
VTC: DNN Compilation with Virtual Tensors for Data Movement Elimination

Muyan Hu1∗ Ahan Gupta1 Jiachen Yuan1 Vima Gupta2 Taeksang Kim1 Xin Xu1

Janardhan Kulkarni3 Ofer Dekel3 Vikram Adve1 Charith Mendis1

1University of Illinois Urbana-Champaign 2Georgia Institute of Technology 3Microsoft

Abstract
With the widening gap between compute and memory op-

eration latencies, data movement optimizations have become
increasingly important for DNN compilation. Current opti-
mizations such as layout transformations and operator fusion
only target a subset of tensor operators and consequently miss
important opportunities for reducing data movement in con-
temporary DNN workloads, including large language models.

We introduce VTC, a novel tensor compilation framework
that for the first time eliminates all unnecessary data move-
ment by targeting the full spectrum of data movement oper-
ators. VTC proposes the concept of virtual tensors to track
data movement between compute operators via index map-
pings rather than expensive physical data transfers to and from
global memory, which can seamlessly interoperate with exist-
ing computation kernels and handle arbitrary tensor operator
compositions. We also introduce a novel data movement elim-
ination algorithm to automatically identify a profitable virtual
tensor creation strategy. Evaluation on a variety of DNNs
shows that VTC can outperform existing ML compilers by
up to 1.93× (1.28× on average) on NVIDIA GPUs with up
to 60% (17.5% on average) inference memory savings.

1 Introduction

Deep neural network (DNN) workloads have gained popular-
ity in recent years. Usually, DNN models are expressed as
tensor (i.e. n−dimensional array) based computations. Con-
sequently, DNN developers express these computations us-
ing tensor programming languages such as TensorFlow [3],
JAX [7], and PyTorch [5], and then utilize tensor compilers
like XLA [1], TorchInductor [5], and TVM [9] to generate
highly performant executables targeting various hardware de-
vices. These compilers use a multi-stage pipeline similar to
general-purpose compilers [6]. During the compiler frontend,
computations expressed in tensor programming languages are
transformed into a compiler intermediate representation (IR),

∗Part of the work done during an internship at Microsoft.

known as computation graph. Nodes of these graphs represent
tensor operators (e.g. matrix multiplications, convolutions),
and each edge represents a tensor flowing from the output of
a producer node to the input of a consumer node. The com-
piler middle-end performs graph-level transformations (e.g.
operator fusion, tiling) to optimize the computation graph.
Finally, the compiler backend maps the computation graph
onto a set of kernels, each of which is a program fragment
written in single-program-multiple-data (SPMD) fashion on
modern hardware accelerators.

To keep up with the computational demands of DNN mod-
els, specialized hardware accelerators, such as NVIDIA Ten-
sor Cores, have been introduced. Each new generation of these
accelerators has consistently improved the compute capacity
to provide blazing speeds for compute instructions such as
matrix multiplications (e.g., nearly 1 PFLOPS half precision
on NVIDIA H100). Most tensor compilers already aim to
maximize utilization on such hardware using dedicated com-
piler backends (e.g. Triton [30] for GPUs), achieving low
latency and high throughput for compute operations.

However, memory technology in modern hardware has not
kept pace with these advances in compute capabilities. Fig-
ure 1 illustrates the widening compute-to-memory ratio as
newer accelerators are introduced, making memory instruc-
tions significantly more expensive than compute instructions.
Moreover, an increasing number of DNN models are becom-
ing memory bound, with performance dominated by memory
access requests to and from the accelerator’s global memory,
which exacerbates the impact of slower memory. For example,
in large language models (LLMs), the incremental decoding
stage is memory-bound and can be the bottleneck of end-to-
end inference [27]. Memory access requests are determined
by the types and the composition of data movement operations
in computation graphs. These operations only transfer data be-
tween global memory and the accelerator without performing
any computation on tensor data with compute units. Critically,
these inserted data movements between computational oper-
ators could introduce substantial extra latency. For example,
Figure 2 demonstrates TensorRT’s latency breakdown on a

2017 2018 2019 2020 2021 2022 2023 2024
Year

102

103

Co
m

pu
te

/M
em

or
y

Ra
tio

V100
A100

H100

AGX Xavier

Xavier NX

AGX Orin
Tesla GPUs
Jetson GPUs

T(FL)OPS
TB/s

Figure 1: Trend of compute/memory ratio for NVIDIA GPUs
over time. The ratio is calculated by dividing the computa-
tion power (half-precision performance in TFLOPS for Tesla
GPUs and INT8 performance in TOPS for Jetson Edge GPUs)
by the peak GPU memory bandwidth (in TB/s).

Llama 3 8B [14] decoder layer. Between the computation of
QKV projection and FlashDecoding [11], the data movement
operators take even more time than other computational op-
erators. These findings underscore the critical importance of
optimizing data movement operations in DNN compilers.

Prior works that propose optimizations for data movement
operations in tensor compilers broadly fall under two cat-
egories: layout optimizations and operator fusion, both of
which happen in the compiler middle end. These techniques
are usually incomplete, targeting only a subset of the data
movement operators and miss profitable data movement elim-
ination opportunities that could lead to significant speedups,
as detailed below.

Layout optimizations. The layout of a tensor determines
in which order its dimensions are linearized into memory.
When a producer operator generates an output tensor with
a layout that differs from the expected input layout of the
consumer operator, data layout conversion operators need to
be inserted, resulting in excessive and avoidable data move-
ment overhead. To find the optimal data layouts that minimize
such overheads, previous work first identifies layout-sensitive
tensor operators and optimally selects the adjacent layout
operators (primarily Reshape and Transpose operators) to
balance data movement overhead against computation effi-
ciency [2, 16, 24]. However, the tensor operators considered
in these works represent only a subset of data movement oper-
ations used in DNN models, overlooking optimization oppor-
tunities in other data movement operators (e.g., ScatterND)
that are key for improved performance (see Section 3.1).

Operator fusion. During DNN execution, operators usu-
ally serve as boundaries of global memory data movement –

MatMul

Split

Reshape

Reshape

Transpose

ScatterND

Slice

Unsqueeze

Reshape

Transpose

MatMul

Softmax

Div

Expand

Reshape

ScatterND

Slice

Unsqueeze

Reshape

Transpose

Expand

MatMul

X

Y

Old K
Cache

Old V
Cache

16 x 1 x 4096

16 x 1 x 4096

16 x 1 x 1024 16 x 1 x 1024

16 x 1 x 8 x 128

16 x 4096 x 8 x 128

16 x 4096 x 8 x 128

16 x 4096 x 8 x 128

16 x 4096 x 8 x 1 x 128

16 x 4096 x 8 x 4 x 128

16 x 4096 x 32 x 128

16 x 32 x 128 x 4096

16 x 1 x 32 x 128

16 x 32 x 1 x 128

16 x 4096 x 8 x 128

16 x 1 x 8 x 128

16 x 4096 x 8 x 128

16 x 4096 x 8 x 128

16 x 4096 x 8 x 1 x 128

16 x 4096 x 8 x 4 x 128

16 x 4096 x 32 x 128

16 x 32 x 4096 x 128

16 x 32 x 1 x 128

16 x 1 x 6144

1

2

3

16 x 32 x 1 x 4096

16 x 32 x 1 x 4096

16 x 32 x 1 x 4096

Reshape

16 x 1 x 4096

: Data Movement Operator : Computational Operator

TensorRT: 0.1034 ms
Ours:RRiii 0.1403 ms

TensorRT: 6 kernels, 0.9083 ms
Ours:RRiii 0 kernel,s 0 ms

TensorRT: 0.6892 ms
Ours:RRiii 0.2812 ms

W

16 x 4096 x 6144

Figure 2: Motivating example: computation graph and latency
breakdown for part of a Llama-3 decoder layer. The model
size of Llama-3 is 8B, with batch size 16, context length 4096,
query length 1 (decoding stage), bfloat16 precision. Frame
3 denotes a single kernel fusing all the operators with FlashDe-
coding. VTC can eliminate all the data movement operators
in frame 2 and achieve a 4× speed-up over TensorRT on this
subgraph.

all input and output tensors are stored in global memory. For
each operator, its corresponding kernel first loads inputs from
global memory into on-chip buffers, performs computations,
and then writes results back from on-chip buffers to global
memory. To reduce this costly data movement, existing deep
learning frameworks [2,3,5,9] employ operator fusion, which
enables intermediate results to be reused directly from fast
on-chip buffers rather than being written to and read from

slower global memory. However, these systems perform fu-
sion using hand-crafted rules that target specific data access
patterns (e.g., [23]), making this optimization only available
for operators that can be fused. As a result, similar to layout
optimizations, operator fusion reduces data movement for
only a subset of data movement operators, missing important
optimization opportunities.

Our Solution. In contrast with these two popular tech-
niques, in this paper, we introduce VTC, a compiler that elim-
inates unnecessary data movement across all data movement
operators. For example, as shown in Figure 2, VTC can elimi-
nate all the data movement operators between QKV projection
and FlashDecoding. VTC is comprehensive and works for
arbitrary composition of operators in computation graphs,
making it generally applicable for all kinds of DNN models.
Furthermore, it is complementary to both layout optimization
and operator fusion.

