝑑 𝑈𝐿 = 1)
In P!"#$DB, we enumerate the sets of tables to sample and the individual table whose sampling

rate we aim to minimize. For each optimization problem, we use the trust region method for fast
and robust convergence [10].

Cost-based Optimization. The set of sampling plans ω̃ often contain more than one plan. Among
them, we must choose the most e"cient one to execute. Unfortunately, measuring the exact cost
is prohibitively expensive, as it requires executing the plan. Furthermore, cost estimation is a
challenging problem, lacking a universal solution for all DBMSs [102]. In P!"#$DB, we use the cost
model of the underlying DBMS to estimate the cost. Most DBMSs o%er external APIs to quickly
estimate the cost of a query without executing it [51, 63, 83, 85]. For in-memory databases that may
not have cost estimators, such as DuckDB [88], we estimate the cost by the volume of scanned data.
This is because data scanning can be much more expensive than data processing for in-memory
databases [88]. Empirically, the latency to sampling plan optimization is negligible compared to the
overall query execution (§5.6).
Furthermore, exact queries are likely to be cheaper to execute than approximate queries with

large sampling rates, particularly when small errors are required for queries with high selectivity
or large group cardinality. To address it, P!"#$DB rejects ine"cient sampling plans when the
estimated cost is larger than that of the exact query. If no sampling plan is feasible, P!"#$DB will
execute the exact queries.

3.3 !ery Rewriting
Throughout TAQA, we use query rewriting to synthesize and execute intermediate queries on the
underlying DBMS. We describe the high-level procedures to rewrite an arbitrary aggregation query
into (1) a pilot query 𝐿𝑁𝐿𝑂𝑃𝑄 which computes statistics required by Procedure 1 and (2) a !nal query
𝐿 𝑅 𝐿𝑀𝑆𝑂 which computes the !nal answer based on the sampling plan optimized in Section 3.2. We
demonstrate the query rewriting with an example in Figure 4.

Pilot Query Rewriting. Based on Procedure 1, 𝐿𝑁𝐿𝑂𝑃𝑄 computes di%erent statistics for di%erent
sampling methods. For row-level Bernoulli sampling, 𝐿𝑁𝐿𝑂𝑃𝑄 can directly compute aggregates,
corresponding standard deviations and the sample size. For block sampling,𝐿𝑁𝐿𝑂𝑃𝑄 needs to calculate
the aggregates and the size for each sampled block. This requires 𝐿𝑁𝐿𝑂𝑃𝑄 to group the result by
blocks. We achieve this by specifying the location of physical data blocks as a column expression.5

5Nearly every DBMS that implements TABLESAMPLE SYSTEM supports outputting data locations [30, 48, 49, 84, 86].
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SELECT SUM(x) / SUM(y * z)
FROM T1,T2
WHERE T1.id = T2.f_id AND ���
GROUP BY ���

SELECT SUM(x), SUM(y * z),
       COUNT(*),
       (T1.ctid��TEXT��POINT)[0] bid,
FROM T1 TABLESAMPLE SYSTEM (0.05),
     T2
WHERE T1.id = T2.f_id AND ���
GROUP BY ���, bid

SELECT (SUM(x)/0.03)
       / (SUM(y * z)/0.03)
FROM T1 TABLESAMPLE SYSTEM (3.0),
     T2
WHERE T1.id = T2.f_id AND ���
GROUP BY ���

1

Add block-level aggregations2

1

Add a sampling clause

2

3 Decompose composite
aggregates

3

1 Add sampling clauses
Upscale aggregates2

1

2

2

Pilot Query

Final Query

Input Query

Fig. 4. Demonstration of query rewriting with PostgreSQL syntax. Rewri"en parts are emphasized.

For example, in DuckDB, we divide the row ID by the block size; in PostgreSQL, we use the system
column ctid. We summarize the rewriting procedures as follows:
(1) We add a sampling clause (e.g., TABLESAMPLE SYSTEM) to the largest table in 𝐿𝐿𝑀 .
(2) We incorporate the block location column of the largest table into Group By clauses to compute

block-level aggregates.
(3) We decompose composite aggregates (e.g., SUM(x)/SUM(y)) into simple aggregates.

Final Query Rewriting. The !nal query 𝐿 𝑅 𝐿𝑀𝑆𝑂 computes estimates of aggregates using the
optimized sampling plan obtained. We summarize the rewriting procedures as follows:
(1) We add sampling clauses according to the sampling plan.
(2) We upscale the SUM-like aggregates by dividing the product of sampling rates.

4 Block Sampling for E"icient Online AQP
In this section, we address the statistical challenges mentioned in Section 2.1. We !rst present
motivations for using block sampling, examining its bene!ts and feasibility (§4.1). Next, we develop
theoretical results that enable block sampling in AQP with statistical guarantees. That is, we obtain
required estimations when using block sampling in Procedure 1 (i.e., 𝑔𝑊 and 𝑕𝑍 [ω]), especially for
queries with subqueries (§4.2) and Join (§4.3).

