GRANII: Selection and Ordering of Primitives in
GRAph Neural Networks using Input Inspection

Vimarsh Sathia
University of Illinois at
Urbana-Champaign, USA
vsathia2 @illinois.edu

Damitha Lenadora
University of Illinois at
Urbana-Champaign, USA
damitha2 @illinois.edu

Josep Torrellas
University of lllinois at
Urbana-Champaign, USA
torrella@illinois.edu

Abstract—Over the years, many frameworks and optimization
techniques have been proposed to accelerate graph neural
networks (GNNs). In contrast to the optimizations explored in
these systems, we observe that different matrix re-associations
of GNN computations lead to novel input-sensitive performance
behavior. We leverage this observation to propose GRANII, a
system that exposes different compositions of sparse and dense
matrix primitives based on different matrix re-associations of
GNN computations and selects the best among them based on
input attributes. GRANII executes in two stages: (1) an offline
compilation stage that enumerates all valid re-associations leading
to different sparse-dense matrix compositions and uses input-
oblivious pruning techniques to prune away clearly unprofitable
candidates, and (2) an online runtime system that explores
the remaining candidates and uses lightweight cost models to
select the best re-association based on the input graph and the
embedding sizes. On a wide range of configurations, GRANII
achieves a geo-mean speedup of 1.56x for inference and 1.4x
for training across multiple GNN models and systems. We also
show GRANII’s technique functions on diverse implementations
and with techniques such as sampling.

Index Terms—graph neural network, optimization, code gener-
ation, cost models, machine learning

I. INTRODUCTION

Graph Neural Networks (GNN) have gained adoption across
a wide range of application domains, including social media
marketing [1]], financial fraud detection [2f], [3], drug discov-
ery [4], [5]l, and systems optimization [6]. However, training
GNNss is expensive and usually spans multiple hours, if not
days. As a result, there have been many efforts, including
software frameworks such as DGL [7]], PyG [_8], NeuGraph [9],
and WiseGraph [10], compilers such as Graphiler [11] and
SeaStar [12]], and many other optimization techniques [[13[-[16]
that aim at accelerating GNN computations.

Existing systems typically model GNN computations as
individual phases with input-oblivious compositions of sparse
or dense matrix operations (also known as primitives). In a
typical GNN layer, each node initially collects and aggregates
its neighbor node states (embeddings). Next, each node
updates its state using these aggregated embeddings. The first

979-8-3315-9288-2 © 2026 The Authors, Licence CC-BY-4.0.

14

Serif Yesil
NVIDIA, USA
syesil@nvidia.com.

Gerasimos Gerogiannis
University of lllinois at
Urbana-Champaign, USA
gg24 @illinois.edu

Charith Mendis
University of lllinois at
Urbana-Champaign, USA
charithm@illinois.edu

computation is modeled as a set of sparse matrix primitives
(e.g., sparse matrix dense matrix multiplications (SpMM)),
and the latter is modeled as a dense matrix multiplication
(e.g., generalized matrix-matrix multiplication (GEMM)). Apart
from these phases, different GNNs perform additional required
computations, such as normalization and edge-weight (attention
score) calculations. These are also modeled as sparse or dense
matrix primitives. Usually, these systems use a fixed primitive
composition — selection of sparse and dense matrix primitives
and an ordering between them — irrespective of the input and
the GNN model configuration.

However, we notice
that algebraically re-

[Tstatic KXall
P9 config

N

[

associating and reordering
computations in GNNs
can, in fact, change the
underlying sparse and
dense matrix primitive
composition. For example,
Ag4-Bs-Cy-Dy is a subset
of the computation from
the Graph Convolutional

Speedup
(wrt. static)

(in,out)
emb:
model: GAT
graph: Reddit
Fig. 1: Speedup for GCN with differ-
ent primitive reorderings on different
models, graphs, and embedding sizes.
static:single ordering, config:model
configuration based (embedding size),

all:config+input-graph based

(256,32)
GCN

com-Amazon

(

(32.256)
GCN

com-Amazon

Network (GCN) model, where {X}; is a sparse matrix,
and {X}; is a dense matrix. We can create two sparse
and dense matrix primitive compositions by changing
their association structure. ((A4-Bs-Cq)-Dg) is a primitive
composition that consists of {sampled dense dense matrix
multiplication (SDDMM),SpMM} and (Ag-(Bs-(Cyq-Dg)))
leads to {GEMM,SpMM,GEMM}.

The optimal choice among these primitive compositions
depends on the configurations of the GNN model and its input.
Figure [T shows speedups from the least input-aware to the most
aware primitive ordering strategies for the Graph Convolutional
Network (GCN). Here, static has a single primitive ordering.
config shows the speedup achievable by obtaining a primitive
ordering by inspecting only the model configurations, such
as embedding sizes, which was introduced in [17]. Going
beyond these strategies, all inspects both the input graph and

Accepted for publication by IEEE. © 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://www.acm.org/publications/policies/artifact-review-and-badging-current

the model configurations to produce a primitive composition
to achieve the speedups shown. Although work that inspects
the input to perform optimizations in GNNs exists [[18[]-[20],
none of these systems consider automatic input-aware primitive
selections or their ordering. The common practice is to build
hard-coded GNN models with the same primitive compositions
across different inputs and configurations. Furthermore, systems
that select loop orderings such as [21]-[23], make input-
unaware choices between adjacent kernels without considering
the expanded region of the entire GNN model, nor the domain-
specific optimization opportunities. As a result, existing systems
fail to capture the optimization opportunities shown in Figure [T}

In this paper, to bridge this gap, we introduce GRANII,
a compiler and a runtime that automatically explores and
selects the best primitive composition in GNNs for a given
input. First, GRANII exhaustively enumerates all legal primitive
compositions for a given GNN through matrix re-associations
using the underlying matrices’ characteristics (dense vs sparse,
etc.). Then, GRANII selects the best among them using a
lightweight machine-learning model. We had to overcome
several challenges to realize this strategy.

E X = . i i ES Sparse

s 75 i : B Dense
s 1 1
= i i
§" i i
“ 1 1
=7 i i
| i

32 1024 1024 32 102 1024 32 1024 1024 32 1024 1024

256 32 2048
mycielskian17

256
myC|eIsk|an17

256
com- Amazon

in -
out -
com Amazon

Fig. 2: Percentage of runtime (sparse/dense) across graphs for GCN,
(in, out) embedding sizes, and underlying hardware.

Challenge: Exposing Primitive Compositions. Existing
GNN systems [[7], [8] do not facilitate efficient exploration
of different primitive compositions as they implement models
using the message-passing paradigm. Although the message-
passing paradigm provides a natural interface for implementing
GNNs using graph operations, it is insufficient to explore
different primitive compositions. This is because it results
in straight-line code that loses information on computations’
associativity and matrix metadata necessary to identify ap-
plicable primitives. GRANII overcomes this challenge by
introducing a novel matrix-based intermediate representation,
which stores additional metadata, enabling it to easily iterate
through different re-association choices exhaustively for a given
GNN model.

Challenge: Selecting the Most Performant Primitive Com-
position. Identifying the impact of each operation is necessary
to select the most performant primitive composition of a
GNN. This is challenging, as seen in Figure 2] where even
the percentage of runtime taken by the basic categorization
of sparse and dense matrix operations can change based
on the model configurations, graph input, and underlying
hardware. Thus, it is necessary to inspect all these factors, as
making decisions based on just one is insufficient. To capture
these complexities, GRANII uses lightweight machine-learning-
based cost models for predicting the costs of each primitive for
a given input and model configuration. Our results show that

15

cost estimates from these non-linear models allow GRANII to
select the best primitive composition.

Challenge: Low Overhead Decision Making. To accurately
predict the best primitive composition, the final decision should
be taken at runtime when the input graph and model configu-
ration are known. To reap the benefits of this optimization, the
cost of making this decision at runtime must not outweigh the
benefit itself. This becomes challenging as iterating through
all possible primitive compositions while inspecting the input
can result in a high overhead even when using GRANII’s
lightweight cost models. GRANII overcomes this challenge by
decoupling the decision-making process into two stages : (1)
an offline compilation stage that enumerates all valid matrix
re-associations and prunes clearly unprofitable candidates using
input-oblivious rules and (2) an online runtime system that uses
the lightweight cost models to select the best re-association
given the input graph and the embedding size. This reduces the
number of compositions that need inspections during runtime.

Our evaluations show that GRANII achieves significant
speedups on five popular GNN models, including GCN, Graph
Isomorphism Networks (GIN) [24], and Graph Attention
Network (GAT) [25]. Speedups are observed across various
graphs and embedding sizes on CPUs and GPUs. GRANII can
also function with techniques such as sampling and models that
require it (GraphSAGE [26]). We conduct our main evaluation
on the state-of-the-art GNN framework WiseGraph [[10], as
well as the popular GNN framework DGL [7], to demonstrate
the benefit of GRANII across multiple underlying systems. We
make the following contributions.

o We perform a case study on five widely used GNN models
(GCN, GIN, SGC [27], TAGCN [28], and GAT) and
introduce different input-sensitive compositions of sparse
and dense matrix primitives.

o We present an intermediate representation and a complemen-
tary technique to expose different compositions of sparse
and dense matrix primitives for GNNs using re-association.

o We present GRANII, a compiler and runtime system, where
given a GNN, selects the best composition of primitives
based on the input using a two-stage technique designed
to have minimal human intervention and overhead.

o We show that GRANII’s decisions lead a geo-mean speedup
of 1.56x for inference and 1.4x for training.

II. BACKGROUND

GNN computations can be broken down into dense and
sparse matrix primitives [7]. We briefly introduce such
primitives and explain when and where they are used when
computing GNN models.

A. Dense Matrix Primitives

Multiple dense matrix primitives are used in GNNs due to
their inherent relation to neural networks. These are primitives
where all inputs and outputs are dense matrices or vectors.
Among the dense matrix primitives used in GNNs are element-
wise computations such as non-linear functions and matrix
multiplication variants. The latter, which includes general

matrix multiplication (GEMM), is commonly found in GNN
operations such as updating features based on learned weights.
Row-broadcast is another common primitive found in GNNs
where a single value from a vector (e.g., a node-specific
normalization value) is used to update an entire row in a
matrix (e.g., node features), as shown by Equation (T).