The key idea of VTC is to eliminate data movement op-
erators by using virtual tensors that store only a mapping
function between physical tensors in global memory. This
approach builds on the observation that modern hardware
compute units require contiguity only in their local memory
buffers, not in global memory. By relaxing the fully contigu-
ous condition to partially contiguous without compromising
memory coalescing, we can significantly eliminate data move-
ment operators. Virtual tensors enable us to relax the contigu-
ity condition by adding a level of indirection in the accesses to
the tensors in global memory. However, realizing this virtual
tensor representation requires addressing a few challenges to
fully eliminate unnecessary data movement.

Challenge 1: Kernel creation that facilitates virtual ten-
sors. With the introduction of virtual tensors, the current
computational kernels cannot be used in their present form.
First, these kernels assume contiguously laid out data in global
memory, which is guaranteed by data movement operators.
Second, virtual tensors can introduce extra overhead of map-
ping function and incontiguous memory access if used in
current kernel implementations. We only modify the global
memory I/O stages in existing computational kernels with
block virtual tensor I/O (Section 4.2), resulting in minimal
changes to the original kernel design and marginal runtime
overhead.

Challenge 2: Determining a profitable virtual tensor con-
struction strategy. Creating virtual tensors for all data
movement operators is non-trivial. Different virtual tensor
construction strategies lead to different profitabilities. We
solve the problem of finding a profitable option in two parts.
First, we introduce a virtual tensor opportunity graph to cap-
ture all virtual tensor creation options for a given computation
graph (Section 5.1). Next, we design a global greedy algo-

rithm that extracts a virtual tensor creation strategy with maxi-
mized latency savings (Section 5.2), which works empirically
well in the evaluation.

In summary, we make the following contributions.
• We identify a new data movement optimization oppor-

tunity by allowing partially contiguous global memory
storage in DNN compilation.

• We introduce the concept of virtual tensors for data
movement elimination and efficiently support it in com-
putational kernel generation.

• We propose virtual tensor opportunity graph and data
elimination algorithm to automatically find an efficient
strategy for creating virtual tensors.

• We implement these concepts in a compilation infrastruc-
ture, VTC. Our evaluations show up to 1.93× improve-
ment (1.28× on average) over existing DNN compilers
and up to 60% memory saving (17.5% on average) on
NVIDIA GPUs.

2 Background

We first provide background about tensor stride, data move-
ment operators at the graph-level, their necessity, and im-
plementations of tensor operators at the kernel-level before
explaining VTC.

2.1 Tensor Stride
To index an n-d tensor in the 1D memory, modern tensor com-
pilers need to calculate an integer offset from the index vector
I⃗ ∈ Nn. Tensor stride vector S⃗ ∈ Nn indicates the number of
elements we need to skip in memory to move from one ele-
ment to the next in each dimension. For example, for a 3D
tensor of shape (a,b,c), its stride vector S⃗ = (bc,c,1). And
the indexing will be simply the outer product of the stride
vector and the index vector. In the same example, the offset
of I⃗ = (i, j,k) is I⃗ · S⃗ = i ·bc+ j · c+ k.

2.2 Data Movement Operators
Data movement operators are a subset of tensor operators
responsible for only moving data in global memory.1 Ex-
amples include operators such as Transpose, Split and
ScatterND.2 As an example, the semantics of Transpose
operator can be given as follows.

Definition 1 (Transpose Operator). Transpose operator
takes a single input tensor and generates an output tensor
by permuting the dimensions of the input with a given per-
mutation perm: ∀i ∈ [0,n),output_dimensions[perm[i]] =
input_dimensions[i].

1Conversely, computational operators are defined by their use of compute
units to perform arithmetic operations on the data.

2In this paper, all mentioned operators are defined in ONNX (https:
//onnx.ai/onnx/operators/, a widely-used standard DNN format.

https://onnx.ai/onnx/operators/
https://onnx.ai/onnx/operators/

Figure 5 also shows a visualized example of Split operator.
It is clear that Transpose and Split do not change values
of individual elements, but rather reorganize their positions
in the tensor. This property holds for any data movement
operator and we formalize it as follows.

Definition 2 (Data Movement Operator). An operator with
input tensors I1, . . . , In and output tensors O1, . . . ,Om is a
data movement operator if and only if there exists a function
F(i, x⃗) = (j, y⃗) such that Oi [⃗x] = I j [⃗y], for all i ∈ [1,m], j ∈
[1,n], and x⃗, y⃗ are subscripts of Oi, I j, respectively.

For the Transpose operator, F(1, x⃗) = (1, y⃗) where yi =
perm[xi]. The mapping from outputs to inputs is one-to-one
in data movement operators, ensuring that each output ten-
sor element is derived from a unique input tensor element.
Conversely, the mapping from inputs to outputs is one-to-
many, indicating that an input tensor element may contribute
to multiple output tensor elements.

2.3 Kernel Implementation of Operators
Graph-level tensor operators are typically implemented as
hardware accelerator kernels with all the input and output data
physically residing in global memory. The implementation
can be divided into three distinct stages:

1. Transfer input data from global memory to on-chip
buffers.

2. Perform computation with compute units, which read
inputs from and write outputs to on-chip buffer (not
present in data movement operators).

3. Transfer output from on-chip buffer to global memory.
For example, Listing 1 shows a matrix multiplication op-

erator implemented in Triton [30] for GPU execution. In
stage 1, two blocks of input matrices (2D-tensors) a and b
are loaded as contiguous chunks from global memory into on-
chip buffers. Stage 2 does the actual compute, in this case, it
is an inner product of the loaded matrices. Stage 3 writes back
the resultant c matrix from on-chip buffer to global memory
also as contiguous chunks.

2.4 Necessity of Data Movement Operators
As seen in Section 2.3, tensor operators typically assume that
the data is contiguous in memory during stages 1 and 3 of a
kernel implementation. This serves two purposes: (1) satisfy-
ing the requirement of modern compute units for contiguous
memory layout of inputs and outputs,3 and (2) optimizing
global memory access through memory coalescing and better
locality. Due to the assumption of different kernel imple-
mentations, if a producer tensor operator uses a data layout
or subsection that differs from its consumer tensor operator,

3For example, NVIDIA tensor cores load two matrices of specific shapes
from a contiguous memory fragment and then perform fused multiply-add
(FMA) operations.

@triton.jit
def matmul_kernel(

a_ptr , b_ptr , c_ptr , # Pointers to matrices
... # Elide some meta-parameters

):
... # Elide some pre-processing steps
accumulator = tl.zeros(BLOCK_SIZE)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):

Stage 1: global -> on-chip
a = tl.load(a_ptrs , ...)
b = tl.load(b_ptrs , ...)
Stage 2: computation
accumulator = tl.dot(a, b, accumulator)
Advance the ptrs to the next K block
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk

... # Elide some post-processing steps
Stage 3: on-chip -> global
tl.store(c_ptrs , c, mask=c_mask)

Listing 1: An example of the three stages: a GPU matrix
multiplication kernel written in Triton.

data movement operators must be inserted to reconcile the
difference. These data movement operators are necessary to
maintain the correctness of the tensor computational graph,
but they will introduce extra overhead.

3 Motivation and Overview

3.1 Motivating Example: LLM Decoding

To illustrate the potential for data movement optimization in
DNN inference, we examine the decoding stage of Llama 3
8B [14] as a motivating example. We profiled a single decoder
layer using TensorRT [2], a state-of-the-art DNN compiler on
NVIDIA GPUs. 4 TensorRT incorporates numerous expert-
designed optimization rules and successfully identified the
self-attention pattern in the decoder layer, triggering an ad
hoc optimization for the entire layer. 5

Figure 2 shows the computation graph and TensorRT’s
latency breakdown on an NVIDIA A100 GPU. TensorRT
first applies graph-level transformations to merge the three
query, key, and value (QKV) projections into a single matrix
multiplication operation. It also employs the FlashDecoding
algorithm [11] to fuse the computation of self-attention into
one kernel. However, between these two computational ker-
nels, there exists a large number of data movement operators,
illustrated in frame 2 of Figure 2. The latency of these data
movement operators in TensorRT even surpasses the com-
bined latency of the two computational kernels.

4Similar latency distributions in this section were observed with other
DNN compilers such as TorchInductor [5].

5This black-box optimization, called Myelin, fuses the entire transformer
decoder layer into a single node and generates highly-optimized custom
kernels for this node.

We now focus on the purpose of data movement opera-
tors and their role in the computation graph. TensorRT first
executes a Split operator to extract the Q, K, V tensors
from the result of merged QKV projection. Next, TensorRT
uses Reshape and ScatterND operators to update the KV
cache [25] with the new K and V tensors. Subsequently, Ten-
sorRT applies the Slice operator to keys and values to obtain
a slice containing tokens up to the current sequence length.
As Llama 3 8B employs grouped-query attention [14], Ten-
sorRT then uses Unsqueeze and Expand operators to align
the number of KV heads with the number of query heads.
Finally, TensorRT runs Reshape and Transpose operators
to prepare the layout of keys and values for FlashDecoding.
Although operator fusion is available for these data movement
operators, TensorRT still requires 6 kernels to complete all
the data movements above.