4.1 Motivations
Throughout the history of AQP research, various sampling methods have been studied [2, 5, 27,
57, 72]. However, there is no universally optimal method [13], and block sampling is no exception.
Nevertheless, to simultaneously achieve P1, P2, and P3, we argue that block sampling, which
samples data blocks, is better than row-level sampling methods. We will explain this from three
perspectives that are crucial in choosing sampling methods:
(1) System E"ciency: volume of resulting data in a !xed time
(2) Statistical E"ciency: required sample size for a !xed error rate
(3) Feasibility: achieving statistical guarantees on various DBMSs

SystemE!ciency.Across samplingmethods that do not need DBMSmodi!cations, block sampling
achieves the highest system e"ciency. This is because block sampling skips non-sampled data.
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Fig. 5. Comparison of the system e#iciency of sampling methods that do not modify DBMSs. At small
sampling rates, such as 0.01%, block sampling can be 500→ faster than others.

We evaluated the throughput of block sampling, row-level uniform sampling, and data shu#ing
on a 6B-row table. Figure 5 shows the latency to complete an AVG query over the sampled data
with sampling rates from 0.01% to 10% on PostgreSQL. At small sampling rates (e.g., 0.01%), block
sampling outperforms others by up to 500→. At large sampling rates (e.g., 10%), all methods have
comparable latencies to a full scan.

Statistical E!ciency. Block sampling can achieve comparable or higher statistical e"ciency
compared to row-level uniform sampling. Intuitively, block sampling introduces correlation across
data from the same block, which seems to a%ect its statistical e"ciency. However, in the case when
the data of each block is heterogeneous, the statistical e"ciency of block sampling can be similar
to or better than row-level uniform sampling. We analyze this with an AVG query over a table
{𝑞𝐿 |1 ↓ 𝑄 ↓ 𝑓 · 𝑘} of 𝑓 blocks and a consistent block size 𝑘.6 We present the theoretical result in
Lemma 4.1 and defer the proof to [110].

L)--/ 4.1. Let 𝑎2
𝑇 be the variance of data in the 𝑅-th block. The ratio between the sample size of

block sampling and that of row-level uniform sampling to achieve the same accuracy in expectation is
𝑘

1 ↔ E

[
𝑎2
𝑇

] 
𝑉𝑊𝑋 [𝑞𝐿 ]


.

Based on Lemma 4.1, we analyze the statistical e"ciency of block sampling in two cases. First,
when each data block is heterogeneous (i.e., E

[
𝑎2
𝐿

]
↑ 𝑉𝑊𝑋 [𝑞𝐿, 𝑇 ]), the required sample size for

block sampling can be smaller than that of row-level uniform sampling, achieving better statistical
e"ciency. Second, when each data block is homogeneous (i.e., E

[
𝑎2
𝐿

]
↑ 0), the required sample

size for block sampling is up to 𝑘 times that of row-level uniform sampling. We found that this
rarely happens, especially with deep queries or complex predicates, and is often o%set by the system
e"ciency of block sampling.

Feasibility. Finally, we evaluate whether it is feasible to use block sampling to approximately
process arbitrary aggregation queries. We identify two key criteria for this to happen. First, can
we obtain unbiased estimations [57]? It is easy to verify that estimations of linear aggregates
using block sampling are unbiased. For example, the SUM aggregate can be approximated without
bias by adding summations of data blocks divided by the sampling rate. Second, can we achieve
statistical guarantees of errors [13]? For queries computing aggregates directly on the output of
block sampling, we can achieve error guarantees by analyzing block-level statistics [38, 44, 78]. For
6Similarly, we can derive the analysis for varied block sizes by treating the block size as a random variable.
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p=0.1 p=0.1 p=0.1 p=0.1

p=0.1 p=0 p=0.1 p=0.1

p=1 p=0 p=1 p=1

p=0.1 p=0 p=0.1 p=0.1Equivalent

Kept data record

Removed data record

Data block

p Inclusion probability

Block sampling 10%

Relational operations that remove data Block sampling 10%

Relational operations that remove data
Input table:

Fig. 6. Demonstration of the commutativity between block sampling B and relational operations 𝑟𝑒 that
remove data (e.g., WHERE, JOIN conditions, and GROUP BY); Order of operations does not a#ect the inclusion
probability of each data block.

example, we can obtain a con!dence interval of the mean of the sum of each block with standard
CLT. However, it is non-trivial to achieve error guarantees for deep nested queries and Join queries.
We dedicate the rest of this section to resolving it.

4.2 Deep Nested!eries
Achieving statistical guarantees for sampling-based AQP on deep nested queries is challenging,
especially for non-uniform sampling methods [57, 72] such as block sampling. This is because the
output of sampling is manipulated by subsequent relational operations, which potentially changes
the statistical distribution of the sample. We use the following pair of queries as an example to
demonstrate such a situation:
-- Q1: the query we execute

SELECT SUM( l_extendedprice * l_discount )

FROM lineitem TABLESAMPLE SYSTEM (0.5%) JOIN parts ON partkey

WHERE l_shipdate >= DATE '1994 -01 -01' AND ...

-- Q2: the query we analyze

SELECT SUM( l_extendedprice * l_discount )

FROM ( SELECT * FROM lineitem JOIN parts ON partkey

WHERE l_shipdate >= DATE '1994 -01 -01' AND ... )

AS cte TABLESAMPLE SYSTEM (0.5%)

We can obtain the con!dence interval for Q2 by treating the sum of each block as a random
variable, similar to prior work [38, 44, 78]. However, it is unclear how to calculate the con!dence
interval for Q1 due to the Join and !lters between block sampling and the aggregation. In this
section, we address this issue by analyzing the interaction between block sampling and relational
operations and establishing rules for sampling equivalence.