Cij = di X by

ey
B. Sparse Matrix Primitives

We refer to matrix operations where at least one input uses
a sparse matrix representation as sparse matrix primitives.
For GNN:ss, [[7] showed that all the sparse matrix operations
necessary can be handled by the generalized versions of
the two sparse matrix primitives: (a) sparse matrix dense
matrix multiplication (g-SpMM) and (b) sampled dense-dense
matrix multiplication (g-SDDMM). The former is a matrix
multiplication with a sparse input, while the latter is a standard
matrix multiplication guided by a sparse mask (elaborated in
Appendix A). The standard SpMM and SDDMM use + and
x as the addition and multiplication operators, whereas in the
generalized form, the operations can come from any semi-ring
[29]. We use ¢ and ® to denote the generalized addition and
multiplication operators (e.g., SpM M (&, ®), we present a
detailed example in Appendix B).

C. Matrix Primitives in GNNs

GNNSs consist of two main stages: aggregation and update.
During the aggregation stage, the embeddings possessed by
each node or edge as a hidden state vector are passed among
neighbors to form an aggregated message. The messages
are then transformed into updated embeddings as the GNN
layer’s output during the update stage. Such computations are
usually modeled as a collection of dense and sparse primitive
operations [7]]. Node-based aggregations are modeled as g-
SpMM, edge-based aggregations are modeled as g-SDDMM,
and updates are modeled as GEMMs.

Other computations apart from the aforementioned, such as
normalization, open more opportunities to consider different
matrix re-associations. This enables the use of different sparse-
dense primitive compositions when computing GNN models.

III. CASE-STUDY: COMPOSITIONS IN POPULAR GNNS

We use this section to motivate the need for input-aware se-
lection between compositions of sparse-dense matrix operations.
We do this by elaborating on two different compositions for
two popular GNN models, (a) Graph Convolutional Network
(GCN) [30], and (b) Graph Attention Network (GAT) [25].
Note that there can be different operator orderings within a
composition, such as deciding between performing the update
(GEMM) or aggregate (SpMM) operation first.

We use Figure [3]to depict pairs of different primitive compo-
sitions for GCN and GAT along with their complexities. Here,
we observe that compositions (detailed in the remaining part
of this section) are typically more suitable for comparatively
denser or sparser graphs. However, as we detail in Section
there are multiple factors, such as the underlying hardware, as

16

GCN
[Dynamic Normalization |

GAT

[Recomputation |
A -1

3 -1

A D w®

®©

E nnzs,NxN

®©

©

K1xK:

X1 X1 x|

more O(N) computations
better for denser graphs (E >> N)

E E nnzsNxN Nx|

wel

zs, NXN
Pg ted

E nnzs,NX
Lmvve\gzhﬁed

O(E)

E nnzs, NJ(N
unweighte
O(NxK1) o onky Tl O(ExK1) P
Ry nE
O(ExK1) O(NxK1xK2)
[%2]
5 o | Precomputation | | Reuse | .
E g N o A]
3o
g3
]
8% ® ®©
—
ws
os
2%
£

O(ExK2)
O(2xExK1)

Fig. 3: Different compositions for GCN and GAT with complexities.
N is the number of nodes in the graph, E is the number of edges,
K1 and K2 are the input and output embedding sizes respectively.
The complexities shown are per operation.

well as the non-zero distribution of the input graph, that have a
significant impact on the actual computation time. This makes
the selection of the most performant composition challenging
and is a motivating factor for a data-driven approach, which
we apply in our solution.

A. GCN

The GCN computation has three main calculations: normal-
ization, aggregation, and update. The normalization value can
be subsumed by the graph’s node features in two different ways,
creating two different primitive compositions. Our evaluations
show that selecting the correct composition in GCNs can lead
to a geo-mean speedup of 1.88x (Section [VI-CI).

Dynamic Normalization-Based Primitive Composition. This
composition of GCN normalizes using two row-broadcasts as
presented by Equation . Here, A is the adjacency matrix of
the input graph with self-edges. D is the degree of nodes in A.
HY, w® are the node embeddings and weights for the [*"
layer in the GNN. The result is updated after normalization
and aggregation. Finally, the non-linear function o is applied.

HO —o(A- D=3 @ H-D . w0 g D—3)
N————

row broadcast

(€]

Note that for unweighted graphs, a computationally less
expensive aggregation operation that does not use the edge
values of the graph (mentioned in Appendix B) can be used
for aggregation. This composition is more beneficial for denser
graphs as it reduces the burden of the aggregation when
computing the final result. This is because denser graphs have a
comparatively larger number of edges, which directly contribute
to the complexity of the aggregation.

Precomputation-Based Primitive Composition. This compo-
sition of GCN pre-computes the normalized adjacency matrix
N, by using an SDDMM primitive as shown in Equation .
This normalized matrix is then used by the aggregation
operations of the model. This primitive composition is more
suitable for sparser graphs, as it does not perform the row-
broadcast operations. This is because the complexity of these

operations is based on the number of nodes of the graph, where
in sparser graphs, the nodes are more abundant.
N=D"2 A-D°3) HY =N -HI=D . D)
—_—
SDDMM

3
B. GAT

We summarize the attention calculation as a function (Atten)
to simplify the explanation of the model (Equation (#)). Note
that this function uses the updated input embeddings of the
nodes (© = H!"D.w®), w,® refers to attention weights
used during this calculation. The result is a sparse matrix «
containing the necessary attention scores, which is then used
for the aggregation as seen in Equation (5). However, based
on the decision to reuse the updated input embeddings of the
nodes in this aggregation, two different primitive compositions
can be identified for GAT.

Reuse-Based Primitive Composition. During aggregation,
this composition reuses the updated embeddings already
computed in the attention calculation stage.

agzm = Atten(A, H!"D.w O, WX))
]

HO =5(®. 0)
—

reuse

“

(5

Recomputation-Based Primitive Composition. This compo-
sition ignores the reuse of the updated embeddings to generate
the primitive composition by using the original embeddings
for aggregation. However, this requires an additional GEMM
computation, as shown by Equation (G). Thus, it is useful
only in situations where the aggregation operation between the
node features (H~1) or ©) and the graph updated with the
attention scores (oY) becomes less expensive surpassing the
cost of the additional GEMM computation. i.e., when the input

embedding size is smaller than the output embedding size.
GEMM

20 = (a®. gt-1y. o

recomputation of ©

IV. GRANII SYSTEM

6

import GRANII
graph, node_feats,
model = GraphConv (..)

GRANII (model, graph, node_feats,
res = model (graph, node_feats)

Fig. 4: Using GRANIL

labels

labels) #<-Only change

We present GRANII: a compiler that produces an executable
that automatically explores and selects the best composition of
sparse-dense matrix primitives in GNNs for a given input graph
and model configuration when executed on a target hardware.

A. Overview

GRANII requires minimal user interaction to set up and
accelerate GNN code. GRANII is ready to be used by simply
running an initialization script that gathers profiling data and
trains its cost models. Once this process is done, a user only
needs to provide the GNN model to be accelerated as well as
the inputs (graph, node features and labels) as parameters, as
shown in Figure] The GRANII compiler then operates on
the GNN model code and replaces the existing GNN model

17

GNN Model(written in front-end lang.

class GraphConv(torch.nn.Module):

def forward(A, H, D):
H=H™*D
A.srcdata["h"] = H
aggregate_fn = fn.copy_u("h",
A.update_all(...)

)

Embeddings

i Compiled Code (Online)
class GNNConv(...):
m(_ASSOCiaﬁons—m e Inpu't
def forward(...): Featurizer

! Matrix Re-association

i=featureize_inp(..)
CAl = costPl(%) Cost
CA2 = costP3(i)
Input Oblivious if (Al < cA2): WISES
Pruning # Execute Al
else:
Promoted if(in_emb<out_emb):
Association # Execute A2
RICES else:
Execute A3

Offline
Fig. 5: Overview of the GRANII system.

Association

Trees

with an accelerated version. The user can then run the initial
code without additional changes.

Figure [5] presents the overall process of GRANIL. It has two
main stages: (1) an offline compilation stage for generating
potential candidates with different sparse-dense matrix primitive
compositions, and (2) an online stage for selecting the best
primitive composition based on the input.

In the offline compilation stage, GRANII first converts a
GNN model written using the message passing paradigm [/7]
to a matrix intermediate representation (IR) (Section I@) It
uses this matrix IR form to generate all possible sparse-dense
matrix primitive compositions that can be used to implement
the given GNN model as potential candidates using operator re-
association (Section [[V-C). GRANII then prunes away clearly
unprofitable candidates that are oblivious to the input using
rules. Finally, GRANII generates an executable code with the
final set of candidates, which are promoted to be selected
during the online stage (Section [V-DJ.

In the online TABLE I: Matrix Attributes
stage, GRANII
selects the primitive Attribute | Sub-attribute : details
composition that dense data : Contains data
has the least cost weight : Contains learnable weights
out of the promoted ~ sparse weighted : Uses edge values

unweighted : Only NNZ positions

candidates for the diagonal : A diagonal matrix

given input. It
evaluates each candidate’s cost using a set of input-sensitive
cost models, each specialized to a sparse or dense matrix
primitive (Section [[V-E). Compared to the pruning rules
used in the offline stage, these cost models consume graph
features and embedding sizes as inputs, allowing GRANII
to make input-aware predictions about the relative cost of
different compositions. GRANII selects the composition with
the minimum total cost to execute using the given input.

This decoupled design requires the user to run only the
online stage of GRANII for different input graphs, while the
offline compilation stage only needs to run once.