However, according to the analysis of layout requirements
in Section 2, relaxing the fully contiguous condition of global
memory storage may unlock opportunities for data movement
operator elimination. For example, in stage 3 of the MatMul
operator used for the merged QKV projection in frame 1, the
MatMul kernel can directly write back the results to Q tensor
and appropriate locations in KV cache, eliminating the need
for Split, Reshape and ScatterND operators, as shown in
Figure 3. Since the dimension per attention head (128) is
larger than the GPU warp size (32), memory coalescing is not
compromised, allowing for both good memory bandwidth in
stage 3 and efficient utilization of tensor cores in stage 2. Sim-
ilarly, by permitting stage 1 of FlashDecoding to read from
not fully contiguous memory, the remaining data movement
operators can be eliminated.

Based on these observations, VTC can eliminate all the data
movement operators between QKV projection and FlashDe-
coding. For QKV projection, VTC writes to non-fully con-
tiguous memory, resulting in a slightly slower MatMul kernel
compared to TensorRT. However, VTC does not require any
GPU kernel to explicitly execute the data movement oper-
ators shown in frame 2 of Figure 2, significantly reducing
data movement overhead. Furthermore, after VTC’s optimiza-
tion, the FlashDecoding kernel can directly read from the KV
cache instead of the duplicated data generated by the Expand
operator. This optimization reduces global memory read over-
head by a factor of 4 (the ratio of the Expand operator) and
leads to a 2.5× speed-up of the FlashDecoding kernel.

3.2 Overview

Figure 4 shows VTC’s overview. The input is a computation
graph after operator fusion. To identify all the virtual tensor
creation possibilities, VTC first runs an virtual tensor opportu-
nity graph (VTOG) construction algorithm, based on VTC’s
virtual tensor definition and data movement optimization rules.
Next, VTC runs a points-to graph construction algorithm to
find a profitable virtual tensor strategy, represented by the re-

matmul_kernel(a, b , c)

Mapping

Memory View

Q_ptr

K_Cache_ptr

V_Cache_ptr

Stage 2: …
Stage 1: …

Stage 3: store_v(c_ptrs , c)

Condition Pointer Mapping Function

j < 4096 Q_ptr (i, j)

4096 <= j < 5120 K_Cache_ptr (i, pos, (j-4096)/128,
(j-4096)%128)

j >= 5120 V_Cache_ptr (i, pos, (j-5120)/128,
(j-5120)%128)

(a)

(b)

(c)

Figure 3: An example of data movement operator elimination
with virtual tensors in QKV projection (frame 1 in Figure 2).
The decoding stage is generating the pos-th token. Matrix
c[i, j] is a virtual tensor of shape (batch size, sum of QKV
hidden dimensions), where Q has hidden dimension 4096, and
K and V have hidden dimensions 1024 each. For the matrix
multiplication kernel (Triton code is in ?? 1), we only need to
modify stage 3, and the virtual tensor I/O function store_v
will automatically write the data to proper physical tensor
location according to the mapping function.

sulting points-to graph. Finally, VTC generates an optimized
executable according to this selected strategy.

4 Virtual Tensor

Definition 2 reveals that it is possible to eliminate the need
for actual data movement by storing only the mapping func-
tion F , which describes the relationship between the input
and output tensors. By leveraging this insight, we can avoid
the overhead associated with explicit data transfers in data
movement operators. In this section, we introduce VTC’s vir-
tual tensor notation, which builds upon this observation to
efficiently handle data movement operations. We will show
how to handle virtual tensor I/O in Section 4.2 and analyze
the profitability of the optimization in Section 4.3. Finally,
we give several examples of how to use virtual tensors to
eliminate data movement operators in Section 4.4.

Fused
Computation

Graph

§5.1 Algo 1:
Build VTOG

Virtual Tensor
Opportunity Graph

（VTOG）

§5.2 Algo 2:
Build Points-To Graph

Points-To Graph

Kernel Generator
Optimized
Executable

 §4.1 Virtual Tensor Definition

§4.4 Data Movement
Optimization Rules

 §4.3 Profitability Analysis

 §4.2 Virtual Tensor I/O

Figure 4: The overview of VTC.

4.1 Virtual Tensor Definition

The key idea behind the virtual tensor technique is to avoid
redundant instantiation of tensor data in global memory. If
a tensor is obtained by performing data movement operators
on other tensors, we can directly represent it using a map-
ping function and a set of physical tensor pointers, instead of
allocating global memory to store the tensor data.

Definition 3 (Virtual Tensor). A virtual tensor V is a tu-
ple (F,P1,P2, . . . ,Pn), where F is a mapping function and
P1,P2, . . . ,Pn is a set of physical tensor pointers. The map-
ping function F : x⃗→ (j, y⃗) describes the relationship between
each virtual tensor index x⃗ of V and the corresponding physi-
cal tensor index y⃗ of Pj, where j ∈ [1,n].

Figure 3 shows an example of virtual tensor in QKV pro-
jection. Virtual tensor c has 3 physical tensor pointers Q_ptr,
K_Cache_ptr, and V _Cache_ptr, with its mapping function
illustrated in subfigure (b).

A virtual tensor provides a contiguous index space that ref-
erences potentially non-contiguous locations within physical
tensors. Mapping function F links each virtual tensor index
to its corresponding physical tensor address. The virtual ten-
sor technique eliminates data movement operators through
two complementary approaches: (1) creating output virtual
tensors for a producer data movement operation that map to
input tensors of that operation, or (2) creating input virtual
tensors for a consumer data movement operation that map to
output tensors of that operation. While Definition 2 allows
for one-to-many mappings, VTC restricts F to one-to-one
mappings. This design choice simplifies implementation and
avoids potentially expensive overhead of translating complex
one-to-many mapping functions.

Mapping function composition. Virtual tensors can be
nested: it is possible for a base tensor, which is used to create
a virtual tensor, to be a virtual tensor itself. In such cases, the
resulting virtual tensor’s mapping function effectively applies
the base tensor’s mapping followed by the new mapping (e.g.,
Fnew = Fouter ◦Fbase), representing a chain of transformations.

4.2 Virtual Tensor I/O
VTC’s virtual tensor interface seamlessly translates virtual
tensor I/O operations into physical global memory I/O opera-
tions using the mapping function. In hardware kernels, global
memory I/O is usually performed in a block-wise manner,
where multiple threads simultaneously read a block of global
memory data. For most real-world cases, the contiguity of
mapping function conditions (e.g., 1024 in Figure 3) is larger
than and a multiple of block size. Therefore, each block is
likely to read from the same physical tensor, allowing us to
directly apply a non-partitioned mapping function to a block
of indices, which only introduces marginal overhead.

Virtual tensor provides a high-level abstraction that hides
the underlying data movement complexities. Users can work
with virtual tensors as if they were regular tensors, while
VTC transparently manages the mapping and access to the
physical tensor data behind the scenes. Since virtual tensors
only impact the global memory I/O (stage 1 and 3 in ?? 1) of
a hardware accelerator kernels, they leave the computation
part (stage 2 in ?? 1) unchanged. This allows virtual tensors
to be effortlessly integrated into existing optimized kernels
with minimal modifications. For example, in Figure 3, we can
directly pass a virtual tensor mapping to physical Q tensor and
KV cache as the output parameter of the projection MatMul
kernel. VTC then transforms the fully contiguous write to this
virtual tensor into partially contiguous writes to the Q tensor
and KV cache in MatMul kernel stage 3.

While virtual tensors have the potential to eliminate phys-
ical data transfers in data movement operators, the use of
mapping functions and non-fully contiguous global memory
access patterns still may introduce additional overhead. In
the next subsection, we will delve into the profitability of this
optimization technique, analyzing the trade-offs between the
benefits of reduced data movement and potential extra costs.

4.3 Profitability Analysis
Since the indirect memory access patterns of virtual tensors
are fully known at compile time, we can analyze the optimiza-
tion profitability based on the characteristics of the mapping
function. Similar to the classification of compiler optimiza-
tions into Type I (always profitable) and Type II (uncertain
profitability) [22], we can categorize the profitability of vir-
tual tensor optimizations by analyzing the mapping function.
Without loss of generality, we assume each virtual tensor maps
to a single base physical tensor here.

Remark 1. In most DNNs, the final mapping function be-
tween the the virtual tensor and a physical tensor can be
expressed as

f (⃗I) = S⃗ · I⃗ +b(⃗I) (1)

where I⃗ is the index vector, S⃗ is the stride vector (see Sec-
tion 2.1) and b : Nn → Z is an index-dependent bias function.