Intuition. In general, we prove that block sampling is commutative with most relational operations,
including projection, selection, Join, Group By, and Union. In Figure 6, we demonstrate that
exchanging block sampling with any relational operation that removes data does not a%ect the
probability distribution of the sample. For relational operations that add data (e.g., Join), we can
always associate added data with a data block where block sampling operates.

Formalization. To formalize and prove this intuition, we de!ne the notion of sampling equivalence
in terms of sampling probability.

De#nition 4.2. Two sampling procedures, S1 and S2, for a set of 𝑁 relations {𝑗1, . . . ,𝑗𝑈 }, where
𝑁 ↗ 1, are said to be equivalent, denoted as

S1 ({𝑗1, . . . ,𝑗𝑈 }) ′ S2 ({𝑗1, . . . ,𝑗𝑈 })
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if, for any possible sample result 𝑀, the probability of obtaining 𝑀 is the same under both sampling
procedures 𝑝1 and 𝑝2, i.e.,

∝𝑀, P [S1 ({𝑗1, . . . ,𝑗𝑈 }) = 𝑀] = P [S2 ({𝑗1, . . . ,𝑗𝑈 }) = 𝑀] .
Next, we derive an important property of the sampling equivalence: the identity of the probability

distribution of aggregates, as shown in the following proposition. We defer the proof to [110].

P(#0#1!$!#2 4.3. Let S1 and S2 be two equivalent sampling procedures. For any aggregate function
𝑟 that maps a table to a real value, the probability distribution of the 𝑟 applied to samples from S1 is
identical to the probability distribution of 𝑟 applied to the samples from S2. Namely,

P
[
𝑟

S1 ({𝑗1, . . . ,𝑗𝑈 })


= 𝑠

]
= P

[
𝑟

S2 ({𝑗1, . . . ,𝑗𝑈 })


= 𝑠

]
, ∝𝑠 ↙ R

Based on Proposition 4.3, to show the aggregates computed over the outputs of two di%erent
sampling procedures have the same distribution, it is su"cient to prove two sampling procedures
are equivalent. Leveraging this, we show that block sampling is commutative with selection, Join,
and Union in the following propositions.

P(#0#1!$!#2 4.4. (S!"!#$%&’) For any table𝑗 , selection 𝑎𝑓 with a predicate𝑡 , and block sampling
B𝑔 with a sampling rate 𝑈 ,

𝑎𝑓 (B𝑔 (𝑗 )) ′ B𝑔 (𝑎𝑓 (𝑗 ))
P(#0#1!$!#2 4.5. (J&%’) For any tables 𝑗1 and 𝑗2, Join !𝑓 with a predicate𝑡 , and block sampling

B𝑔 with a sampling rate 𝑈 ,
B𝑔 (𝑗1) !𝑓 𝑗2 ′ B𝑔 (𝑗1 !𝑓 𝑗2)

P(#0#1!$!#2 4.6. (U’%&’) Let ∞ be a bag union operation (or UNION ALL in SQL). For any tables
𝑗1, . . . ,𝑗𝑈 (𝑁 ↗ 2) and block sampling B𝑔 with a sampling rate 𝑈 ,

𝑈
𝐿=1

B𝑔 (𝑗𝐿 ) ′ B𝑔


𝑈
𝐿=1

𝑗𝐿



P(##. S’)$&,. The derivation of Proposition 4.4, 4.5, and 4.6 closely follows our intuition
presented in Figure 6. We defer formal proof to [110]. ⫅̸

Finally, we consider projection and Group By. We !nd that the commutativity between block
sampling and projection is trivial, since projection is at the column level and thus orthogonal to
sampling. Moreover, Group By operations can be considered as a special case of selection with a
predicate on the grouping columns.

We conclude these equivalence rules with the following standard form for any supported aggre-
gation query 𝐿 :

𝐿 ′ AGG

!𝑈
𝐿=1 B𝑔𝐿 (𝑗𝐿 )


(8)

where 𝑗𝐿 is the output table of intermediate relational operations and 𝑈𝐿 is the sampling rate of the
𝑄-th input table. This result is obtained by applying our equivalence rules recursively across the
query. Intuitively, if an aggregation query executes block sampling on one input table (𝑁 = 1), it is
equivalent to the query that computes aggregate directly on a block sample. In this case, we can
calculate the estimates at the block level and use standard techniques to analyze the error [38]. If a
query executes block sampling on multiple input tables (𝑁 > 1), it is equivalent to the query that
computes aggregate on the Join of block samples.
We show that our sampling equivalence rules are stronger than sampling dominance rules

of %!&’R. First, the sampling dominance rules ensure the validity in only one direction and
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do not establish the equivalence. Second, using dominance rules are insu"cient for proving the
equivalence, as they only consider the inclusion probability of one or two sampled units (i.e., c-
and v-dominance). In contrast, our equivalence rules consider the joint inclusion probability of
the entire sample. As a result, when two sampling plans are equivalent in our de!nition, they
inherently satisfy sampling dominance.

4.3 Join!eries
When the input query has multiple large tables, TAQA tries to execute block sampling on multiple
tables, which leads to Equation 8 with 𝑁 > 1. To analyze the query error with TAQA, we need to (1)
ensure Procedure 1 is valid by investigating the asymptotic distribution of the aggregate over the
Join of multiple block samples and (2) obtain two estimates 𝑔𝑊 and𝑕𝑍 [ω] that are necessary for
TAQA to plan sampling (§3.1).