B. Matrix Representation Generation

We use Figure [6] as a running example to illustrate the offline
stage of GRANII for GCN (Section [[II-A)

Matrix Representation. We use a matrix-based intermediate
representation(IR) through the initial offline stages of GRANII.
We use this representation to facilitate the generation of
different primitive compositions via operator re-association.
This representation is tree-based, where its leaf nodes represent
matrices and intermediate nodes represent matrix operations
such as multiplication, addition, and row broadcast. A leaf
matrix node, Aa‘)% i“fia)‘“ contains information regarding the
matrix size (X x Y), and the attributes (attr, e.g. dense or
sparse) and sub-attributes (subattr, e.g. data or weighted)
described in Table [I} Attributes provide essential information to
generate primitive compositions in the latter part of GRANII’s
offline compilation stage. The leaf nodes, which represent
input data, are then consumed by matrix operations in the
GNN (e.g. Figure [f[b), D and H are consumed by ®, a row-
broadcast). These operations then form a hierarchical structure
based on input dependency (e.g. Figure [6[b), the result of the
row-broadcast is used for the input of the matrix-multiplication).
This is similar to computation graphs in tensor frameworks such
as PyTorch [31]. However, in addition to the matrix attributes,
our IR differs from computational graphs as we also represent
operations that are associative in a single level (e.g. Figure [6b),
the multiplications between A, the result of D and H after
®, and W are all associative and linked to ®). GRANII uses
these details to generate associations and the final code.

a) Original GNN code
class GraphConv(torch.nn.Module):

def forward(A, H, D):
H=H*D
A.srcdata["h"] = H
aggregate_fn = fn.copy_u("h", "m")
A.update_all(aggregate_fn, fn.sum(msg="m",

rst A.dstdata["h"]

out="h"))

rst rst * w
rst rst * D
b)Direct matrix representation

Mapping of node-wise

E @ values in D(nyy) to diagonal
matrix Dxn)

Anxn) || Dinxa Wikixk2) | | Dinxa)
unweighted data weight data

sparse dense dense dense

D(nxa) Dnxny
¢) Re-association enabling matrix
° representation

D(nxn)
diagonal
sparse

OQ0

Row Broad

ANxN
unweighted
sparse

D(nxn)
diagonal

d) Association Trees

sparse
SDDMM)/
SpMM(+ x)

GEMM

5pMM

@i

Row Bluad

Assocnatlon Tree 2
Association Tree 1

Fig. 6: Associatlon tree generation from GNN code. (® denotes row
broadcast, ® denotes matrix multiplication)

Code Translation. GRANII first translates code written using
a GNN framework’s API (WiseGraph [10], DGL [7])), into the
matrix-based IR. GRANII can support GNN frameworks that
follow the popular message passing paradigm [7]] (Figure [6{a)
shows an example GNN implementation), which models graph

18

operations as messages passed between nodes. For example, a
node feature aggregation is modeled as passing a message from
a source to a destination, where at the destination, all messages
are summed together to give an aggregated result. Graph
operations specified in this paradigm, along with general matrix
operations of the underlying Machine Learning Framework
(PyTorch [31]]) are then lowered down into matrix operations.
We use a rule-based parser that functions on the AST of the
source language (Python), for this task (e.g., update_all
graph operation is mapped to multiplication). Note that we
consider non-linear operations such as ReLU and SoftMax
as barriers preventing re-association. This is because we only
focus on semantically equivalent re-associations. GRANII’s
parser also collects information from the original GNN code
to fill in the attribute details for the leaf matrix nodes (e.g.,
the adjacency matrix A’s attribute is sparse).

First, GRANII uses all the information collected to create the
leaf nodes of the IR. GRANII then creates the hierarchical tree
of operations in the IR based on data dependencies and rules
regarding the associativity of the matrix operations in the GNN
model (e.g. adjacent multiplication operations are associative
and are thus consumed at a single level using a multiplication
operation). For the initial code in Figure @a), this results in the
matrix IR in Figure [[(b). The flattened version of the matrix
IR in Figure [6[b) is (A® (H ® D) © W) ® D (® refers to
a row-broadcast operation, © refers to matrix multiplication).
In addition, GRANII also runs an additional IR rewrite pass
on the matrix IR to uncover more opportunities for arbitrary
re-association. GRANII does this to eliminate row-broadcast
operations, which act as barriers for re-associations. Instead,
these operations can be represented as a matrix multiplication
as shown by Figure [6]c) (detailed in Appendix C).

C. Generating Sparse-Dense Matrix Compositions

Association Tree Representation. GRANII converts the
matrix IR into association trees to concretely represent sparse
or dense matrix primitives in place of matrix operations.
A given association tree represents one possible matrix re-
association. Association trees reuse the same matrix nodes
used in the matrix IR as leaves. Internal nodes of the tree
represent intermediate results, and edges represent sparse or
dense matrix primitives. For example, consider the association
tree 1 shown in Figure[6{(d), where the multiplication operations
in Figure [6(c) are replaced by applying the SDDMM, SpMM,
and GEMM primitives in order.

Association Tree Generation. GRANII generates association
trees for all valid matrix re-associations for a computation
represented in the matrix IR. Each association tree uses its
own set of sparse and dense matrix primitives, and different as-
sociations lead to different primitive compositions. Figure [6(d)
shows two possible associations for the matrix IR. In this
example, association tree 1 represents the flattened computation
(D®A®D)® H)®W. The association of (D ® A® D)
yields a SDDMM primitive. However, the association tree 2
does not take this route, resulting in a primitive composition
that uses row-broadcasts instead.

Algorithm [T] shows how GRANII recursively enumerates all
possible association trees in a depth-first manner. It accepts
the current matrix IR and an association tree as input. Then,
GRANII traverses the current matrix IR to find association
candidates that involve only leaf nodes (line 2). GRANII uses a
set of rules to find such candidates using connected operations,
attributes, and sub-attributes of the matrix IR nodes, and also
to specify which dense or sparse matrix primitive to use for
that association (we present a few rules in Appendix D).

Algorithm 1: Generation of Association Trees

Input: Matrix IR of GNN code (mIR), current association tree (¢r)
Output: Association Forest (fr)

1 Function generateTree (mIR,tr):

/+ get resolved associations x/

2 cands + getCandidates(mIR); /+ rule-based x/
3 if cands is empty then

4 | fr.add(tr) /» add tree to forest x/

5 else

6 foreach cand € cands do

7 newl R, newTr +— apply(mIR, tr, cand)

8 generateTree(newl R, newT'r)

9 end

10 end

For every candidate in this list, GRANII creates a new tree
(newTr) by augmenting the current tree with (a) an internal node
corresponding to the result of the association, and (b) edges
annotated with the sparse or dense matrix primitive that connect
this node to the associated nodes. Simultaneously, it creates
a new matrix IR (newlR) that replaces the set of associated
nodes with this new internal node (line 7) in the current matrix
IR. For example, consider the association tree 1 in Figure @d).
During its creation, nodes D, A, D are first associated with
the operation SDDMM to produce the intermediate result Ij.
Simultaneously, GRANII also creates a new matrix IR that
replaces nodes D, A, D with Ij. This tree is further expanded
recursively until no more association candidates can be found.
Since we enumerate all candidate associations (line 6), this
algorithm produces a forest of all valid association trees as
the output. Once the trees are fully generated, GRANII scans
all trees to exploit any opportunities to reuse computed values
(common sub-expression elimination in the compiler domain).

Pruning Associations. GRANII prunes unprofitable candi-
dates irrespective of the input from the generated forest of
association trees. We find sets of unprofitable candidates under
two scenarios: 1) the input embedding size is larger or equal
to the output (<), and 2) vice-versa (>). For each scenario,
we identify unprofitable candidates using the following rules:

o A subset of a candidate tree’s primitives being equal to the
total set of primitives of another candidate (e.g., a candidate
performing SpMM and a GEMM 1is unprofitable compared
to another candidate performing only SpMM on the same
matrix sizes). This rule also removes duplicates.

o A candidate with the same matrix primitives as another
tree, but with larger matrices as inputs to the primitives.

GRANII finds unprofitable trees that are common in both
scenarios and prunes them away. At this point, it cannot prune
further without inspecting the input. GRANII promotes the

19

remaining association trees to be inspected during the online
stage. It also annotates the candidates when they were profitable
(<,>) to use during the final code generation (Section [[V-D).

D. Code Generation of Promoted Candidates

The final component of GRANII’s offline stage generates
code for the promoted association trees, out of which the
best is executed during the online stage. This is achieved by
generating conditionally executed code as shown in Figure
GRANII supports two types of runtime conditions: (1) simpler
conditions based purely on embedding sizes and (2) conditions
based on more complicated cost models for matrix primitives.

Conditions Using Embedding Sizes. GRANII first identifies
trees that are profitable at runtime only using embedding sizes.
It does this by categorizing annotated trees that are profitable
when either the input embedding size is larger than or equal to
the output (>), and 2) vice-versa (<). This avoids the use of the
more expensive cost models. Figure [7| shows an example where
the promoted association tree A3 is the only one profitable
when the input embedding size is smaller.

Conditions Using Cost Models. For the rest of the association
trees, GRANII uses cost comparisons using per-primitive cost
models that depend on both the embedding size and the input
graph. Section describes how we develop these cost
models. We approximate the cost of executing an association
tree by the addition of the costs of each primitive given by the
cost models. If multiple association trees result in the same cost,
GRANII selects one tree among them as they are equivalent.

Code Generation. Once GRANII has collected the runtime
conditions, it progressively generates conditional code to
execute the GNN implementation with the best primitive com-
position. For runtime conditions that require cost comparisons,
it embeds the code for cost models for each matrix primitive.
Once the runtime conditionals are generated, GRANII lowers
the matrix primitives of each association tree to kernel calls
that are supported by the underlying GNN framework. Figure
shows an example of the final conditionally executable code.

=)

Ay

A3
oLy

class GNNConv(torch.nn.Module) ...
i = featurize_input(..)
if (input_emb < output_emb):
fn = # A3 (only choice)
else:
costAl = costP1(i)
costA2 = costP3(i) + costP4(i)
if (costAl < costA2):
fn = # Al
else:
fn = # A2
model = GNNConv(...)
execute multiple iterations
model.forward(fn, ...) # executes fn

Promoted
Association
Trees

Fig. 7: Code-generation of promoted association trees (Online).