Remark 2. In ONNX operator set, most data movement op-
erators preserve affine transformations on indexing, which
can be achieved by adjusting stride and a constant bias. One
exception is Expand. For instance, expanding a tensor from
shape (a,b,c) to (a,3b,c) and making the expanded tensor
virtual yield the offset for index I⃗ = (i, j,k) as

i ·bc+(j%b) · c+ k = i ·bc+ j · c+ k−⌊ j/b⌋ ·bc (2)

Here for the mapping function in Equation (1), S⃗ = (bc,c,1),
b(⃗I) =−⌊ j/b⌋ ·bc.

Definition 4 (Contiguous dimension). For an n-d virtual ten-
sor with shape D⃗ = (D1, . . . ,Dn), dimension d is a contiguous
dimension if its mapping function in Equation (1) satisfies

1. All strides from dimension d onward equal the suffix
products of the shape vector: ∀i ∈ [d,n], Si = ∏

n
j=i+1 Di

2. Bias remains constant when the first d −1 dimensions
are fixed: ∀I⃗1 ∈ Nd−1, ∀I⃗2 ∈ Nn−d+1, b([⃗I1 | I⃗2])≡C.

Definition 5 (Partial contiguity and full contiguity). A virtual
tensor with minimal contiguous dimension d and shape vec-
tor D⃗ retains partially contiguous memory access if ∏

n
i=d Di

exceeds the minimal memory transfer unit size (e.g., memory
coalescing size in GPUs). A virtual tensor maintains fully con-
tiguous memory access if and only if its minimal contiguous
dimension equals 1.

Theorem 1. Optimization is always profitable (Type I) for
fully contiguous virtual tensors.

Theorem 1 establishes the conditions for guaranteed prof-
itability. When the mapping function preserves the original
data access pattern with only a constant bias allowed, the
virtual tensor optimization can be considered as Type I. Also,
Virtual tensors with partial contiguity are likely profitable
since they do not break minimal memory transfer granularity
and maintain high memory bandwidth. Otherwise, the prof-
itability is uncertain. VTC will perform profiling (described
in Section 5.2) to decide whether to proceed the optimization
according to actual latency impacts.

4.4 Virtual Tensor Optimization Rules for
Data Movement Operators

The virtual tensor optimization is designed to eliminate data
movement operators. In this subsection, we present several

1 2

1

2

1 2

Horizontal Split

Vertical Split

Incontiguous Storage

Contiguous Storage

1 2 1 2 1 …

(a)

(b)

Figure 5: Comparison between contiguous Split (performed
on the first axis) and incontiguous Split (performed on other
axes) on a 2D matrix stored in row major.

examples of data movement operators from ONNX, demon-
strate how VTC eliminates them using virtual tensors, and
discuss the profitability. All of the data movement operators
presented in this subsection are outside the optimization space
of previous layout optimizations.

Split When optimizing Split using virtual tensors, making
input a virtual tensor of outputs is Type II, since the output
tensors are stored separately and incontiguously in global
memory. On the other hand, making outputs virtual tensors of
input can be either a Type I or Type II optimization, depending
on the contiguity of the split. If the split is performed along the
first axis (axis 0), resulting in contiguous output tensors, it is a
Type I optimization. Figure 5 shows an example of contiguous
Split and incontiguous Split. When the incontiguous split
size is large enough, all the two directions of virtual tensor
optimizations have partial contiguity.

Expand The Expand operator broadcasts a single input
tensor to a specified shape, producing a single output tensor
with the same data as the input but with expanded dimen-
sions. When optimizing Expand using virtual tensors, both
directions are Type II. But if the number of duplicated ele-
ments exceeds memory coalescing size, it is almost always
profitable.

ScatterND The ScatterND operator takes 3 inputs: data,
indices, and updates. It generates a single output tensor
by first initializing it as a clone of the data tensor and then
updating the values at the specified indices in indices with
the corresponding values from the updates tensor. There are
two ways of virtual tensor optimization:

1. Making the output a virtual tensor of data. Since the
output tensor is initially a clone of data, it is a Type I
optimization.

2. Making updates a virtual tensor of the output tensor.
This optimization is Type II because the indices can be
incontiguous. In the LLM motivation example, updates

denotes all the locations in KV cache to be updated and
is partially contiguous.

We can conduct analysis and define optimization rules
similarly for all other data movement operators. As virtual
tensor optimization rules are highly dependent on the operator
semantics and the number of data movement operators is
limited (e.g., 18 in the ONNX), VTC requires developers
to specify the mapping function and possible virtual tensor
optimization rules between inputs and outputs for each data
movement operator. Then VTC can automatically analyze
profitability and perform virtual tensor optimizations, which
will be introduced in the next section.

5 Automatic Virtual Tensor Construction

This section introduces VTC’s virtual tensor construction
algorithm, which automatically makes intermediate tensors
virtual to minimize unnecessary data transfers and improve
overall performance. We first formalize the data movement
elimination problem by building a virtual tensor opportunity
graph (VTOG), and then introduce the global greedy algo-
rithm to eliminate data movements.

5.1 Virtual Tensor Opportunity Graph
VTC’s data movement eliminator takes a computation graph
after operator fusion as input. In prior work, all the interme-
diate tensors, represented by edges in the computation graph,
are physically stored in global memory. The data movement
elimination problem aims to find a strategy to make certain
intermediate tensors virtual and maximize the end-to-end la-
tency savings.

VTC first builds a virtual tensor opportunity graph (VTOG)
to analyze all the virtual tensor possibilities.

Definition 6 (Virtual Tensor Opportunity Graph). A vir-
tual tensor opportunity graph (VTOG) is a directed graph
G = (V,E). Each node v ∈V represents a tensor in the com-
putation graph. Each directed edge (u,v) ∈ E represents a
direct virtual tensor possibility, where tensor u can be made
a virtual tensor of v by eliminating only one data movement
operator.

Figure 6 shows an example of a computation graph and its
corresponding VTOG. Split determines the VTOG edges
between a and b; Reshape determines the VTOG edges be-
tween b and c; and ScatterND determines the VTOG edges
between c, d and K Cache.

For each node in the VTOG, some outgoing edges may
conflict with each other, indicating mutually exclusive virtual
tensor strategies. For example, in Figure 7, edges 1 and 3
conflict because designating c as a virtual tensor of both a
and d simultaneously would map some indices of c to multiple
physical memory locations, violating the one-to-one property

Split

Reshape

ScatterND

a

b

c

d

(a) (b)

K Cache d c b a

MatMul

K Cache

Figure 6: (a) The computation graph. (b) The corresponding
virtual tensor opportunity graph. Other outputs of Split op-
erator are ignored.

Concat

Transpose

a b

c

d

(a) (b)
a

b

c d1

2

3

Figure 7: An example of a computation graph and conflicting
edges in its VTOG. In (b), edge 1 and edge 3 conflict with
each other. Edge 2 and edge 3 also conflict. However, edge 1
and edge 2 can be selected together.

of virtual tensor mapping functions. In contrast, edges 1 and
2 can coexist when preserving a one-to-one mapping. We
capture all such conflicting edge pairs in a conflict set.

Algorithm 1 shows how to create a VTOG and the conflict
sets from a computation graph. VTC constructs the VTOG
by iterating through all data movement operators in the input
computation graph, following the predefined virtual tensor
rules for each operator (Section 4.4), and creating edges be-
tween operator inputs and outputs.

When all outgoing edges of each node in a VTOG are
mutually compatible, the VTOG becomes a points-to graph,
similar to that used in traditional compiler pointer analysis [4].
The points-to graph has one-to-one correspondence with a
virtual tensor strategy for the entire computation graph. For
example, Figure 8 shows several possible points-to graphs
derived from the VTOG in Figure 6. Strategy 3 has no edges,
indicating that all the tensors are physical. Strategy 2 has
b and K cache as physical tensors, making a and c virtual
tensors of b, and d a virtual tensor of K cache. Strategy 1
makes a, b, c, and d all virtual tensors of K cache. Note that
K cache is an input tensor of the computation graph, so it
must reside in physical memory.

Using an inductive argument, it is not hard to show the com-
putational equivalence of the computation graph and the virtu-
alization strategy corresponding to a points-to graph derived
from the VTOG. As evident from the definition, a points-to
graph can be derived from a VTOG by removing conflicting
edges. However, different points-to graphs can lead to differ-
ent end-to-end latency gains. The following subsection intro-

Algorithm 1 Build VTOG from a computation graph.
Input: A computation graph G = (V,E)
Output: The VTOG = (VVTOG,EVTOG) of G and a conflict set

S(v) ∀v ∈VVTOG

1: I = {i | i is an input tensor of G}
2: O = {o | o is an output tensor of G}
3: VVTOG = I
4: for v ∈V do
5: VVTOG =VVTOG ∪{o | o is an output tensor of v}
6: EVTOG = {}
7: for v ∈V do
8: if v is a data movement operator then
9: for (a,b) ∈VTRULES(v) do ▷ a,b are input or output

tensors of operator v and a can be made a virtual tensor of b
10: if a /∈ I and a /∈ O then ▷ inputs and outputs of G

must be physical tensors
11: EVTOG = EVTOG ∪{(a,b)}
12: for v ∈VVTOG do
13: Construct S(v) by enumerating outgoing edges of v

return (VVTOG,EVTOG), S

K Cache d c b a

K Cache d c b a

K Cache d c b a

Strategy 1:

Strategy 2:

Strategy 3:

Figure 8: Several valid points-to graph of Figure 6, repre-
senting different virtual tensor strategies. Physical tensors are
marked gray in each strategy.

duces VTC’s points-to graph construction algorithm, which
aims to obtain a points-to graph representing an efficient vir-
tual tensor strategy.