Failure of the Naive Method. Due to correlations within blocks and across Join results, the
asymptotic distribution of Equation 8 with 𝑁 > 1 is not governed by standard CLT [14, 38, 47].
Naively applying the standard CLT to calculate con!dence intervals can lead to invalid guarantees.
We show this failure through the following query that Joins two large tables and uses block sampling
on both tables:
SELECT SUM( price ) FROM lineitem TABLESAMPLE SYSTEM (1%)
INNER JOIN orders TABLESAMPLE SYSTEM (5%)
WHERE l_orderkey = o_orderkey AND comment LIKE '% special %'

The “con!dence interval” obtained through standard CLT with a 95% intended con!dence may
have a coverage probability as low as 8%.7

Our Solutions. We show that the sample mean still asymptotically converges to a normal dis-
tribution when multiple tables of a Join operation are sampled at the block level. However, the
variance is not of the standard form. We !rst present the asymptotic convergence in Theorem 4.7
and defer the proof to [110]. Theorem 4.7 is inspired by [38], but extends their theory to sampling
with di%erent rates. We present the theorem in a standard way using the block-level AVG aggregate.
The result for SUM and COUNT can be obtained similarly, while the row-level AVG can be considered
as a ratio between SUM and COUNT.

T,)#()- 4.7. Suppose a Join operation is executed on a set of 𝑁 tables {𝑗1, . . . ,𝑗𝑈 }, where each
table 𝑗𝐿 has a set of 𝑓𝐿 blocks: {𝑏𝐿,1, . . . , 𝑏𝐿,𝑕1 }. Let J (∈) be a function that takes as input 𝑁 blocks of
di$erent tables and produces the sum of the Join result of these blocks. We denote 𝑃 as the block-level
mean of the Join result:

𝑃 =


𝑈
𝐿=1

𝑓𝐿

↔1 𝑕1
𝐿1=1

· · ·
𝑕𝑁
𝐿𝑁=1

J (𝑏1,𝐿1 , . . . , 𝑏𝑈,𝐿𝑁 ) (9)

For each Join table 𝑗𝐿 , we execute the block sampling with a sample size of 𝑍𝐿 blocks. We denote 𝑃 as
the block-level mean of the Join result of block samples. Then, we can have the following convergence

𝑃 ↔ 𝑃
𝑖↔↑ N(0,𝑉𝑊𝑋 [𝑃]) as 𝑍𝐿 ↑ ↘ (10)

where 𝑉𝑊𝑋 [𝑃] is the (unknown) variance of 𝑃.
Theorem 4.7 validates our TAQA algorithm on queries where multiple tables are sampled at the

block level. To obtain concrete sampling plans, Procedure 1 requires a lower bound of aggregate:
𝑔𝑊 and an upper bound of the variance of the aggregate estimator: 𝑕𝑍 [ω]. We show the results
7We evaluated the query on DuckDB with the 1,000-scaled TPC-H 1,000 times.
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Table 3. Characteristics of workloads.

Benchmark #Queries #Queries w/ Join Max/Avg. #groups

TPC-H 9 7 175/22
ClickBench 7 0 17/3

SSB 10 10 150/38
Instacart 9 7 146/22
DSB-DBest 169 42 261/52

of 𝑕𝑍 [ω] for the two-table sampling with a SUM aggregate. 𝑔𝑊 can be derived based on standard
probabilistic inequalities, such as Chebyshev’s Inequality [43]. We defer the proof to [110].

L)--/ 4.8. Consider a query which Joins two tables 𝑗1 and 𝑗2. Without loss of generality, we
suppose that in the pilot query, block sampling with a tiny sampling rate 𝑈𝑁 is executed on𝑗1, resulting
in 𝑍𝑁 blocks. Given a #nal sampling plan ω = [𝑈1, 𝑈2], the probability that the variance of the SUM
estimate has an upper bound de#ned as follows is at least 1 ↔ 𝑐2:

𝑕𝑍 [ω] =
1 ↔ 𝑈1
𝑈1

𝑕𝑗 (1)


𝑐2

𝑓2 + 2


+ 1 ↔ 𝑈2

𝑈2

𝑕2
𝐿2=1


𝑕
𝑗 (2)
𝐿2


𝑐2

𝑓2 + 2

 2
+ (1 ↔ 𝑈1) (1 ↔ 𝑈2)

𝑈1𝑈2
𝑕𝑗 (3)


𝑐2

𝑓2 + 2



where 𝑢 (1)
𝐿 =

𝑕2
𝐿2=1 J


𝑏1,𝐿 , 𝑏2,𝐿2

 2
, 𝑢 (2)

𝐿2,𝐿
= J


𝑏1,𝐿 , 𝑏2,𝐿2


, 𝑢 (3) =

𝑕2
𝐿2=1 J


𝑏1,𝐿 , 𝑏2,𝐿2

2, and 𝑕𝑗 [𝑐] is the
upper bound of the Student’s t con#dence interval of the summation of 𝑢 with 1 ↔ 𝑐 con#dence [43].

5 Evaluation
In this section, we evaluate P!"#$DB with experiments to answer the following questions:
(1) Does P!"#$DB achieve statistical guarantees (§5.2)?
(2) How much can P!"#$DB accelerate queries (§5.3)?
(3) How much can BSAP improve existing online AQP (§5.4)?
(4) What are the individual contributions of TAQA and BSAP to overall performance (§5.5)?