E. Cost Models for Primitives

GRANII’s cost models predict the cost of a particular matrix
primitive, given the input graph and embedding size. We use
an input featurizer to create an embedding of the input graph’s
characteristics and GNN embedding sizes to feed into simple
XGBoost-based [32] cost models.

1) Input Featurizer: GRANII’s cost models use the hand-
crafted features such as the sparsity of the graph (detailed
in Appendix E), along with embedding sizes when making
predictions. The input featurizer efficiently inspects the input

graph at run time to obtain the necessary graph features and
concatenates the resulting embedding with the GNN embedding
sizes to create the final featurized input embedding. We avoided
using automatic feature extraction methods such as sparse
convolutional networks [33]] as they are challenging to scale
to larger graphs that GRANII targets to support.

2) Lightweight Learned Cost Models: GRANII uses XG-
Boost [32] regression models to predict the input-aware cost of
executing matrix primitives. GRANII trains these models for
each dense and sparse matrix primitive, and target hardware
architecture. This is a one-time cost per target system as the
number of matrix primitives, especially sparse matrix primitives
used by GNNs, is limited in number, as shown by [7](g-
SpMM for weighted and unweighted graphs, GEMM, row-
broadcast, etc.). Thus, re-training the cost models for each new
GNN is unnecessary. To be input aware, these models use the
embedding given by the input featurizer to predict the cost of
running (time taken) a particular matrix primitive. The final cost
of GNN execution is the sum of the costs of these primitives.
GRANII uses a set of profiling data with varying graphs and
embedding sizes when training these models (Section [V).

V. IMPLEMENTATION

In this section, we explain our training setup and implemen-
tation of the components of GRANII. These implementations
are done in the Python ecosystem.

Offiline Part of GRANII. We implemented GRANII using
Python and PyTorch. Both WiseGraph and DGL possess
Python APIs, which we translate to matrix IR (front-end) using
Python’s Abstract Syntax Tree (AST). This translation and the
association trees to kernel code (back-end) are done using a
one-to-one mapping scheme.

Training Lightweight Cost Models. We collect the training
data for the cost models by profiling different matrix primitives
on the machines listed below.

e CPU - Intel Xeon Gold 6348, RAM 1TB, No GPU

e A100 - NVIDIA A100 GPU, Intel Xeon Platinum 8358

« HI100 - NVIDIA H100 GPU, AMD EPYC 9454
We source the input graphs to train the model from the SuiteS-
parse matrix collection. Here, we chose a set of undirected
graphs ranging from 1 million to 100 million non-zero values,
which we further varied using sampling. Using this method
and varying the input and output embedding sizes from 32 to
2048, we gathered approximately 700 to 8000 data points for
each matrix primitive. We use a subset of these graphs as the
validation set when training, and note that these do not include
the graphs we use in our evaluation (test set).

VI. EVALUATION

We present our evaluation of GRANII, by comparing it
against the default sparse-dense primitive compositions for
GNN inference and training found in WiseGraph [[10], and
DGL (v.2.4, released 2024). For this evaluation, we test
across various graphs (1 million - 126 million non-zeros with
different sparsity patterns) in both GPU (H100 and A100)
and CPU platforms. We used multiple combinations of input

and output embedding sizes to showcase different trends in
the performance of different input-sensitive compositions. In
the subsequent sections, we present detailed setups used for
evaluation, along with performance results and analyses.

A. Research Questions

We aim to answer the following questions,

1) How well does GRANII optimize five popular GNN models
(GCN, GIN, TAGCN, SGC, and GAT) on a diverse set of
input graphs and embedding sizes? (Section |VI-C).

2) How well does GRANII perform on end-to-end workloads?
(Section

3) How does sampling effect GRANII? (Section [VI-E).

4) How does multiple GNN model layers affect GRANII?

(Section [VI-F).
5) How accurate is GRANII’s learned models? (Section

B. Experimental Setup
TABLE II: Graphs used for evaluation

| Graph | Nodes | Edges | Source
RD | Reddit | 232965 | 114615892 | DGL
CA com-Amazon 334,863 2,186,607 SS
MC mycielskian17 98,303 100,245,742 SS
BL belgium_osm 1,441,295 4,541,235 SS
AU coAuthorsCiteseer 227,320 1,855,588 SS
OP ‘ ogbn-products ‘ 2,449,029 ‘ 126,167,053 ‘ OGB

Baseline Systems. We perform an extensive evaluation to
show the benefits of GRANII. We conduct our main evaluations
against the WiseGraph [10], and the PyTorch [31]] back-end
of DGL (v2.4) [[7] using available implementations of each
model, and if not, implementing a competitive baseline. We
selected two systems to showcase GRANII’s generality using
two separate systems, while also showing performance against
a state-of-the-art GNN system such as WiseGraph.

Some models in both systems’ available implementations
contain operator reordering strategies that utilize the model
configuration. For example, the ordering between an update
operation (GEMM) and an aggregate operation (SpMM) is
decided based on the embedding sizes of the model. Here, the
update operation is done first if the input embedding size is
larger than the output embedding size [17]], and vice versa.
When implementing models without an existing baseline imple-
mentation, we used a configuration-based operator reordering
to showcase a more competitive baseline. Note that GRANII
can automatically identify these opportunities.

GNN Models. We use 5 GNN models to evaluate GRANII,
(1) GCN [30], (2) GAT [25], (3) Graph Isomorphism Networks
(GIN) [24], (4) Topology Adaptive Graph Convolutional
Networks (TAGCN) [28], and (5) Simple Graph Convolution
(SGCO) [27]]. Among these models, GCN, GAT, and GIN are
canonical models that have been used to evaluate multiple
systems [10]-[12], [[15]], [20]] and used in recent works [34]—
[39]. A recent study has shown that these models with proper
architectural configurations can achieve significant levels of
accuracy compared to more complex models [40], [41]. The

20

TABLE III: Geomean speedups of GRANII across graphs and
configurations for 100 iterations. Mode - Inference(I)/Training(T)

| HW | Mode | Overall | GCN GIN SGC TAGCN GAT

2| 8 1 1.24x 1.46x 1.10x 1.24x 1.13x 1.38X%

S T T 1.17x 1.21x 1.05x 1.13X 1.1x 1.47x
3 2 1 4.26x | 10.39x 1.09x 7.77x 6.57X 1x
2| Z T |3.67x | 7.87x 1.03x 6.44x 5.81x 1x

2 1 1.24x | 1.12x 1.24x 1.32x 1.07x 1.74x

T T 1.08x 1.03x 1.03x 1.06x 1.02x 1.49x%

5 2 1 1.26x | 1.18x 1.28x 1.33x 1.06x 1.8x

A < T 1.09x | 1.03x 1.05x 1.06x 1.02x 1.55x

) 1 1.2 1.31x 1.2x 1.24x 1.03x 1.34X

) T 1. 12>< 1.02x 1.1x 1.15x 1.01x 1.55x

Overall 1 1. 56>< 1.88 1.18x 1.82x 1.53x 1.45x

T 1.4 1.58 1.05x 1.55x 1.45x 1.43x

total number of compositions through re-associations and
offline pruning pairs of GRANII for GCN, GAT, and GIN,
respectively, are 12 and 8, 2 and 0, as well as 8 and 4. In
addition, we use TAGCN and SGC to showcase GRANII’s
generalizability, which have also been used in various recent
studies [42]-[44].

Datasets/Graphs. We use graphs with multiple variations of
non-zero distributions, sourced from domains related to GNN
computations. These graphs are listed in Table [lI} Among the
various types of graphs, we find road graphs (belgium_osm),
highly dense graphs (mycielskianl7), and power law graphs
(Reddit). We sourced these graphs from three main locations,
which are regularly used to evaluate GNN systems [7]], [[1O],
[45]]. These were SuiteSparse (SS) [46] — which provided
a plethora of graphs of varying characteristics, DGL and
Open Graph Benchmark (OGB) [47]] — which provided graphs
commonly used in the GNN context. The graphs collected
for the evaluation were undirected and unweighted, with no
overlap with the graphs used for training.

Model Configurations. We use a wide range of embedding
sizes for evaluations to showcase the scalability and practicality
of GRANII. We chose embedding size combinations ranging
from 32 to 2048, as we observed a larger range of embedding
sizes when inspecting the top ranks of Open Graph Bench-
mark’s leaderboards [48]], [49]]. In addition to this real-world
observation, we also observed similar variations in embedding
sizes in multiple academic works [6], [SO]-[52]. Note that
we only evaluate increasing embedding sizes for GAT, as this
is the scenario in which the primitive composition choice is
non-trivial (discussed in Section [LII-B).

We use a single-layer GNN for evaluation since the decisions
by GRANII apply to a singular GNN layer. An extension to
a multi-layered GNN is achievable by chaining the decisions
made for each separate layer. We show this in a 2-layer setting
for multiple graphs and models in Section along with a
study of GRANII’s behavior with different numbers of model
layers in Section

Testbed Machines. We evaluate GRANII on the machines
listed in Section [V] (A100, H100, and CPU). We include CPU
evaluations as they are a valid option during inference.