5.2 Global Greedy Algorithm
The objective of our data movement elimination algorithm is
to maximize the latency saving for each virtual tensor strat-
egy, which can be formalized as follows. Let (EVTOG,F, ℓ)
denotes the virtual tensor search space corresponding to a
VTOG. Here each edge in EVTOG denotes a single virtual-
ization opportunity, F denotes a set of all points-to graphs
and ℓ : F→ R is the latency saving function maps for every
points-to graph C ∈ F to the latency saving corresponding to
virtual tensor strategy realized by C. Our goal is to find the
optimal points-to graph

C∗ = arg max
F

{ℓ(C)} (3)

Equation (3) is NP-hard as ℓ is a complex set function without
any structure, which can only be measured through profiling
on real hardware. In some situations we can expect that ℓ is a

submodular function; for example, when all our operations
are Type I (see Section 4.3). Unfortunately, it is not true for
more general VTOGs.

Despite this, we take inspiration from the submodular func-
tion maximization literature, and design a global greedy algo-
rithm to approximately solve our problem. It is well-known
that the global greedy algorithm, which at each iteration adds
the element that maximizes the discrete derivative of a sub-
modular function ℓ, achieves a constant approximation to the
optimal solution for a broad range of settings; we refer readers
to [19] for an introductory survey.

Algorithm 2 shows VTC’s points-to graph construction
procedure. With all tensors stored in physical memory ini-
tially, it iteratively creates new virtual tensors. Specifically,
the algorithm maintains an anchor node set A and a currently
selected edge set C. In each iteration, it adds a new node
vc into the anchor node set by adding some non-conflicting
edges between vc and A into the currently selected edge set.
For each edge e ∈ EVTOG, we define its discrete derivative
with respect to ℓ as

w(e) := ℓ(C∪{e})− ℓ(C), (4)

which denotes the latency saving of merely adding edge e
to C. The greedy strategy picks the node vc that maximize
the sum of latency savings across its incident non-conflicting
edges in the current iteration, then updates the sets A and C.
Subsequently, since creating a new virtual tensor updates C,
the algorithm recalculates w(e) for each edge e pointing to vc
by profiling. If the maximum latency saving is negative or all
the nodes are added to A, the algorithm terminates.

Complexity analysis. Algorithm 2 executes a maximum of
O(|VVTOG|) iterations. In each iteration, it performs at most
O(|EVTOG|+ |VVTOG|) calculations. Based on the VTOG def-
inition 6 and its construction algorithm 1, |EVTOG| is linear
with |V | and |VVTOG| < |E|. In typical DNN computation
graphs, O(|V |) = O(|E|), so O(|VVTOG|) = O(|EVTOG|) =
O(|V |). Consequently, the complexity of VTC’s data move-
ment elimination algorithm is the product of the maximum
number of iterations and the cost per iteration, i.e. O

(
|V |2

)
.

6 Implementation

We implemented VTC on top of Triton [30] and TorchInduc-
tor [5]. We first added virtual tensor support in Triton by over-
loading Triton’s global memory I/O functions, tl.load and
tl.store, enabling them to handle virtual tensor I/O opera-
tions. Mapping function is represented in the form of Equa-
tion (1). Our overloaded operators consume base physical
tensor pointers along with mapping functions that determine
how virtual tensors map to physical memory. Since all indi-
rect memory access patterns through virtual tensors are fully
known at compile time, we implemented overloaded tl.load

Algorithm 2 An iterative global greedy algorithm to build a
points-to graph from a VTOG.

Input: VTOG = (VVTOG,EVTOG) and conflict set S(v)
Output: The points-to graph PTG = (VPTG,EPTG) of VTOG

with maximized latency savings
1: A = {}, C = {}
2: for v ∈VVTOG do
3: if v does not have outgoing edges then
4: A = A∪{v}
5: for e ∈ EVTOG do
6: Profile and get w(e)
7: tot_saving = 0
8: while A ̸=VVTOG do
9: max_saving =−∞

10: for v ∈VVTOG \A do
11: P,s =MAXEDGES(v,C(v),A) ▷ P is a set of

non-conflicting edges between v and A with maximum sum of
marginal latency savings s

12: if s > max_saving then
13: max_saving = s, Pc = P, vc = v
14: if max_saving < 0 then
15: break
16: A = A∪{vc}, C =C∪Pc
17: tot_saving = tot_saving+max_saving
18: for e = (t,vc) ∈ EVTOG do
19: Profile and update w(e)

return (VVTOG,C), tot_saving

and tl.store by generating Python code specialized for each
virtual tensor I/O, avoiding most of the indirection overheads.

We integrated VTC’s data movement eliminator into
TorchInductor through two passes: an analysis pass and a
transformation pass. The analysis pass automatically gener-
ates a virtual tensor strategy with Algorithms 1 and 2. This en-
tails identifying which physical tensors to promote to virtual
tensors as well as computing mapping functions of promoted
virtual tensors to their physical indices. The transformation
pass then operates in two stages: (1) It mutates TorchInduc-
tor’s IR nodes with virtual tensor awareness and removes any
unnecessary data-movement operators. We modified TorchIn-
ductor’s lowering strategy to correctly lower our overloaded
ops.load and ops.store operators to Triton. (2) Once low-
ered to Triton, we generate the specialized Python code using
the method mentioned earlier. The resulting Triton code is
then compiled to produce an optimized hardware executable.

VTC’s automatic virtual tensor construction employs a
polynomial-time greedy algorithm rather than exhaustively
searching in an exponential solution space. During compila-
tion, profiling (line 6 and 19 in Algorithm 2) dominates the
time cost. Since VTC only modifies data movements in stage
1 and 3, no autotuning is needed for each kernel. The profiling
overhead is less than 10 seconds per configuration, and the
end-to-end compilation requires only a polynomial number
of profiling runs, resulting in total compilation time under 10

Table 1: Configurations of evaluated models.

Model Component Input Specification Precision

Llama 3 8B Decoder Layer Query Length: 1, BF16Gemma 2 9B Context Length: 4096

EfficientViT-Base Attention Block Resolution: 4096
TF32YOLOv11n C3K2 Block Resolution: 640

ShuffleNet ShuffleUnit Resolution: 224

minutes for all the models we have tested, which is on par
with the compilation time of ML compilers [28, 37, 39].

As VTC focuses solely on optimizing data movement and
does not alter the computation logic, it maintains end-to-end
numeric equivalence with the original compiler, ensuring zero
precision loss.

7 Evaluation

7.1 Experimental Setup
Platform. We conduct our evaluation on an A100 server
and a H100 server. The A100 server is equipped with an Intel
Xeon Platinum 8358 CPU and an NVIDIA A100 80GB PCIe
GPU. The H100 server is equipped with an AMD EPYC 9454
Processor and an NVIDIA H100 NVL GPU. Both servers run
Ubuntu 22.04, NVIDIA driver version 535.183.06 and CUDA
version 12.1.

Workloads. We use five real-world DNNs from various
domains to evaluate VTC. Llama 3 [14] and Gemma 2 [29]
are transformer-based LLMs with grouped-query attention
and local-global attention, respectively. EfficientViT [8] is a
vision transformer backbone for high-resolution dense predic-
tion with linear attention. YOLOv11 [18] is a powerful and
efficient convolutional neural network (CNN) designed for a
broad range of vision applications. ShuffleNet [38] is a CNN
optimized for mobile devices. Table 1 provides detailed con-
figurations for each model. We use PyTorch implementation
for all the models. Except ShuffleNet, all the implementation
is from official repositories. Following the common practice
in previous ML compiler research [31,40,41], we evaluate all
models with batch size 1 and 16.

7.2 End-to-end Performance
We first evaluate the end-to-end inference latency on a sin-
gle A100 or H100 GPU and compare VTC with PyTorch
2.6.0 [5] (with torch.compile enabled), ONNX Runtime
1.21.1 [12], XLA6 [1] and TensorRT 10 [2]. Figure 9 presents
the end-to-end inference latency results with different batch
sizes on A100 and H100, respectively. VTC achieves up to

6Since our benchmark workloads are implemented in PyTorch, we use
torch_xla 2.6.0 package to run PyTorch models with XLA backend.

Table 2: Peak GPU memory consumption of PyTorch and
VTC during end-to-end inference with batch size 1 and 16 on
A100. All numbers are in Megabytes.