5.1 Experiment Se#ings

Benchmarks.We evaluate P!"#$DB on a diverse set of benchmarks, including four benchmarks
that are widely used in prior work [5, 8, 27, 41, 60, 65, 79] and a benchmark that simulates real-
world data with skewed distributions [26]. Other real-world benchmarks used in prior work are
proprietary [5, 27], so we cannot evaluate P!"#$DB on those benchmarks.
• TPC-H and SSB are synthetic benchmarks for decision-making [23] and star-schema data
warehousing [75], respectively. We use a scale factor of 1,000.

• ClickBench is a real-world benchmark obtained from the tra"c recording of web analytics [20].
We scale up the raw data by 5→, resulting in a pre-processed size of 200 GB.

• Instacart is a micro-benchmark with real-world data from the Instacart [52] and queries from
TPC-H. We scale up the original data by 100→ using the same method as V)(*!&$DB [79].

• DSB is a synthetic benchmark based on TPC-DS, blended with skewed yet real-world data
distributions, including the (bucketed) exponential distribution and correlations across columns
[26]. We use a scale factor of 1,000. To cover the skewness in aggregation, Join, and Group By
columns, we use the queries from DB)1$ [66].
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In line with previous AQP studies [74, 79], we exclude queries with an empty result, correlated
subqueries, and a large group cardinality. In production scenarios, P!"#$DB can identify those
queries via TAQA and execute the exact query. We summarize the key statistics of the workloads in
Table 3. A large portion of queries contain Join and various numbers of groups.

DBMSs. We evaluate P!"#$DB on three DBMSs: PostgreSQL 16.3, SQL Server 2022, and DuckDB
1.0. DuckDB is an open-source in-memory column-oriented DBMS [88]. The default block sampler
of DuckDB always scans the entire column, which is less e"cient compared to PostgreSQL and
SQL Server. To improve the e"ciency of DuckDB’s block sampling, we add optimization rules to
push down block sampling into scanning. Our extension has been merged in DuckDB 1.2 [25].

Baselines. As far as we know, P!"#$DB is the !rst AQP system that simultaneously achieves P1,
P2, and P3. There are no directly comparable AQP systems to use as a baseline. Hence, we compare
P!"#$DB with executing exact queries on DBMSs that have state-of-the-art query optimizations. In
addition, we compare with %!&’( [57], the state-of-the-art online AQP system. %!&’( achieves
P1 and P2 but fails to ful!ll P3, which is the closest to P!"#$DB.

Testbed. Our experiments are conducted on CloudLab [31] r6525 nodes, each equipped with 256
GB RAM, 1.6 TB NVMe SSD, and two 32-core AMD 7543 CPUs. 8 Before executing each query, we
clear both the operating system cache and the query plan cache.

5.2 P!"#$DB Guarantees Errors
We !rst evaluated whether P!"#$DB achieves a priori error guarantees. We executed each query
from the !ve benchmarks on PostgreSQL 20 times, each with di%erent target error rates–the
maximum relative error in the speci!cation (§2.4). We set the con!dence to 95% and measured the
maximum relative error of aggregates. By default, we sampled at 0.05% during the planning stage
of TAQA. If the input query has Group By clauses, we use Lemma 3.2 with 𝑖 = 200, 𝑇 𝑅 = 0.05 to
compute the sampling rate for planning.
Figures 7 and 7e show the achieved errors for each benchmark with various target errors. The

bars in the !gure represent the minimum and maximum achieved errors across all queries and
executions, while the dots indicate the average achieved errors. For reference, we plot a dashed red
line to show the case when the achieved error equals the target error. As shown, P!"#$DB always
achieves errors that are less than the target errors. Furthermore, we !nd that none of the evaluated
queries miss groups, which veri!es the e%ectiveness of Lemma 3.2.

We observe that P!"#$DB guarantees errors conservatively, with the maximum achieved errors
being approximately half of the target errors. This arises because the sampling rates determined
by TAQA are guaranteed to be su"ciently large but may not always be the minimum necessary to
meet the user’s error speci!cations. For example, we apply Boole’s Inequality to tackle the joint
probability of multiple events, as shown in Section 3. The equality holds only when events are
mutually exclusive. To ensure the sampling rates are also the minimum necessary, it is crucial to
analyze the correlations between aggregates, which will be a future work.
We also evaluated the achieved errors when BSAP is replaced with a standard CLT-based con-

!dence interval. We show that without BSAP, the achieved error can be up to 52→ higher (1.7→
higher on average) than the target error, highlighting the contribution and necessity of BSAP.

5.3 P!"#$DB Accelerates!ery Processing
We analyze the performance of P!"#$DB by evaluating it on various DBMSs, with di%erent targeted
errors, and across all !ve benchmarks. The query execution follows the setting in Section 5.2.

8256 GB RAM is large enough for DuckDB to !t in required columns for individual queries after default compressions.
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(a) TPC-H. (b) SSB.

(c) ClickBench. (d) Instacart. (e) DSB.

Fig. 7. P!"#$DB achieves error guarantees on TPC-H, SSB, ClickBench, Instacart, and DSB. The achieved
error is smaller than targeted error if the result is below the red dashed line. We show the maximum, mean,
and minimum errors in 20 executions.

(a) PostgreSQL (log scale). (b) SQL Server (log scale). (c) DuckDB.

Fig. 8. P!"#$DB achieves 0.92-126→ speedups over exact execution across three DBMSs.