21

C. Performance Comparison

The optimal composition and ordering of primitives are
input-dependent. We show that GRANII almost always selects
the best input-dependent choice compared to hand-crafted
heuristics found in Section resulting in significant
speedups shown in this section. We perform all our evaluations
for 100 iterations across all inputs and settings. We chose
100 to represent the number of times a GNN would typically
run, but this can range from one iteration during inference to
thousands of iterations [53] when training. Here, we compare
against existing implementations of GNNs in each GNN system
(WiseGraph and DGL) for five GNN models: (a) GCN, (b) GIN,
(c) TAGCN, (d) SGC, and (e) GAT. We present summarized
results in Table while full per-graph results are presented in
Figure [8] These results also include the overheads of GRANII,
which are the feature extraction time and the composition
selection time. We analyze general trends first, before providing
an in-depth analysis of the results in Section

We observe varying speedups for GRANII across systems,
underlying hardware, GNN models, and execution modes
(inference and training). Overall, we achieve a geomean
speedup of 1.56x for inference and 1.4x for training across
all these settings. The training speedup being lower than the
inference speedup is a common trend that we observe across
systems and most models. This result can be attributed to the
additional computations in the backward pass. The backward
pass, where the gradient updates occur for the machine learning
model’s learned weights, is part of the entire execution when
training a model. However, GRANII does not perform operator
selection for the backward pass, as it only optimizes the
forward pass (inference). Nonetheless, GRANII still improves
the overall training time as the forward pass is optimized. We
observe a significant geo-mean speedup for WiseGraph when
evaluating the GCN model on the A100 machine, while also
observing no speedup for the GAT model in the same execution
context. We elaborate on this point in Section where
we perform an additional in-depth evaluation to analyze the
individual speedups that GRANII obtains. GRANII achieves
significant speedups for all graphs, including our largest graph,
ogbn-products(OB), where an overall geo-mean speedup of
1.42x is observed. In Section [VI-E| we additionally show that
GRANII is beneficial even with techniques such as sampling.
Notably, through sampling, we can support GraphSAGE [26]]
with GCN aggregation.

1) In-depth comparison: Using Figure 8] we now perform
a more in-depth analysis and explain some notable results.

Speedups. GRANII discovers two different primitive com-
positions (similar to the ones described in Section [III) for each
GNN model we evaluate. However, within these compositions,
there can be different operator reorderings (e.g., update
(GEMM) being performed first if the embedding size decreases).
If the default implementation of a system is predicted to be the
best for a given setting by GRANII, the speedup observed is 1
(blue line in Figure [8). This is the case for Figure [§j) where
the optimal composition is the default implementation. Any

Input,output Embedding size
32,32 32,256 64,1024 7256,

ERIetel

Speedup

Q?h WiseGraph H100 GCN

ey

(©)

O, !
Bomem < N
SEorg SESom +
2E2RS SRS oo

Speedup

Speedup

() DGL H100 GIN

~

@
3
o

©
B8
o

Speedup

(p) DGL A100 GCN (q) DGL A100 GIN

w0
~3 ~
o= N

NS
a =

ol
9l
9|
i

Speedup

o o
CA AU

(u) DGL CPU GCN (v) DGL CPU GIN

32 1024,1024 EL()Q24,2048

(e) Wise H100 GAT

WiseGraph H100 SGC

) ono,
WO
B5B00
LITB3

—ow' 92
ey oy
IILDB el

RD CA MC BL AU OP
(G) Wise A100 GAT

£
o
H100 GAT

2
RD CA MC BL AU OP
(t) DGL A100 GAT

Ry
~&
e

K
oP

TOTITY

19
)

488
& I 458
O I 152

G

(o

2
157
3 9

20
478
1.91

TLTITITR

e
e
5

!

-3

]

RD CA MC BL AU OP
(y) DGL CPU GAT

(x) DGL CPU TAGCN

(w) DGL CPU SGC

Fig. 8: GRANII’s speedups over WiseGraph and DGL, across different models, configurations, and underlying hardware for 100 iterations
with runtime overheads. Empty spaces are caused by OOM failures and illegal memory access errors. We used only increasing embedding
sizes for evaluating GAT, as it is the only scenario where an input-aware decision needs to be made.

variation from the baseline (i.e., any point where the observed
speedup is greater or less than 1), indicates that GRANII chose
a different primitive composition or operator reordering.
Most notable are speedups for denser graphs (RD, MC, and
OP) for GCN, SGC, and TAGCN on the WiseGraph evaluations.
Upon inspecting the default implementation and the decisions
made by GRANII, we observed that the WiseGraph uses a
PyTorch binning function when calculating the normalization
values. This function was used to calculate the number of
outgoing edges by binning each relevant edge on its outgoing
node. For denser graphs, the number of bins is small compared
to the overall binned values, and thus causes slowdowns due to
the higher amount of atomic operations. Choosing a primitive
composition that circumvents this function allows GRANII
to achieve the speedups shown. GRANII’s also achieves
significant speedups through operator reordering, as shown
by the GIN and SGC models for DGL. Here, the default
implementation for these models does not reorder the placement
of the update (GEMM) operation. However, a better ordering
that shifts the placement of this update operation to produce
a computationally less expensive execution is automatically
identified by GRANII to achieve the speedups shown. In DGL,
GRANII achieves more significant speedups for these models
(GCN, SGC, TAGCN) for sparser graphs (BL, AU, and CA)

as DGL’s existing implementation is more suited for denser
graphs (dynamic-normalization in Section [[II] for GCN).

For GAT, WiseGraph uses the model configuration details,
such as the embedding sizes, to select the primitive composition.
This leads to WiseGraph always recomputing the updated node
features for increasing embedding size combinations (men-
tioned in Section m for GAT). However, this recomputation
operation can be very costly, especially for large embedding
size combinations, as shown by Figure ﬂe), GRANII identifies
these occasions and opts to reuse the updated node features at
the cost of a more expensive aggregate operation. Meanwhile,
DGL does the opposite by default and always chooses to
reuse the updated node features. Again, this is not always
beneficial, and GRANII can correctly identify opportunities
where recomputing the node embedding is more beneficial to
achieve the speedups shown in Figures Eko),(t), and (y).

Slowdowns. The decisions made by GRANII can result in
slowdowns as seen in Figure Bkd). Here, GRANII fails at
selecting the optimal composition (where the default is the
better option). This is due to GRANII using data-driven cost
models, where the costs predicted may not be perfectly accurate.
This is especially true in situations where the costs are very
similar. In addition, we observe significant variations in CPU
runtimes as shown by Figures Ekv), (w), and (x). These effects

22

can be mitigated further with more data to train the cost models
of GRANII. In addition, GRANII still surpasses the decisions
made only using heuristics as shown in Section
Difference Across Hardware. Considering the underlying
hardware, from the CPU, to A100, to H100, we observe that
dense operations gradually become more optimized. This leads
to different optimal choices across different hardware as seen
by the results for the 1024, 1024 embedding size combination
for Reddit in GCN for WiseGraph (Figures a) and (f)). This
stands as evidence that GRANII’s data-driven method can
adapt to different execution settings compared to hand-crafted
heuristics, which an expert user would have needed to tune.
Overheads. The graph feature extraction and composition
selection overheads are very minimal — 7ms at most for GPU,
and 0.42s for CPU. In terms of iterations, this is a maximum
of 4.4x of a single GNN iteration for the GPUs, and 1.1x for
CPU. Both overheads are incurred only once during runtime.

D. End-to-End Results

TABLE IV: End-to-end results with speedups for GRANII on H100
(GRANII’s speedup is shown in parenthesis)

E‘ | P § | 2 | % | é g | Execution time (ms)
ZIZ512181Z4] Wise | DGL
\ = \ \ \ \ Default \ GRANIIL \ Default \ GRANII

z 32 48.3 9.4 (5.14x) 17.2 16.8 (1.02x)
- 8 256 | 67.3 48.8 (1.38x) 32.1 31.8 (1.01x%)
§ 602 | 41 1024 | 96.4 78.2 (1.23X) 74.3 73.7 (1.01x%)
~ o 32 222 24.4 (0.9%) 114.8 114.8 (1x)

<| 256 | 41.8 41.8 (1x) 150.7 150.7 (1x)

© 1024 | 82.9 82.9 (1x) 328.5 2029 (1.62x)
i) z 32 28.5 15.6 (1.83%) 31.7 31.1 (1.02x%)
E Q| 25 | 559 50.3 (1.11x) 51.3 49.6 (1.03x)
-§ 100 | 47 O 1024 | 76.18 70.63 (1.08 %) 80.1 70.9 (1.13%)
= o] 32| 3294 32.94 (1) 1184 | 1184 (1x)
) < | 256 | 63.07 63.07 (1x) 202.1 | 138.3 (1.46x%)
© © 1024 | Error (Illegal memory access) | 547.3 | 215.4 (2.54 %)

Table [[V|shows the runtime numbers for the forward pass on
the H100 machine on end-to-end GCN and GAT models. Here,
we evaluated the models using the Reddit and ogbn-products
graph datasets with a single hidden layer and varying hidden
dimensions. Our selections for these configurations were based
on end-to-end models found in other works [7]], [10], [12], [52].
Based on prior work [52f], the configurations for this evaluation
have been known to produce high levels of accuracy. In most
occasions, GRANII archives speedups greater than WiseGraph
and DGL at varying levels.

E. Sampling with GRANII

Sampling is a common technique used in GNNs to enhance
the generalizability of predictions [26] and to achieve better
performance. In order to check the sensitivity of GRANII’s deci-
sion to neighborhood sampling, we evaluated both compositions
it discovered for GCN and GAT using 10 random neighborhood
samples of sizes 1000,100, and 10 on the H100 machine for
the mycielskianl7 (MC) graph on DGL. We used embedding
sizes (32,256), (1024, 2048) for GCN, GAT respectively. We

23

selected these embedding sizes to show clear changes using
the best configuration for our selected sampling sizes.

As seen in Figure 0] the different random samples of the
same sampling size exhibit minimal variation in runtime. Upon
evaluating the decisions made by GRANII with five more
sampling sizes (ranging from 5000 to 5), GRANII only made
incorrect decisions when there was little benefit in selecting
one composition over the other. These evaluations show that a
single call to GRANII can be assumed across sampled graphs
without the need to inspect the sampled graphs separately and
re-run the underlying cost models.

1 100 |

" | op & Dynamic " - Reuse
E B Precomp. E oo B Recomp.
22 g
a @ @ a @ ® e
< e -
1000 100 10 1000 100 10
Sample Size Sample Size

(a) Sampling for GCN - (32,32) (b) Sampling for GAT - (1024, 2048)

Fig. 9: Scatter plots illustrating the effects of sampling for MC on
H100. Each composition is run on 10 randomly sampled sub-graphs.
(a,b) is the embedding sizes. Black lines show the median runtime.