Model Llama Gemma EfficientViT YOLOv11 ShuffleNet

PyTorch (BS=1) 528.8 480.7 59.0 32.8 10.6
Ours (BS=1) 461.8 436.1 55.6 26.7 10.4
Savings (%) 12.7% 9.3% 5.7% 18.5% 0.9%

PyTorch (BS=16) 1787.3 1491.6 798.1 529.0 41.0
Ours (BS=16) 714.5 776.4 773.9 450.9 39.9
Savings (%) 60.0% 48.0% 3.0% 14.8% 2.6%

1.93× speed-up (1.28× on average) over the best of the four
baselines (mostly TensorRT or PyTorch) in each benchmark.

During the evaluation, TensorRT successfully identifies the
attention pattern for all Transformer-based models (Llama,
Gemma and EfficientViT) and triggered highly optimized
implementations for the entire model. 5 However, VTC still
demonstrates an average speed-up of 1.36×. This is notably
higher than the average speed-up of 1.15× observed for the
CNN models (YOLOv11 and ShuffleNet), indicating that
VTC effectively capitalizes on optimization opportunities
inherent in newer model architectures like Transformers.

VTC achieves even greater speedup on H100 GPUs as
compared to A100 GPUs for 7 cases out of the 10 benchmark
cases (covering 5 models at 2 different batch sizes). This
trend suggests that the optimization techniques employed by
VTC are particularly effective on newer hardware acceler-
ators, where the gap between compute power and memory
bandwidth is getting larger (see Figure 1).

7.3 Memory Footprint

We also measure the inference GPU memory footprint after
VTC’s optimization compared to the PyTorch baseline (as
VTC is built upon TorchInductor) using the PyTorch’s built-in
memory monitor. As shown in Table 2, even when optimizing
for maximized latency reduction, VTC still achieves up to
60% peak memory saving (17.5% on average). This demon-
strates that virtual tensor optimization inherently saves mem-
ory – it avoids storing full physical tensor data by representing
virtual tensors with tensor pointers and mapping functions,
and VTC handles virtual tensor I/O through code generation
with no extra memory overhead. Analyzing the results in
detail, we find that VTC successfully makes many large in-
termediate tensors virtual (e.g., the output of ScatterND in
Figure 2), thereby reducing peak memory usage. Moreover,
this highlights VTC’s potential for more aggressive memory
saving with relaxed latency constraints by reconfiguring the
function ℓ in Section 5.2 to measure memory reduction, of-
fering greater benefits for model training and deployment on
memory-constrained hardware.

7.4 Latency Breakdown Analysis

Since TensorRT is the fastest baseline in most cases, we com-
pare the latency breakdown of data movement operators and
computational operators for VTC and TensorRT on A100.
The results in Figure 10 reveal a substantial reduction in the
latency proportion from data movement after VTC’s opti-
mization. In 7 out of 10 evaluated cases, VTC eliminates
data movement operators entirely. Moreover, the analysis
highlights that data movement operators account for a larger
proportion of the overall latency in Transformer-based models
compared to CNNs, enabling VTC to get better speed-ups.

However, in most of the benchmarks, VTC’s latency on
computational operators is higher than TensorRT’s. There
are two possible reasons: (1) VTC’s computational kernels
may perform virtual tensor I/O in non-contiguous physical
addresses, introducing extra overhead in computational ker-
nels (e.g., the MatMul kernel in frame 1 of Figure 2). (2) VTC
is built upon Triton and TorchInductor, while TensorRT has
more highly optimized implementations of computational
kernels. This indicates that the performance gains from elimi-
nating data movement significantly outweigh the slowdown
incurred in computational operators.

7.5 Comparison with vLLM

As Figure 2 shows, VTC eliminates all data movement op-
erators between QKV projection and attention in LLM de-
coder layer. Compared with existing compilers such as Ten-
sorRT and TorchInductor, the subsequent computational ker-
nel FlashDecoding can launch directly after the previous com-
putational kernel MatMul, improving the utilization rate of
compute units without stalling on data movement operators.

To demonstrate the effectiveness of this optimization over
a stronger LLM inference baseline beyond compilers, we
compare VTC with a state-of-the-art LLM serving framework
vLLM V1 [20] on Llama 3 8B inference. Since vLLM is
PyTorch-based, we can seamlessly integrate VTC into it. We
use similar settings (input sequence length 4096 and BF16
precision)7 for evaluation on A100 and H100 GPUs.

Table 3 shows that vLLM has manually optimized many
data movement operators from frame 2 of Figure 2 – the KV
Cache Update row in Table 3 contributes to a small fraction
of latency compared to compiler baselines. This poses a great
challenge for VTC to compete, as vLLM is heavily optimized
by domain experts on specific LLMs, while VTC is an auto-
mated compiler for general ML models. Nevertheless, VTC
still identifies a redundant data movement involving the tem-
porary tensor that stores QKV projection results, detailed in
Table 4. This optimization yields a 1.043x speed-up on the

7vLLM V1 removes traditional notions of batch size and stage separation
between prefill and decode through token-based iterative decoding. For our
experiments, we construct an input batch of 4096 tokens and measure the
corresponding attention latency.

A B C D E
0.0

0.5

1.0

1.5

2.0

2.50x

1.28x

2.91x

1.33x
1.00x

Llama

A B C D E
0.0

0.2

0.4

0.6

0.8

13.5x

1.26x

6.09x

2.09x

1.00x

Gemma

A B C D E
0.0

0.2

0.4

0.6
4.56x

1.65x 1.73x
1.11x 1.00x

EfficientViT

A B C D E
0.0

0.1

0.2

13.5x

1.47x

4.64x

1.18x 1.00x

YOLOv11

A B C D E
0.0

0.1

0.2

5.21x

2.07x

5.36x

1.06x 1.00x

ShuffleNet

A B C D E
0

1

2

6.09x 4.12x 4.35x

1.93x

1.00x

A B C D E
0

2

4

6

32.3x

2.32x
1.68x

2.17x

1.00x

A B C D E
0

1

2

3

7.13x

1.08x
1.44x 1.55x

1.00x

A B C D E
0.0

0.5

1.0

1.5

27.4x

1.25x

1.95x

1.16x 1.00x

A B C D E
0.0

0.2

0.4

15.2x

1.82x

3.05x

1.18x 1.00x

A B C D E
0.0

0.5

1.0
2.06x

1.15x

2.36x

1.08x 1.00x

A B C D E
0.0

0.2

0.4

0.6
9.76x

1.58x

2.59x
2.05x

1.00x

A B C D E
0.0

0.1

0.2

0.3

0.4

3.57x

2.21x
1.80x

1.16x 1.00x

A B C D E
0.00

0.05

0.10

0.15

10.4x

1.38x

3.53x

1.20x 1.00x

A B C D E
0.00

0.05

0.10

0.15

4.04x

2.24x

5.22x

1.08x 1.00x

A B C D E
0.0

0.5

1.0

1.5
5.79x

3.00x

4.07x

1.73x

1.00x

A B C D E
0

1

2

3

26.8x

2.98x

1.35x

2.61x

1.00x

A B C D E
0.0

0.5

1.0

1.5

6.94x

1.10x
1.50x

1.83x

1.00x

A B C D E
0.00

0.25

0.50

0.75

1.00
21.7x

1.37x
1.85x

1.16x 1.00x

A B C D E
0.0

0.1

0.2

0.3

9.33x 4.23x

3.23x

1.20x 1.00x

Ex
ec

ut
io

n
Ti

m
e

(m
s)

A1
00

Ba
tc

h
Si

ze
 1

A1
00

Ba
tc

h
Si

ze
 1

6
H1

00
Ba

tc
h

Si
ze

 1
H1

00
Ba

tc
h

Si
ze

 1
6

(A) ONNX Runtime (B) PyTorch 2 (C) XLA (D) TensorRT (E) Ours

Figure 9: End-to-end inference latency comparison on a single NVIDIA A100 GPU and H100 GPU with batch sizes 1 and 16.
Bars over 4× of VTC’s latency are truncated.

Figure 2 computation graph and 1.011x end-to-end speed-
up over vLLM on A100. However, no speed-up is observed
on H100 since vLLM’s cuBLAS MatMul kernel (QKV pro-
jection) significantly outperforms VTC’s Triton kernel, and
VTC’s profile-guided virtual tensor construction automati-
cally skips negative optimizations. Forcing the optimization
from Table 4 on H100 causes an 8% performance degrada-
tion. We believe this gap could be bridged by integrating VTC
into more optimized hardware-specific kernel libraries like
CUTLASS in the future.

7.6 Case Studies
To gain a deeper understanding of how VTC eliminates data
movement operators, we study some optimization cases found
by VTC in detail.

EfficientViT. Figure 12 illustrates VTC’s generated ker-
nels and the points-to graph for EfficientViT attention block
with batch size 16. All 5 kernels are computational kernels,
and VTC eliminates data movement operators between these
kernels by employing a virtual tensor strategy shown in the
points-to graph. Among the tensors, only a, e, f, and j are
physically stored. k2 and k3 directly read their inputs from

Table 3: Comparison of Llama inference latency (ms) be-
tween VTC and vLLM. QKV Projection, KV Cache Update
and Attention correspond to the 3 frames in Figure 2 in the
same order. Total shows the latency on the Figure 2 subgraph.
End-to-end shows latency for the entire decoder layer. Speed-
up uses vLLM as the baseline. On H100, VTC defaults to
identical behavior as vLLM, while enforcing optimization in
Table 4 degrades performance.