P!"#$DB Accelerates Queries across Various DBMSs. We evaluated P!"#$DB on TPC-H,
ClickBench, SSB, and Instacart across three DBMSs, targeting a 5% error and 95% con!dence. We
executed each query in each DBMS 10 times and calculated the geometric mean (GM) of speedups.
Figure 8 provides a detailed view of performance on each database, showing the cumulative

probability function (CDF) of speedups compared to exact query execution. As shown, P!"#$DB
consistently accelerates 80% of queries across all DBMSs. Moreover, P!"#$DB achieves up to 126→
speedup on transactional databases and up to 13→ speedup on an analytical database, DuckDB. In the
worst case, P!"#$DB slows down the execution by at most 8%. This is because the sample planning
stage involves executing a pilot query, the primary overhead causing the loss in performance.
We observe that P!"#$DB performs better on PostgreSQL and SQL Server than on DuckDB.

This is because DuckDB is optimized for in-memory processing. As such, when the data !ts in the
memory, DuckDB processes queries faster than transactional databases.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 198. Publication date: June 2025.



198:20 Yuxuan Zhu et al.

(a) Detailed performance on indi-
vidual queries.

(b) !ery speedup grouped by
query types.

Fig. 9. P!"#$DB accelerates queries on skewed data.
Fig. 10. Speedups of P!"#$DB
across various errors.

P!"#$DB Accelerates Queries on Skewed Data. To demonstrate the performance of P!"#$DB
on skewed data distributions, we evaluated P!"#$DB on DSB with a diverse set of 97 aggregation
queries, 30 queries with Group By, and 42 queries with Join [66]. We executed each query 10 times
on PostgreSQL and calculated the geometric mean of speedups.

Figure 9a shows the CDF of query speedups of P!"#$DB on DSB. As shown, P!"#$DB accelerates
queries over skewed data by up to two orders of magnitude compared to exact queries on PostgreSQL.
To understand how P!"#$DB performs on di%erent types of queries and skewness, we group query
speedups by the query type in Figure 9b. “Agg.” refers to simple aggregation queries where the
data of aggregated columns is exponentially distributed. “GroupBy” and “Join” refer to queries
with exponentially distributed data in the Group By dimension or Join columns, respectively.
P!"#$DB achieves 55→ overall speedup and 125→ speedup on simple aggregation queries. On Group
By and Join queries, P!"#$DB achieves 1.4→ and 4.3→ speedup, respectively. This is relatively
small compared to simple aggregation queries, but still signi!cant compared to row-level uniform
sampling which has 0.9→ speedup on average.

P!"#$DB Accelerates Queries with Various Error Targets. To study how P!"#$DB performs
with di%erent error targets, we evaluated the performance of P!"#$DB with error targets 1%-10%
on PostgreSQL. We executed each query 10 times for each error target and calculated the geometric
mean of speedups.
Figure 10 shows the speedup according to di%erent targeted errors. We observe that P!"#$DB

achieves query speedups for all evaluated targeted errors. Even with a small targeted error of 1%,
P!"#$DB achieves 1.6→ speedup. As expected, we !nd that P!"#$DB achieves higher speedups at
larger targeted errors.

Comparison with %!&’(. We compared P!"#$DB with the state-of-the-art online AQP system
%!&’(. Since%!&’( is not open-sourced, we consider a strict performance upper bound of it.
Speci!cally, as mentioned explicitly in their paper [57],%!&’( requires one pass over the data.
Therefore, we consider the data scanning time on each DBMS as the performance upper bound
(i.e., latency lower bound) of %!&’(. We give%!&’( the bene!t of parallelizing scanning with all
CPU cores and only consider the elapsed time of the longest scanning operation.

Figure 11 demonstrates the upper bound speedup of %!&’( and the speedup of P!"#$DB across
three DBMSs. As shown, P!"#$DB demonstrates signi!cantly higher query speedup by 1.2-4.2→.
Compared to%!&’( which always scans the whole data, P!"#$DB achieves better e"ciency by
skipping non-sampled data blocks.
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Fig. 11. P!"#$DB outperforms Q%!&’(
by up to 4.2→ across three DBMSs.

Fig. 12. BSAP improves the speedup of
Q%!&’( by up to 60→ on DuckDB.

Table 4. Geometric mean of the slowdowns of P!"#$DB compared to P!"#$DB-O.

PostgreSQL SQL Server DuckDB

PilotDB (overall) 1.61→ 1.21→ 1.27→
PilotDB (2nd stage) 1.04→ 1.08→ 1.19→

5.4 BSAP Augments Existing Online AQP
In this section, we evaluated whether and how much BSAP can improve the performance of existing
online AQP. We used TPC-H queries where %!&’( applies row-level uniform sampling. On those
queries, we reproduce%!&’( in DuckDB by manually adopting the rules described in [57] and
then rewriting queries with parallelized row-level uniform sampling. We incorporate BSAP into
%!&’( by further (1) replacing the uniform sampling with block sampling and (2) adapting the
Horvitz-Tompson estimator with the error analysis of BSAP. Finally, we target a 10% error, which is
consistent with the setting in%!&’(’s paper [57].

Figure 12 shows the speedups of %!&’(+BSAP and original %!&’(, compared to exact queries
on DuckDB. As shown, %!&’(+ BSAP achieves higher speedups by 4.9-60→. We !nd that these
evaluated queries typically have a latency bottleneck at table scanning. In this case, BSAP can
signi!cantly accelerate existing online AQP by skipping non-sampled blocks when scanning tables.