F. Using GRANII with Multiple Layers

For a multi-layer TABLE V: Runtimes with varying number
GNN, GRANII can of layers for Reddit (hidden-dim: 32)

simply Sel(?(ft the Lavers Execution time (ms)

best composition for YIS | WiseGraph | GRANII (Speedup)

each layer using 2 483 9.4(5.14x)

its lightweight cost 3 72.2 13.9(5.19%)

models. We obser 4 96.2 18.4(5.22x)
odels. We observe 8 192.1 36.5(5.26%)

consistent speedups
using this technique against WiseGraph for a varying number
of layers, as shown in Table [V]

This is possible because sparsity, which is a function of the
input graph/adjacency matrix, typically does not change across
layers in GNNs. While there can be specific classes of GNN
models and operations that change the input graph’s sparsity
across layers, the GNN models that we evaluate do not possess
this characteristic. However, even with changing sparsity across
layers, GRANII can make decisions at each layer using only
its online component. Note that such changes in sparsity are
unlikely to be significant across iterations, similar to sampling
(which we show that it works well in GRANII in Section [VI-E).
Thus, a decision made in the first iteration can still be used
across other iterations, amortizing the overhead.

G. Accuracy of GRANII’s Cost Models

It is non-trivial to select the best primitive composition, as
it depends on multiple factors. To perform a deeper analysis,
we compare the geomean speedup of the optimal configuration
(Optimal), with the decisions made by GRANII using its
cost models. In addition, we evaluate decisions made by an
oracle that selects the best primitive composition independently
considering only the model configurations such as the input
and output embedding sizes (Config.), underlying hardware
architecture (HW), the input graph (Graph), or the underlying

baseline system (Sys.) for all five models we used in our
evaluations. For example, the Graph oracle selects recompute
as the best for GAT on a given graph if recompute is beneficial
for a majority of the evaluated settings (ranging over model
configurations, target hardware, and systems).

The results in Table show that GRANII makes more
accurate decisions than the evaluated heuristics. The Config.
oracle performs the best among the oracle models. Nonetheless,
this shows the need to consider multiple complex factors when
choosing the best primitive composition as GRANII does.

TABLE VI: Speedup from GRANII vs. other heuristics

GNN | Optimal | GRANII | Config. | HW | Graph | Sys.
GCN | 1.98x | 1.88x | 1.88x | 1.64x | 0.94x | 1.71x
GIN | 1.22x | 1.18x | 1.15x | 1.15x | 1.03x | 1.11x
SGC | 1.87x | 1.82x | 1.76x | 1.69x | 1.01x | 1.68x
TAGCN | 1.57x | 1.53x | 1.48x | 1.45x | 0.89x | 1.31x
GAT | 1.46x | 1.45x | 1.22x | 1.34x | 1.37x | 1.39x

VII. RELATED WORK

Input Sensitive Systems. There has been limited work on
systems strictly dedicated to optimizing GNNs based on input.
GNNAdvisor [18] is one such system that, based on the
input graph, uses a set of handcrafted functions to identify
optimization opportunities. Its optimizations are tailored to-
wards GPU-based sparse executions, and the thresholds are
heuristically set instead of being learned. Ideally, GRANII’s
techniques would be orthogonal to GNNAdvisor. However,
GRANII cannot be directly applied to GNNAdvisor without
significant engineering effort, as its underlying implementation
only has limited sparse-dense primitives. uGrapher [20] is
similar to GRANII as it optimizes GNNs using an input-aware
machine learning model to make decisions. In addition, works
such as [54], [55]] use inspector-executor-based executions to
perform low optimizations such as vectorization. In particular,
[54] symbolically analyzes sparse codes at compile time, similar
to GRANII’s offline stage. However, compared to these works,
GRANII performs optimizations at a higher level, such as
exploring different re-association choices. [17]] considers the
interplay between sparse and dense computation but focuses
on deciding solely based on the model configurations. Instead,
GRANII jointly considers model configurations and the input
graph for a target system and hardware.

There have been multiple input-aware systems applicable
to GNNs that select the underlying sparse data format. [[19]
proposes using a machine-learning model to predict the best
data representation for sparse operations in GNNs. Similarly,
WISE [56]] proposes a machine-learning solution to select
the best data representation for SpMV. Works such as ASpT
[57] and LAV [58] present input-aware sparse optimizations
that introduce new sparse representations and are coupled with
specialized executions. Focusing on graph operations in general,
[59]] proposes a solution quite similar to GRANII, where it
presents a learned solution that performs sparse optimizations

24

based on the input graph. However, this and the aforemen-
tioned solutions only optimize sparse computations. By not
considering the input-aware interplay of sparse and dense in
the context of GNNs, multiple optimization opportunities are
missed, as identified by GRANII.

GNN Optimizations. Graphiler [11]], and SeaStar [12] present
compiler-based solutions that allow GNN models written in
user-defined functions to be converted into highly optimized
code based on the computations specified. [15] achieves
significant speedups through operator reordering, kernel fusion,
and re-computation of training results. WiseGraph [10] uses
graph partitioning to optimize GNN executions. FreshGNN
[60] is a general-purpose GNN mini-batch-training framework
using caching for optimizations. FusedMM [61] and Graphite
[62] also present GNN kernel fusions, albeit specifically on
CPU. Although none of the aforementioned systems perform
any input-aware optimizations, as GRANII selects the best
primitive composition given the input, all the optimizations
presented in such systems can compose with GRANII.

Sparse Tensor Systems. In addition to systems that optimize
for GNNs specifically, kernels generated by sparse tensor sys-
tems could also be used to optimize GNN executions. General
sparse tensor systems such as TACO [63] and SparseTIR [64]
can perform schedule-based transformations in a single sparse
kernel. However, optimization opportunities that come with
kernel selection require optimizing on the end-to-end GNN
workload like GRANII does. Going beyond the boundary
of a single kernel, systems such as [21]]-[23]], [[65] perform
loop ordering optimizations across multiple adjacent kernels.
SpEQ [[66] and Mosaic [67] are examples that exploit existing
high-performance libraries whenever possible when executing
sparse implementations. However, these systems do not perform
any input-aware primitive composition selections across all
associative choices as GRANII does.

VIII. CONCLUSION

In this work, we propose a system to exploit the input
sensitivity of different primitive sparse-dense compositions in
GNN models. Our system, GRANII, is capable of traversing
different primitive compositions and reasoning about their
optimality based on rules and data-driven methods that inspect
the input. Input parameters we consider include the input
graph and embedding sizes for a target hardware architecture
and GNN system. GRANII allows users to attain speedups
compared to the default execution in both WiseGraph and
DGL, over a wide range of graphs and embedding sizes in
both GPUs and CPUs.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
feedback, which helped improve this work. We would also
like to thank Stefanos Baziotis and Chamika Sudusinge
for their feedback on drafts of this paper. This work was
supported in part by ACE, one of the seven centers in JUMP
2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA and by NSF under grant CCF-2316233.

[1]

[2]

[3

[4

=

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

REFERENCES

M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, ser. NIPS’18. Red Hook, NY,
USA: Curran Associates Inc., 2018, p. 5171-5181. [Online]. Available:
https://dl.acm.org/doi/10.5555/3327345.3327423

Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song, “Heterogeneous
graph neural networks for malicious account detection,” ser. CIKM ’18.
New York, NY, USA: Association for Computing Machinery, 2018,
p- 2077-2085. [Online]. Available: https://doi.org/10.1145/3269206
3272010

C. Liang, Z. Liu, B. Liu, J. Zhou, X. Li, S. Yang, and Y. Qi, “Uncovering
insurance fraud conspiracy with network learning,” in Proceedings
of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, ser. SIGIR’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1181-1184.
[Online]. Available: https://doi.org/10.1145/3331184.3331372

W. Jin, K. Yang, R. Barzilay, and T. Jaakkola, “Learning multimodal
graph-to-graph translation for molecule optimization,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=B 1 xJAsASF7

W. Torng and R. B. Altman, “Graph convolutional neural networks for
predicting drug-target interactions,” Journal of Chemical Information
and Modeling, vol. 59, no. 10, pp. 41314149, 10 2019. [Online].
Auvailable: https://doi.org/10.1021/acs.jcim.9b00628

S. Kaufman, P. Phothilimthana, Y. Zhou, C. Mendis, S. Roy,
A. Sabne, and M. Burrows, “A learned performance model for
tensor processing units,” in Proceedings of Machine Learning and
Systems, A. Smola, A. Dimakis, and I. Stoica, Eds., vol. 3, 2021, pp.
387—-400. [Online]. Available: https://proceedings.mlsys.org/paper/2021/
file/85d8ce590ad8981ca2c8286179159954- Paper.pdf

M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou,
C. Ma, L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and
Z. Zhang, “Deep graph library: A graph-centric, highly-performant
package for graph neural networks,” 2020. [Online]. Available:
https://arxiv.org/abs/1909.01315

M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” 2019. [Online]. Available: https://arxiv.org/abs/1903
02428

L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai,
“NeuGraph: Parallel deep neural network computation on large graphs,”
in 2019 USENIX Annual Technical Conference (USENIX ATC 19).
Renton, WA: USENIX Association, Jul. 2019, pp. 443-458. [Online].
Auvailable: https://www.usenix.org/conference/atc 19/presentation/ma

K. Huang, J. Zhai, L. Zheng, H. Wang, Y. Jin, Q. Zhang, R. Zhang,
Z. Zheng, Y. Yi, and X. Shen, “Wisegraph: Optimizing gnn with joint
workload partition of graph and operations,” in Proceedings of the
Nineteenth European Conference on Computer Systems, ser. EuroSys
’24. New York, NY, USA: Association for Computing Machinery, 2024,
p. 1-17. [Online]. Available: https://doi.org/10.1145/3627703.3650063

Z. Xie, M. Wang, Z. Ye, Z. Zhang, and R. Fan, “Graphiler:
Optimizing graph neural networks with message passing data
flow graph,” in Proceedings of Machine Learning and Systems,
D. Marculescu, Y. Chi, and C. Wu, Eds., vol. 4, 2022, pp.
515-528. [Online]. Available: https://proceedings.mlsys.org/paper/2022/
file/a87t1679a2f3e71d9181a67b7542122c- Paper.pdf]

Y. Wu, K. Ma, Z. Cai, T. Jin, B. Li, C. Zheng, J. Cheng, and
F. Yu, “Seastar: Vertex-centric programming for graph neural networks,”
in Proceedings of the Sixteenth European Conference on Computer
Systems, ser. EuroSys ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 359-375. [Online]. Available:
https://doi.org/10.1145/3447786.3456247

Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken, “Improving the
accuracy, scalability, and performance of graph neural networks with
roc,” in Proceedings of Machine Learning and Systems, 1. Dhillon,
D. Papailiopoulos, and V. Sze, Eds., 2020, vol. 2, pp. 187-198.
[Online]. Available: https://proceedings.mlsys.org/paper_files/paper/2020/
file/91fc23ceccb664ebb0cf4257e1ba9c5 1-Paper.pdf

J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. IJia,
J. Wei, K. Vora, R. Netravali, M. Kim, and G. H. Xu, “Dorylus:
Affordable, scalable, and accurate GNN training with distributed
CPU servers and serverless threads,” in /5th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 21).