A100 H100

vLLM VTC vLLM VTC
VTC w/

enforced opt.

QKV Projection 0.959 0.914 0.401 0.401 0.714
KV Cache Update 0.037 0 0.027 0.027 0

Attention 0.976 0.976 0.438 0.438 0.438
Total 1.972 1.890 0.866 0.866 1.152

Speed-up 1.000x 1.043x 1.000x 1.000x 0.752x

End-to-end 9.152 9.055 4.230 4.230 4.600
Speed-up 1.000x 1.011x 1.000x 1.000x 0.920x

the output tensor a of k1. k4 reads its inputs from the output
tensor f of k3 and writes to the input tensor j of k5. VTC
achieves only modest speed-up (∼ 1.1×) and memory saving
(∼ 4.4%) on this model because most data movement elim-
ination (e.g., optimizations related to f, g, h, i and j) can

TensorRT VTC
0.0

0.2

0.4

0.6

90%

10%

100%

Llama

TensorRT VTC
0.0

0.2

0.4

36%

64%

100%

Gemma

TensorRT VTC
0.00

0.05

0.10

0.15

68%

32%

100%

EfficientViT

TensorRT VTC
0.00

0.02

0.04

0.06

0.08

85%

15%

100%

YOLOv11

TensorRT VTC
0.00

0.02

0.04

0.06

73%

27%

81%

19%

ShuffleNet

TensorRT VTC
0.0

0.5

1.0

73%

27%

100%

TensorRT VTC
0

1

2

3

4

28%

72%

97%
3%

TensorRT VTC
0.0

0.5

1.0

58%

42%

100%

TensorRT VTC
0.0

0.2

0.4

87%

13%

100%

TensorRT VTC
0.00

0.05

0.10

0.15

72%

28%

93%

7%

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Batch Size = 1

Batch Size = 16

Data Movement Operator Computational Operator

Figure 10: Breakdown of latency proportions for data movement and compu-
tational operators in VTC compared with TensorRT.

Conv

X

Swish

Conv

Swish

Conv

Swish

Add

Concat

Y

bs x 32 x 160 x 160

bs x 16 x 160 x 160bs x 16 x 160 x 160

bs x 16 x 160 x 160

bs x 48 x 160 x 160

Split
a

b
c

d

e

Figure 11: Computation graph of YOLOv11
C3K2 Block. VTC eliminates both data
movement operators Split and Concat by
making a, b, c and e virtual tensors of Y.Table 4: Data movement optimization in VTC compared to

vLLM. As defined in Section 2.3, Stage 1 Input and Stage 3
Output represent tensors stored in global memory that kernels
read from and write to, respectively. vLLM allocates a tempo-
rary tensor to hold merged QKV projection values and splits
it to update KV cache in an additional data movement kernel.
VTC eliminates this overhead by making the temporary tensor
virtual, directly writing results to Q tensor and KV cache.

vLLM Stage 1 Input Stage 2 Stage 3 Output

QKV Projection Proj Input MatMul Temporary Tensor
KV Cache Update Temporary Tensor N/A Q, KV Cache

Attention Q, KV Cache FlashAttn Attn Output

VTC Stage 1 Input Stage 2 Stage 3 Output

QKV Projection Proj Input MatMul Q, KV Cache
Attention Q, KV Cache FlashAttn Attn Output

already be achieved by operator fusion in the baselines.

YOLOv11. Figure 11 shows the computation graph of
C3K2 Block, a recurring component in YOLOv11. This block
contains two data movement operators, Split and Concat.
Traditional frameworks like TensorRT and PyTorch execute
Split in an individual kernel and Concat in another kernel
fused with Swish and Add (taking b, c, d as inputs and Y as the
output). In contrast, VTC eliminates both data movement op-
erators by making a, b, c and e virtual tensors of Y. Although
Split and Concat are not fully contiguous at batch size 16
(Figure 5), each contiguous chunk (16×160×160 elements)
is large enough to read and write in a coalesced manner, pre-
serving high memory I/O bandwidth. Moreover, these two
data movement operators constitute the primary memory foot-
print bottlenecks, as they operate on large tensors (a, b, c, e
and Y). After VTC’s optimization, all these tensors except
Y become virtual, eliminating the need for physical memory
allocation and reducing peak memory consumption.

Conv

Reshape

Transpose

Slice Slice
Slice

ReLU

Pad

ReLU

Transpose

MatMul

MatMul

Slice

Add

Slice

Div

Transpose

Reshape

Conv

𝒌𝟏

𝒌𝟐

𝒌𝟑

𝒌𝟒

𝒌𝟓

a

b
c

d

e

f f

g

h

i

j

a

b c d

. . .

f

g h

i

j

. . .

e

Figure 12: VTC generates 5 kernels (k1–k5) for EfficientViT
attention block with batch size 16. All the unframed data
movement operators are eliminated with virtual tensor. The
figure on the right shows the virtual tensor strategy repre-
sented by a points-to graph.

8 Related Work

Virtual tensors. VTensor [34] is a programming frame-
work which decouples tensor layouts from the programming
interface, enabling developers to write layout-agnostic oper-
ations which significantly reduces lines of code. Separately,
vLLM [20] and vTensor [33] are virtual memory management
systems specifically designed for LLM serving. Unlike these
systems, VTC optimizes general DNNs including LLMs with

a fundamentally different virtual tensor notation.

Layout optimizations. TensorRT [2] explores various lay-
out options for 4D tensors and automatically applies the nec-
essary layout transformations to determine the optimal lay-
out. SmartMem [24] studies layout transformation elimina-
tion based on predefined rules and develops efficient mem-
ory layouts for 2.5D memory on mobile devices. In contrast
to these layout optimizations, VTC proposes a more gen-
eral optimization for data movements. Instead of focusing
solely on layout operators (mostly Reshape and Transpose),
VTC’s optimization can be applied to all data movement oper-
ators. Furthermore, VTC’s points-to graph construction algo-
rithm automatically explore virtual tensor creation strategies,
thereby expanding the optimization space beyond rule-based
approaches.

Tensor graph optimizations. TensorFlow [3] and Ten-
sorRT [2] leverage manually designed rules to perform graph-
level transformations. Recently, automated graph optimiz-
ers [17, 31, 35, 41] have emerged to automatically generate
subgraph substitutions. VTC’s optimization is orthogonal to
these graph optimizations and can be used as an independent
optimization pass after graph optimization in ML compilers.

Kernel orchestration is the process of mapping a compu-
tation graph to hardware-specific kernels [15]. This problem
is commonly addressed by operator fusion [2, 3, 9, 23], which
fuses multiple operators into a single kernel, thereby elimi-
nating data movements of intermediate results. However, this
type of work cannot optimize data movement operators that
are hard to fuse with other operators. VTC takes a computa-
tion graph after operator fusion as input and further eliminates
data movements between fused kernels.

Kernel generation. Numerous ML compilers [9, 40, 42]
automatically generate hardware-specific kernels for DNN
computation based on Halide’s algorithm-schedule separa-
tion [26]. Rammer [21] and Hidet [13] approach kernel gener-
ation by utilizing a task abstraction of workloads. Mirage [32]
employs superoptimization techniques on a multi-level com-
pute hierarchy to generate efficient GPU kernels. As VTC
only modifies the global memory I/O (stages 1 and 3) of
a hardware-specific kernel, it can be easily integrated with
virtual tensor support in these kernel generation frameworks.

Hand-optimized kernels crafted by domain experts can
achieve state-of-the-art performance on specific DNN work-
loads. For instance, FlashAttention [10, 11] and FlashIn-
fer [36] design highly optimized GPU kernels for self-
attention calculation. VTC can also incorporate these manu-
ally optimized kernels by adding virtual tensor support.

9 Future Work

While our current virtual tensor construction algorithm pro-
vides performance guarantees through iterative profiling, this
approach can incur substantial compilation overhead for time-
sensitive applications. The VTOG formulation we present
opens opportunities for developing more efficient algorithms
that can compute high-quality virtual tensor strategies with
reduced profiling requirements.

Our current implementation is based on Triton. However,
Triton exhibits known performance limitations on newer GPU
architectures, particularly NVIDIA Blackwell GPUs, where
domain-specific languages such as CUTLASS demonstrate
superior performance. Extending virtual tensor support to
alternative DSLs and compilation frameworks represents a
promising direction that could unlock further performance
gains across diverse hardware platforms.

10 Conclusion

Data movement optimizations have become extremely impor-
tant in tensor compilers to achieve good performance. VTC is
the first compilation framework to eliminate all unnecessary
data movement that span across all data movement opera-
tors in a given tensor computational graph. We introduce the
concept of a virtual tensor that allows VTC to track data move-
ment between different physical tensors without instantiating
intermediate tensors. VTC’s data movement elimination algo-
rithm allows us to achieve superior performance on a number
of different DNN models including appreciable gains on large
language model inference.