5.5 Ablation Study
We evaluated the e%ectiveness of the design choices of P!"#$DB by comparing P!"#$DB with its
alternative con!gurations.
(1) We replace TAQA with pre-computed statistics (P!"#$DB-O).
(2) We replace BSAP with row-level sampling (P!"#$DB-R).
(3) We replace Bernoulli sampling with !xed-size sampling.
We used the same setting as Section 5.3 for query executions.

P!"#$DB Achieves Near-Optimal Performance. In TAQA, we use estimations based on a pilot
query to determine the sampling rates for a given error speci!cation (§2.4). To understand the
impact of those estimations on the performance of P!"#$DB, we compare it with P!"#$DB-O, which
represents the upper-bound performance achievable for AQP that uses online block sampling. For
each query, we measure the latency of P!"#$DB-O, P!"#$DB, and the second stage of P!"#$DB.
We executed all queries in our benchmarks.

Table 4 shows the slowdowns of P!"#$DB compared to P!"#$DB-O, computed as the ratio of their
latencies. Compared to P!"#$DB-O, P!"#$DB is only 21%-61% slower, showing the e%ectiveness of
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Table 5. Speedups of P!"#$DB over P!"#$DB-R.

PostgreSQL SQL Server DuckDB

Geometric mean 12.6→ 9.37→ 1.92→
Maximum 219→ 71.4→ 13.2→

Fig. 13. Latency decomposition
of P!"#$DB.

Fig. 14. P!"#$DB achieves >6→
speedup across various 𝑈𝑁 .

Fig. 15. P!"#$DB achieves 4.8-
10.0→ speedups for various (𝑐1, 𝑐2).

TAQA. However, the latency of P!"#$DB-O does not include the time to determine sampling rates,
which requires executing the original input query. To decouple factors that a%ect the !nal latency,
we also exclude the time to determine the sampling rates in P!"#$DB, leaving the latency of the
second stage of P!"#$DB. As shown in Table 4, the latency of the second stage of P!"#$DB is only
4%-19% higher than P!"#$DB-O. This demonstrates that the optimized sampling plan of P!"#$DB
is close to optimal.

P!"#$DB Outperforms Row-level Bernoulli Sampling. In Section 4, we showed the advantage
of BSAP over uniform row-level sampling with a motivating experiment in Figure 5. Here, we
demonstrate the bene!t of BSAP in terms of end-to-end latency. We compared P!"#$DB and
P!"#$DB-R across all the benchmarks. In P!"#$DB-R, we use the default row-level Bernoulli
sampling in each DBMS as the sampling method. That is, we rewrite queries in PostgreSQL and
DuckDB with “TABLESAMPLE BERNOULLI(p)”, where “p” is the sampling rate, and in SQL Server
with “WHERE rand() < p”, where “rand()” outputs a random number in [0,1].

Table 5 summarizes the speedup of P!"#$DB compared to P!"#$DB-R. We show the geometric
mean and maximum speedup for each DBMS. P!"#$DB achieves a higher geometric mean speedup
by 8.0→ and a higher maximum speedup by 219→, compared to P!"#$DB-R.We observe that P!"#$DB
provides a greater bene!t on PostgreSQL and SQL Server compared to DuckDB. This is because
DuckDB is columnar, which, unlike Postgres and SQL Server, allows it to scan selected columns.

Comparison with Fixed-size Sampling.We compare P!"#$DB with !xed-size sampling at the
row and block level. We use “ORDER BY RANDOM() LIMIT sample_size” for row-level !xed-size
sampling. Furthermore, only PostgreSQL supports block-level !xed-size sampling, via an extension:
tsm_system_rows [97]. We repeat both methods on PostgreSQL for TPC-H 10 times, targeting 5%
error and 95% con!dence. In terms of the geometric mean speedup, P!"#$DB outperforms row-level
!xed-size sampling by 93.3→ and underperforms block-level !xed-size sampling by 3.8%. This is
because Bernoulli sampling leads to varied sample size which requires sampling more data to
maintain the same error guarantees, compared to !xed-size sampling. However, the performance
loss is small since the probability of size variation decreases exponentially as the variation amount
increases, according to the Cherno% Bound on the Binomial distribution [56].
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5.6 Latency Decomposition
We decompose the latency of P!"#$DB into three parts (1) sample planning (§3.1), (2) plan optimiza-
tion (§3.2), and (3) !nal execution. We executed each query on PostgreSQL 10 times and calculated
the geometric mean of their latencies. Figure 13 demonstrates the latency proportion of each part.
As shown, the sample planning via pilot query execution is the major overhead, while the !nal
query execution constitutes the majority of the total latency.

5.7 Sensitivity Analysis
We conducted a sensitivity analysis of PilotDB’s performance across a wide range of parameter
settings in Procedure 1: 𝑈𝑁 , 𝑐1, and 𝑐2.

Impact of the pilot query sampling rate (𝑈𝑁 ).We executed TPC-H Query 6 on PostgreSQL with
various 𝑈𝑁 values (0.05%-10%), aiming for 1% errors and 95% con!dence. Figure 14 shows maximum,
minimum, and geometric mean speedups achieved by P!"#$DB across 10 executions. We !nd that
the speedup is non-monotonic with respect to 𝑈𝑁 : performance declines at low sampling rates due
to loose estimations and at high rates due to expensive sample planning. Nevertheless, P!"#$DB
achieves >6→ speedups consistently.