25

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

USENIX Association, Jul. 2021, pp. 495-514. [Online]. Available:
https://www.usenix.org/conference/osdi2 1/presentation/thorpe

H. Zhang, Z. Yu, G. Dai, G. Huang, Y. Ding, Y. Xie, and
Y. Wang, “Understanding gnn computational graph: A coordinated
computation, io, and memory perspective,” vol. 4, pp. 467484,
2022. [Online]. Available: https://proceedings.mlsys.org/paper/2022/file/
9al158154dfa42caddbd0694a4e9bdc8-Paper.pdf

K. Huang, J. Zhai, Z. Zheng, Y. Yi, and X. Shen, “Understanding
and bridging the gaps in current gnn performance optimizations,” in
Proceedings of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP *21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 119-132.
[Online]. Available: https://doi.org/10.1145/3437801.3441585

M. Yan, Z. Chen, L. Deng, X. Ye, Z. Zhang, D. Fan, and Y. Xie,
“Characterizing and understanding gcns on gpu,” IEEE Computer
Architecture Letters, vol. 19, no. 1, pp. 22-25, 2020. [Online]. Available:
https://doi.org/10.1109/LCA.2020.2970395

Y. Wang, B. Feng, G. Li, S. Li, L. Deng, Y. Xie, and
Y. Ding, “GNNAdvisor: An adaptive and efficient runtime system
for GNN acceleration on GPUs,” in [I5th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 21).
USENIX Association, Jul. 2021, pp. 515-531. [Online]. Available:
https://www.usenix.org/conference/osdi2 1/presentation/wang- yuke:

S. Qiu, L. You, and Z. Wang, “Optimizing sparse matrix multiplications
for graph neural networks,” in Languages and Compilers for Parallel
Computing, X. Li and S. Chandrasekaran, Eds. Cham: Springer
International Publishing, 2022, pp. 101-117. [Online]. Available:
https://doi.org/10.1007/978-3-030-99372-6_7

Y. Zhou, J. Leng, Y. Song, S. Lu, M. Wang, C. Li, M. Guo, W. Shen,
Y. Li, W. Lin, X. Liu, and H. Wu, “ugrapher: High-performance
graph operator computation via unified abstraction for graph neural
networks,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 878-891. [Online].
Available: https://doi.org/10.1145/3575693.3575723

W. Ahrens, F. Kjolstad, and S. Amarasinghe, “Autoscheduling for
sparse tensor algebra with an asymptotic cost model,” in Proceedings of
the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, ser. PLDI 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 269-285.
[Online]. Available: https://doi.org/10.1145/3519939.3523442

R. Kanakagiri and E. Solomonik, “Minimum cost loop nests for
contraction of a sparse tensor with a tensor network,” in Proceedings
of the 36th ACM Symposium on Parallelism in Algorithms and
Architectures, ser. SPAA ’24. ACM, Jun. 2024, p. 169-181. [Online].
Available: http://dx.doi.org/10.1145/3626183.3659985

A. Dias, L. Anderson, K. Sundararajah, A. Pelenitsyn, and M. Kulkarni,
“Sparseauto: An auto-scheduler for sparse tensor computations
using recursive loop nest restructuring,” 2024. [Online]. Available:
https://arxiv.org/abs/2311.09549

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in International Conference on Learning
Representations, 2019. [Online]. Available: |https://openreview.net/forum?
1d=ryGs6iASKm

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=rJXMpikCZ

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, ser. NIPS’17.
Red Hook, NY, USA: Curran Associates Inc., 2017, p. 1025-1035.
[Online]. Available: https://dl.acm.org/doi/10.5555/3294771.3294869

F. Wu, T. Zhang, A. H. de Souza Jr., C. Fifty, T. Yu, and K. Q.
Weinberger, “Simplifying graph convolutional networks,” 2019. [Online].
Available: https://arxiv.org/abs/1902.07153

J. Du, S. Zhang, G. Wu, J. M. F. Moura, and S. Kar, “Topology
adaptive graph convolutional networks,” 2018. [Online]. Available:
https://arxiv.org/abs/1710.10370

T. A. Davis, “Algorithm 1000: Suitesparse:graphblas: Graph algorithms in
the language of sparse linear algebra,” ACM Trans. Math. Softw., vol. 45,
no. 4, dec 2019. [Online]. Available: https://doi.org/10.1145/3322125

https://dl.acm.org/doi/10.5555/3327345.3327423
https://doi.org/10.1145/3269206.3272010
https://doi.org/10.1145/3269206.3272010
https://doi.org/10.1145/3331184.3331372
https://openreview.net/forum?id=B1xJAsA5F7
https://doi.org/10.1021/acs.jcim.9b00628
https://proceedings.mlsys.org/paper/2021/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
https://www.usenix.org/conference/atc19/presentation/ma
https://doi.org/10.1145/3627703.3650063
https://proceedings.mlsys.org/paper/2022/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://doi.org/10.1145/3447786.3456247
https://proceedings.mlsys.org/paper_files/paper/2020/file/91fc23ceccb664ebb0cf4257e1ba9c51-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/91fc23ceccb664ebb0cf4257e1ba9c51-Paper.pdf
https://www.usenix.org/conference/osdi21/presentation/thorpe
https://proceedings.mlsys.org/paper/2022/file/9a1158154dfa42caddbd0694a4e9bdc8-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/9a1158154dfa42caddbd0694a4e9bdc8-Paper.pdf
https://doi.org/10.1145/3437801.3441585
https://doi.org/10.1109/LCA.2020.2970395
https://www.usenix.org/conference/osdi21/presentation/wang-yuke
https://doi.org/10.1007/978-3-030-99372-6_7
https://doi.org/10.1145/3575693.3575723
https://doi.org/10.1145/3519939.3523442
http://dx.doi.org/10.1145/3626183.3659985
https://arxiv.org/abs/2311.09549
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=rJXMpikCZ
https://dl.acm.org/doi/10.5555/3294771.3294869
https://arxiv.org/abs/1902.07153
https://arxiv.org/abs/1710.10370
https://doi.org/10.1145/3322125

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” CoRR, vol. abs/1609.02907, 2016. [Online].
Available: http://arxiv.org/abs/1609.02907

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017. [Online]. Available: https://openreview.net/forum?id=
BlIsrmfCZ

T. Chen and C. Guestrin, “XGBoost,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, aug 2016. [Online]. Available:
https://doi.org/10.1145%2F2939672.2939785

Y. Zhao, J. Li, C. Liao, and X. Shen, “Bridging the gap between
deep learning and sparse matrix format selection,” in Proceedings
of the 23rd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 94-108. [Online].
Available: https://doi.org/10.1145/3178487.3178495

C. Dong, D. Sun, Z. Yu, and B. Luo, “Multi-view brain network
classification based on adaptive graph isomorphic information bottleneck
mamba,” Expert Systems with Applications, vol. 267, p. 126170, 2025.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0957417424030379

M. A. Hasnat, S. Asadi, and N. Alemazkoor, “A graph attention network
framework for generalized-horizon multi-plant solar power generation
forecasting using heterogeneous data,” Renewable Energy, vol. 243,
p- 122520, 2025. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S096014812500182X

G. Li, L. Zhang, L. Yang, H. Hu, C. Xu, L. Jiao, D. Liu, C. Xiong,
and J. Deng, “Model interpretation and interpretability performance
evaluation of graph convolutional network fault diagnosis for air
handling units,” Journal of Building Engineering, vol. 103, p. 112048,
2025. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2352710225002840

Z. Li, L. Yan, H. Li, and Y. Wang, “Environmental factors-aware
two-stream gcn for skeleton-based behavior recognition,” Mach.
Vision Appl., vol. 36, no. 2, Jan. 2025. [Online]. Available:

https://doi.org/10.1007/s00138-024-01656-7

W. Wang, Y. Hu, M. Tiwari, S. Khurshid, K. McMillan, and
R. Miikkulainen, “Neuroback: Improving cdcl sat solving using graph
neural networks,” 2024. [Online]. Available: https://arxiv.org/abs/2110]
14053

Y. Hu, W. Wang, S. Khurshid, K. L. McMillan, and M. Tiwari,
“Fixing privilege escalations in cloud access control with maxsat
and graph neural networks,” in Proceedings of the 38th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE °23. IEEE Press, 2024, p. 104-115. [Online]. Available:
https://doi.org/10.1109/ASE56229.2023.00167

O. Platonov, D. Kuznedelev, M. Diskin, A. Babenko, and
L. Prokhorenkova, “A critical look at the evaluation of gnns
under heterophily: Are we really making progress?” 2024. [Online].
Available: https://arxiv.org/abs/2302.11640

M. Bechler-Speicher, B. Finkelshtein, F. Frasca, L. Miiller, J. Tonshoff,
A. Siraudin, V. Zaverkin, M. M. Bronstein, M. Niepert, B. Perozzi,
M. Galkin, and C. Morris, “Position: Graph learning will lose
relevance due to poor benchmarks,” 2025. [Online]. Available:
https://arxiv.org/abs/2502.14546