Acknowledgments

We thank Zhihao Jia, Hao Guo and Yuhao Ge for their feed-
back and help on this work. This work was supported by
PRISM and ACE, two of the seven centers in JUMP 2.0, a
Semiconductor Research Corporation (SRC) program spon-
sored by DARPA, by NSF under the grant CCF-2316233, and
by generous gifts from Qualcomm.

References

[1] Xla: Optimizing compiler for tensorflow. https://www.
tensorflow.org/xla, 2017.

[2] NVIDIA TensorRT: An sdk with an optimizer for
high-performance deep learning inference. https:
//developer.nvidia.com/tensorrt, 2024.

[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
{TensorFlow}: a system for {Large-Scale} machine

https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

learning. In 12th USENIX symposium on operating
systems design and implementation (OSDI 16), pages
265–283, 2016.

[4] Lars Ole Andersen. Program analysis and specializa-
tion for the C programming language. PhD thesis, Uni-
versity of Copenhagen, 1994.

[5] Jason Ansel, Edward Yang, Horace He, Natalia
Gimelshein, Animesh Jain, Michael Voznesensky, Bin
Bao, Peter Bell, David Berard, Evgeni Burovski, et al.
Pytorch 2: Faster machine learning through dynamic
python bytecode transformation and graph compilation.
In Proceedings of the 29th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, pages 929–
947, 2024.

[6] Marc Auslander and Martin Hopkins. An overview of
the pl. 8 compiler. In Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction, pages 22–31,
1982.

[7] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas,
Skye Wanderman-Milne, and Qiao Zhang. JAX: com-
posable transformations of Python+NumPy programs,
2018.

[8] Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song
Han. Efficientvit: Lightweight multi-scale attention for
high-resolution dense prediction. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 17302–17313, 2023.

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}:
An automated {End-to-End} optimizing compiler for
deep learning. In 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18),
pages 578–594, 2018.

[10] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems, 35:16344–
16359, 2022.

[11] Tri Dao, Daniel Haziza, Francisco Massa, and Grig-
ory Sizov. Flash-decoding for long-context infer-
ence. https://crfm.stanford.edu/2023/10/12/
flashdecoding.html, 2023.

[12] ONNX Runtime developers. Onnx runtime. https:
//onnxruntime.ai/, 2024. Version: 1.20.1.

[13] Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu,
Yida Wang, and Gennady Pekhimenko. Hidet: Task-
mapping programming paradigm for deep learning ten-
sor programs. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume
2, pages 370–384, 2023.

[14] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

[15] Muyan Hu, Ashwin Venkatram, Shreyashri Biswas, Bal-
amurugan Marimuthu, Bohan Hou, Gabriele Oliaro,
Haojie Wang, Liyan Zheng, Xupeng Miao, Jidong Zhai,
et al. Optimal kernel orchestration for tensor programs
with korch. In Proceedings of the 29th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume
3, pages 755–769, 2024.

[16] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang
Li, and Torsten Hoefler. Data movement is all you need:
A case study on optimizing transformers. Proceedings
of Machine Learning and Systems, 3:711–732, 2021.

[17] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 47–
62, 2019.

[18] Rahima Khanam and Muhammad Hussain. Yolov11: An
overview of the key architectural enhancements. arXiv
preprint arXiv:2410.17725, 2024.

[19] Andreas Krause and Daniel Golovin. Submodular func-
tion maximization. Tractability, 3(71-104):3, 2014.

[20] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory man-
agement for large language model serving with page-
dattention. In Proceedings of the 29th Symposium on
Operating Systems Principles, pages 611–626, 2023.

[21] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with {rTasks}. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 881–897, 2020.

https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://onnxruntime.ai/
https://onnxruntime.ai/

[22] Thirimadura Charith Yasendra Mendis. Towards au-
tomated construction of compiler optimizations. PhD
thesis, Massachusetts Institute of Technology, 2020.

[23] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal,
and Bin Ren. Dnnfusion: accelerating deep neural net-
works execution with advanced operator fusion. In Pro-
ceedings of the 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Imple-
mentation, pages 883–898, 2021.

[24] Wei Niu, Md Musfiqur Rahman Sanim, Zhihao Shu,
Jiexiong Guan, Xipeng Shen, Miao Yin, Gagan Agrawal,
and Bin Ren. Smartmem: Layout transformation elim-
ination and adaptation for efficient dnn execution on
mobile. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pages 916–
931, 2024.

[25] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scal-
ing transformer inference. Proceedings of Machine
Learning and Systems, 5:606–624, 2023.

[26] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. Acm Sigplan Notices, 48(6):519–
530, 2013.

[27] Rya Sanovar, Srikant Bharadwaj, Renee St Amant,
Victor Rühle, and Saravan Rajmohan. Lean atten-
tion: Hardware-aware scalable attention mechanism
for the decode-phase of transformers. arXiv preprint
arXiv:2405.10480, 2024.

[28] Yining Shi, Zhi Yang, Jilong Xue, Lingxiao Ma, Yuqing
Xia, Ziming Miao, Yuxiao Guo, Fan Yang, and Lidong
Zhou. Welder: Scheduling deep learning memory access
via tile-graph. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 23),
pages 701–718, 2023.

[29] Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
Léonard Hussenot, Thomas Mesnard, Bobak Shahriari,
Alexandre Ramé, et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

[30] Philippe Tillet, Hsiang-Tsung Kung, and David Cox.
Triton: an intermediate language and compiler for tiled
neural network computations. In Proceedings of the 3rd
ACM SIGPLAN International Workshop on Machine

Learning and Programming Languages, pages 10–19,
2019.

[31] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. {PET}: Optimizing ten-
sor programs with partially equivalent transformations
and automated corrections. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 37–54, 2021.

[32] Mengdi Wu, Xinhao Cheng, Shengyu Liu, Chunan Shi,
Jianan Ji, Man Kit Ao, Praveen Velliengiri, Xupeng
Miao, Oded Padon, and Zhihao Jia. Mirage: A {Multi-
Level} superoptimizer for tensor programs. In 19th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 25), pages 21–38, 2025.

[33] Jiale Xu, Rui Zhang, Cong Guo, Weiming Hu, Zihan
Liu, Feiyang Wu, Yu Feng, Shixuan Sun, Changxu Shao,
Yuhong Guo, et al. vtensor: Flexible virtual tensor
management for efficient llm serving. arXiv preprint
arXiv:2407.15309, 2024.

[34] Jingling Xue. Vtensor: Using virtual tensors to build
a layout-oblivious ai programming framework. JOUR-
NAL OF COMPUTER SCIENCE AND TECHNOLOGY,
38(5):1074–1097, 2023.

[35] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang,
Max Willsey, Sudip Roy, and Jacques Pienaar. Equal-
ity saturation for tensor graph superoptimization. Pro-
ceedings of Machine Learning and Systems, 3:255–268,
2021.

[36] Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng
Zhang, Stephanie Wang, Tianqi Chen, Baris Kasikci,
Vinod Grover, Arvind Krishnamurthy, et al. Flashin-
fer: Efficient and customizable attention engine for llm
inference serving. arXiv preprint arXiv:2501.01005,
2025.

[37] Chen Zhang, Lingxiao Ma, Jilong Xue, Yining Shi, Zim-
ing Miao, Fan Yang, Jidong Zhai, Zhi Yang, and Mao
Yang. Cocktailer: Analyzing and optimizing dynamic
control flow in deep learning. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 23), pages 681–699, 2023.

[38] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 6848–6856, 2018.

[39] Yifan Zhao, Hashim Sharif, Vikram Adve, and Sasa Mis-
ailovic. Felix: Optimizing tensor programs with gradient

descent. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pages 367–
381, 2024.

[40] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
{High-Performance} tensor programs for deep learn-
ing. In 14th USENIX symposium on operating systems
design and implementation (OSDI 20), pages 863–879,
2020.

[41] Liyan Zheng, Haojie Wang, Jidong Zhai, Muyan Hu,
Zixuan Ma, Tuowei Wang, Shuhong Huang, Xupeng
Miao, Shizhi Tang, Kezhao Huang, et al. {EINNET}:
Optimizing tensor programs with {Derivation-Based}
transformations. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 23),
pages 739–755, 2023.

[42] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: An automatic schedule ex-
ploration and optimization framework for tensor compu-
tation on heterogeneous system. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 859–873, 2020.

	Introduction
	Background
	Tensor Stride
	Data Movement Operators
	Kernel Implementation of Operators
	Necessity of Data Movement Operators

	Motivation and Overview
	Motivating Example: LLM Decoding
	Overview

	Virtual Tensor
	Virtual Tensor Definition
	Virtual Tensor I/O
	Profitability Analysis
	Virtual Tensor Optimization Rules for Data Movement Operators

	Automatic Virtual Tensor Construction
	Virtual Tensor Opportunity Graph
	Global Greedy Algorithm

	Implementation
	Evaluation
	Experimental Setup
	End-to-end Performance
	Memory Footprint
	Latency Breakdown Analysis
	Comparison with vLLM
	Case Studies

	Related Work
	Future Work
	Conclusion