Impact of the failure probability allocation (𝑐1, 𝑐2).We execute TPC-H query 6 on PostgreSQL
with various 𝑈1 and 𝑈2 values (0.1%-4.8%) , targeting a 1% error. According to Procedure 1, we ensure
𝑐1 + 𝑐2 + 𝑇≃ = 5% to maintain the 95% con!dence for the error guarantees. Figure 15 shows the
geometric mean speedup of P!"#$DB across 10 executions. As shown, P!"#$DB achieves 4.8-10.0→
speedups, with the maximum speedup at 𝑐1 = 0.2% and 𝑐2 = 4.6%. Our default setting leads to 21%
lower speedup compared to the optimal con!guration. For scenarios requiring optimal speedups, we
can e"ciently tune 𝑐1 and 𝑐2 with cached pilot query results or incorporate 𝑐1 and 𝑐2 as optimizable
parameters during the sampling plan optimization.

6 Related Work

Online AQP. Generating samples of large tables upon query arrival is widely studied in prior AQP
techniques [32, 57, 72, 73, 103, 106, 107]. Prior work formulated random sampling as a standard
operation in query processing to estimate aggregates and used analytical or bootstrap con!dence
intervals to measure the estimation error [72, 73, 81, 103, 106, 107]. As a step further for complex
queries, %!&’( injects sampling operations in the query plan level and integrate sample planning
with query optimization to achieve acceleration and a priori error guarantees [57]. Additionally,
I*)/ reuses previous results to accelerate future approximate queries [32]. More recently, T/1$)(
combines online and o#ine methods by caching the online samples and reusing them for future
queries to achieve faster execution [74].
Although existing online AQP systems return estimation errors, they cannot provide a priori

error guarantees without modifying the underlying DBMS. In addition to the DBMS modi!cations,
state-of-the-art methods with a priori error guarantees slow down a signi!cant part of queries
compared with exact execution [57, 74] or lead to errors as big as 100% [57].

O"line AQP. Prior work developed two types of o#ine AQP methods: summary-based methods
[16, 34, 35, 71, 77, 80, 82, 92] and sampling-based method [1–5, 7, 11, 12, 27, 33, 65, 74, 79]. The
primary idea of summary-based o#ine AQP is to compress or summarize columns through numeric
transformations. Therefore, they cannot process queries with non-numeric columns, such as
categorical columns, or with complex relational operations, such as join and grouping.

Sampling-based o#ine AQP generate o#ine samples to answer online queries. Aqua !rst devel-
oped the method of rewriting queries with pre-computed samples to answer approximate queries
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[1–4]. Subsequently, various optimizations in o#ine sample creation have been proposed, such as
weighted sampling [7, 33], strati!ed sampling [12], and outlier index [11]. Prior work has explored
guaranteeing errors a priori by generating specialized samples for non-nested queries [65], sparse
data distribution [104], queries over speci!c columns [5], and queries with speci!c selectivities [27].
Furthermore, V)(*!&$DB proposed developing o#ine AQP as a middleware to avoid modi!cations
to DBMSs [79].
Moreover, sampling-based o#ine AQP methods have two fundamental limitations. First, their

a priori error guarantees are inherently limited to predictable workloads [5, 27, 65, 104]. For
example, B"!2’DB requires that incoming queries only access columns in a pre-de!ned column set;
S/-0")+S))’ relies on the prior knowledge of the query selectivity to select the right processing
policy (i.e., sample or seek). Moreover, maintaining o#ine samples requires special e%ort and costs,
including regularly refreshing samples to ensure statistical correctness and regenerating samples
when the database changes [1, 5, 79].

Online Aggregation. Previous research has explored interactive processing of aggregation queries,
providing initial results immediately and improving accuracy as more data is sampled [9, 28, 36, 39,
53, 93, 101, 105]. OLA, !rst proposed by Hellerstein et al. [39], has been subsequently improved to
support join queries [36, 64], scalable processing on large databases [28, 53], processing multiple
queries simultaneously [101], and complex aggregates [105]. Furthermore, P(#3()11!4)DB explored
online aggregation as an extension to existing DBMSs using progressive views [9]. More recently,
D))0OLA tackled nested queries for online aggregation [93].

Although OLA techniques can continuously update con!dence intervals, it is invalid to consider
the monitored con!dence interval as an error guarantee due to the problem of peeking at early
results [55]. Nevertheless, OLA can be integrated with the second stage of P!"#$DB to provide
constantly updating results, thereby improving the interactivity and user experience.

Block Sampling. In block sampling, data is sampled at the level of physical data blocks or pages,
a method widely recognized as a more e"cient sampling scheme than row-level sampling [17–
19, 37, 44, 89]. Prior work has studied con!dence intervals for aggregates computed directly over
the output of block sampling [17, 44, 78], block sampling mixed with row-level sampling (i.e., bi-
level sampling) [18, 37], and improved the statistical e"ciency of block sampling with block-level
summary statistics [89]. However, statistical guarantees for complex approximate queries (e.g.,
nested queries and Join queries) with block sampling have not been investigated in literature.

7 Conclusion
We propose P!"#$DB, an online AQP system that achieves (1) a priori error guarantees, (2) no
maintenance overheads, and (3) no DBMS modi!cations. To achieve these properties, we propose a
novel online AQP algorithm, TAQA, based on query rewriting and online sampling. To accelerate
queries with TAQA, we formalize block sampling with new statistical techniques to provide guaran-
tees on nested queries and Join queries. Our evaluation shows that P!"#$DB consistently achieves
a priori error guarantees and accelerates queries by up to 126→ on various DBMSs.
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