P. Pho and A. V. Mantzaris, “Regularized simple graph convolution
(sgc) for improved interpretability of large datasets,” Journal
of Big Data, vol. 7, no. 1, p. 91, 2020. [Online]. Available:
https://doi.org/10.1186/s40537-020-00366-x

S. Bagchi, A. Sarkar, and U. Maulik, “Topology adaptive graph
convolution network with heterogeneous entities for predicting adverse
events from drug-drug-interactions,” bioRxiv, 2022. [Online]. Available:
https://www.biorxiv.org/content/early/2022/05/17/2022.05.16.491112

K. Wang, S. Lyu, B. Wang, and Y. Zhang, “Anomaly detection via
semantically conjugate view learning on industrial temporal data,” IEEE
Internet of Things Journal, vol. 12, no. 11, pp. 15479-15490, 2025.
[Online]. Available: https://doi.org/10.1109/JI0T.2025.3527694

J.-A. Chen, H.-H. Sung, R. Zhang, A. Li, and X. Shen, “Accelerating gnns
on gpu sparse tensor cores through n:m sparsity-oriented graph reordering,”
in Proceedings of the 30th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’25. New
York, NY, USA: Association for Computing Machinery, 2025, p. 16-28.
[Online]. Available: https://doi.org/10.1145/3710848.3710881

26

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011. [Online].
Available: https://doi.org/10.1145/2049662.2049663

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: datasets for machine learning
on graphs,” 2020. [Online]. Available: https://dl.acm.org/doi/10.5555/
3495724.3497579

Z. Shi, J. Wang, F. Lu, H. Chen, D. Lian, Z. Wang, J. Ye, and
F. Wu, “Label deconvolution for node representation learning on
large-scale attributed graphs against learning bias,” pp. 11273-11 286,
2024. [Online]. Available: https://doi.org/10.1109/TPAMI.2024.3459408
J. Zhao, M. Qu, C. Li, H. Yan, Q. Liu, R. Li, X. Xie, and J. Tang,
“Learning on large-scale text-attributed graphs via variational inference,”
2023. [Online]. Available: https://arxiv.org/abs/2210.14709

T. Du, K.-h. Chang, P. Liu, and R. Zhang, “Improving taxonomy-based
categorization with categorical graph neural networks,” in 2021 IEEE
International Conference on Big Data (Big Data), 2021, pp. 1015-1022.
[Online]. Available: jhttps://doi.org/10.1109/BigData52589.2021.9671372
R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton,
and J. Leskovec, “Graph convolutional neural networks for web-
scale recommender systems,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 974-983. [Online]. Available:
https://doi.org/10.1145/3219819.3219890

L. Wei, H. Zhao, Z. He, and Q. Yao, “Neural architecture search for
gnn-based graph classification,” ACM Trans. Inf. Syst., vol. 42, no. 1,
Aug. 2023. [Online]. Available: https://doi.org/10.1145/3584945

J. Won, C. Mendis, J. S. Emer, and S. Amarasinghe, “Waco: Learning
workload-aware co-optimization of the format and schedule of a
sparse tensor program,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ser. ASPLOS 2023. New York,
NY, USA: Association for Computing Machinery, 2023, p. 920-934.
[Online]. Available: https://doi.org/10.1145/3575693.3575742

K. Cheshmi, S. Kamil, M. M. Strout, and M. M. Dehnavi, “Sympiler:
transforming sparse matrix codes by decoupling symbolic analysis,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: Association for Computing Machinery, 2017. [Online].
Available: https://doi.org/10.1145/3126908.3126936

K. Cheshmi, Z. Cetinic, and M. M. Dehnavi, “Vectorizing sparse matrix
computations with partially-strided codelets,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC °22. IEEE Press, 2022. [Online].
Available: https://dl.acm.org/doi/abs/10.5555/3571885.3571927

S. Yesil, A. Heidarshenas, A. Morrison, and J. Torrellas, “Wise: Predicting
the performance of sparse matrix vector multiplication with machine
learning,” in Proceedings of the 28th ACM SIGPLAN Annual Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
329-341. [Online]. Available: https://doi.org/10.1145/3572848.3577506
C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and P. Sadayappan,
“Adaptive sparse tiling for sparse matrix multiplication,” in Proceedings
of the 24th Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP 19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 300-314. [Online]. Available:
https://doi.org/10.1145/3293883.3295712

S. Yesil, A. Heidarshenas, A. Morrison, and J. Torrellas, “Speeding
up spmv for power-law graph analytics by enhancing locality &
vectorization,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis,
ser. SC ’20. IEEE Press, 2020. [Online]. Available: https:
//dl.acm.org/doi/10.5555/3433701.3433815

K. Meng, J. Li, G. Tan, and N. Sun, “A pattern based algorithmic
autotuner for graph processing on gpus,” in Proceedings of
the 24th Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 201-213. [Online]. Available:
https://doi.org/10.1145/3293883.3295716

K. Huang, H. Jiang, M. Wang, G. Xiao, D. Wipf, X. Song, Q. Gan,
Z. Huang, J. Zhai, and Z. Zhang, “Freshgnn: Reducing memory access
via stable historical embeddings for graph neural network training,”

http://arxiv.org/abs/1609.02907
https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.1145%2F2939672.2939785
https://doi.org/10.1145/3178487.3178495
https://www.sciencedirect.com/science/article/pii/S0957417424030379
https://www.sciencedirect.com/science/article/pii/S0957417424030379
https://www.sciencedirect.com/science/article/pii/S096014812500182X
https://www.sciencedirect.com/science/article/pii/S096014812500182X
https://www.sciencedirect.com/science/article/pii/S2352710225002840
https://www.sciencedirect.com/science/article/pii/S2352710225002840
https://doi.org/10.1007/s00138-024-01656-7
https://arxiv.org/abs/2110.14053
https://arxiv.org/abs/2110.14053
https://doi.org/10.1109/ASE56229.2023.00167
https://arxiv.org/abs/2302.11640
https://arxiv.org/abs/2502.14546
https://doi.org/10.1186/s40537-020-00366-x
https://www.biorxiv.org/content/early/2022/05/17/2022.05.16.491112
https://doi.org/10.1109/JIOT.2025.3527694
https://doi.org/10.1145/3710848.3710881
https://doi.org/10.1145/2049662.2049663
https://dl.acm.org/doi/10.5555/3495724.3497579
https://dl.acm.org/doi/10.5555/3495724.3497579
https://doi.org/10.1109/TPAMI.2024.3459408
https://arxiv.org/abs/2210.14709
https://doi.org/10.1109/BigData52589.2021.9671372
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3584945
https://doi.org/10.1145/3575693.3575742
https://doi.org/10.1145/3126908.3126936
https://dl.acm.org/doi/abs/10.5555/3571885.3571927
https://doi.org/10.1145/3572848.3577506
https://doi.org/10.1145/3293883.3295712
https://dl.acm.org/doi/10.5555/3433701.3433815
https://dl.acm.org/doi/10.5555/3433701.3433815
https://doi.org/10.1145/3293883.3295716

[61]

[62]

[63]

Proc. VLDB Endow., vol. 17, no. 6, pp. 1473-1486, 2024. [Online].
Available: https://www.vldb.org/pvldb/vol17/p1473-huang.pdf

M. K. Rahman, M. H. Sujon, and A. Azad, “Fusedmm: A
unified sddmm-spmm kernel for graph embedding and graph neural
networks,” in 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2021, pp. 256-266. [Online]. Available:
https://doi.org/10.1109/IPDPS49936.2021.00034

Z. Gong, H. Ji, Y. Yao, C. W. Fletcher, C. J. Hughes, and J. Torrellas,
“Graphite: Optimizing graph neural networks on cpus through cooperative
software-hardware techniques,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, ser. ISCA °22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
916-931. [Online]. Available: https://doi.org/10.1145/3470496.3527403
F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe,
“The tensor algebra compiler,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, pp. 77:1-77:29, Oct. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3133901

27

[64]

[65]

[66]

[67]

Z. Ye, R. Lai, J. Shao, T. Chen, and L. Ceze, “Sparsetir:
Composable abstractions for sparse compilation in deep learning,”
in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 660—678. [Online].
Available: https://doi.org/10.1145/3582016.3582047

K. Cheshmi, M. Strout, and M. Mehri Dehnavi, “Runtime composition
of iterations for fusing loop-carried sparse dependence,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’23. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3581784.3607097

A. Laird, B. Liu, N. Bjgrner, and M. M. Dehnavi, “Speq: Translation of
sparse codes using equivalences,” Proc. ACM Program. Lang., vol. 8, no.
PLDI, Jun. 2024. [Online]. Available: https://doi.org/10.1145/3656445

M. Bansal, O. Hsu, K. Olukotun, and F. Kjolstad, “Mosaic: An
interoperable compiler for tensor algebra,” Proc. ACM Program.
Lang., vol. 7, no. PLDI, Jun. 2023. [Online]. Available: https]
/ldoi.org/10.1145/3591236

https://www.vldb.org/pvldb/vol17/p1473-huang.pdf
https://doi.org/10.1109/IPDPS49936.2021.00034
https://doi.org/10.1145/3470496.3527403
http://doi.acm.org/10.1145/3133901
https://doi.org/10.1145/3582016.3582047
https://doi.org/10.1145/3581784.3607097
https://doi.org/10.1145/3656445
https://doi.org/10.1145/3591236
https://doi.org/10.1145/3591236

	Introduction
	Background
	Dense Matrix Primitives
	Sparse Matrix Primitives
	Matrix Primitives in GNNs

	Case-study: Compositions in Popular GNNs
	GCN
	GAT

	GRANII System
	Overview
	Matrix Representation Generation
	Generating Sparse-Dense Matrix Compositions
	Code Generation of Promoted Candidates
	Cost Models for Primitives
	Input Featurizer
	Lightweight Learned Cost Models

	Implementation
	Evaluation
	Research Questions
	Experimental Setup
	Performance Comparison
	In-depth comparison

	End-to-End Results
	Sampling with GRANII
	Using GRANII with Multiple Layers
	Accuracy of GRANII's Cost Models

	Related Work
	Conclusion
	References

