
TGLite: A Lightweight Programming Framework for
Continuous-Time Temporal Graph Neural Networks

Yufeng Wang
University of Illinois at
Urbana-Champaign, USA
yufengw2@illinois.edu

Charith Mendis
University of Illinois at
Urbana-Champaign, USA
charithm@illinois.edu

Abstract
In recent years, Temporal Graph Neural Networks (TGNNs)
have achieved great success in learning tasks for graphs that
change over time. These dynamic/temporal graphs repre-
sent topology changes as either discrete static graph snap-
shots (called DTDGs), or a continuous stream of timestamped
edges (called CTDGs). Because continuous-time graphs have
richer time information, it will be crucial to have abstractions
for programming CTDG-based models so that practitioners
can easily explore new designs and optimizations in this
space. A few recent frameworks have been proposed for pro-
gramming and accelerating TGNN models, but these either
do not support continuous-time graphs, lack easy compos-
ability, and/or do not facilitate CTDG-specific optimizations.

In this paper, we propose a lightweight framework called
TGLite to fill this apparent gap in the status quo. It provides
abstractions that serve as composable building blocks for im-
plementing TGNN models for CTDGs. It introduces a novel
TBlock representation for capturing message-flow depen-
dencies between nodes, with explicit support for temporal-
related attributes, which is well-suited for common TGNN
computation patterns. TBlocks serve as a central representa-
tion on which many different operators can be defined, such
as temporal neighborhood sampling, scatter/segmented com-
putations, as well as optimizations tailored to CTDGs. We
use TGLite to implement four existing TGNN models. Com-
pared to the TGL framework, TGLite is able to accelerate
runtime performance of training (1.06 − 3.43×) and infer-
ence (1.09 − 4.65×) of these models on V100 and A100 GPUs
across different experimental settings. Notably, when scaling
to larger datasets, TGL runs out-of-memory in some cases
on the V100 while TGLite is able to run successfully.

CCS Concepts: • Computing methodologies→ Neural
networks; • Software and its engineering→ Software
libraries and repositories.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0385-0/24/04
https://doi.org/10.1145/3620665.3640414

Keywords: Temporal Graph Neural Networks, Dynamic
Graphs, Programming Framework, Data Abstractions

ACM Reference Format:
YufengWang and CharithMendis. 2024.TGLite: A Lightweight Pro-
gramming Framework for Continuous-Time Temporal Graph Neu-
ral Networks. In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3620665.3640414

1 Introduction
Graph Neural Networks (GNNs) [22] have emerged as a pow-
erful paradigm for representation learning and predictive
modeling on graph-structured data across various problem
domains [2, 8, 25, 27, 35]. Following its rise in the research
community, several frameworks have been established for
programming and optimizing GNN models, such as DGL
[28], PyG [3], and NeuGraph [16]. These frameworks are a
boon to developers and researchers for implementing and
exploring different GNN architectures and optimizations.
However, these existing works are designed solely for GNNs
that operate on static graphs, while real-world graphs are
often dynamic and change their topologies over time (e.g.
social networks with new users [19], financial networks with
new transactions [30], knowledge graphs with temporally
evolving facts [29]).
Recently, Temporal Graph Neural Networks (Temporal

GNNs, TGNNs) have been proposed by researchers for dy-
namic/temporal graph learning, such as TGAT [34] and TGN
[19], among others [11, 17, 21, 30]. Like static GNNs, a ma-
jor computation that these models perform is aggregating
information from neighbors. But unlike their counterparts,
TGNNs jointly learn on structural graph information (e.g.
neighbor node features) and temporal information (e.g. edge
timestamps) to encode the dynamic nature of the graph into
time-dependent node embedding vectors [37]. The additional
time information allows TGNNs to outperform static GNNs
on many temporal graph prediction and classification tasks.
As Figure 1 shows, temporal graphs are categorized into

two common types [9]: discrete-time graphs with static
graph snapshots (DTDGs), and continuous-time graphs with
edge timestamps (CTDGs). Compared to DTDGs, CTDGs cap-
ture richer time information and are suitable for real-world
settings where edges and nodes can continuously appear at

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3620665.3640414
https://doi.org/10.1145/3620665.3640414

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yufeng Wang and Charith Mendis

(a) Static. (b) Discrete-time. (c) Continuous-time.
Figure 1. Representation of the same graph: (a) without
temporal information, (b) as discrete snapshots over several
time steps, or (c) with continuous-time edge timestamps.

any time [19]. This makes CTDGs crucial for certain applica-
tions, such as real-time fraud detection [30] and time-aware
recommendation systems [36]. Hence, it is important to have
abstractions for programming CTDG-based models so that
developers and researchers can easily explore new designs,
applications, and optimizations in this space.
A few early frameworks have emerged to meet the ris-

ing interest in TGNNs, such as PyG Temporal [20], Dyna-
Graph [6], and TGL [37]. These frameworks provide a sim-
ple API for implementing TGNN models, and/or introduce
novel techniques for scaling up the training of these models.
However, some drawbacks prevent them from being an effi-
cient, easy-to-use interface for exploring TGNN models for
continuous-time graphs.
First, the frameworks do not have programming abstrac-

tions for continuous-time TGNN models. PyG Temporal
mainly provides implementations of spatio-temporal discrete-
time models, while DynaGraph targets implementing and
optimizing discrete-time models that use Recurrent Neural
Networks (RNNs) in a particular way. Although TGL does
support models for CTDGs, the framework mainly provides
a general approach to structuring TGNN training rather than
providing a programming interface. In fact, users interact
with the framework via configuration files1.

Second, the framework interfaces are not designed for easy
composability, which is important to allow researchers to
explore new TGNN designs. Despite the lack of a program-
ming interface, users of TGL can clone the open-sourced
code and add new components, but they must follow its pro-
posed structure which discourages novel compositions and
orderings. Meanwhile, the modules and layers in PyG Tem-
poral could be composed, but it lacks composable primitives
for these layers themselves which impedes exploration of
new layers, as well as being tailored to DTDGs.

Lastly, the frameworks do not facilitate optimizations tai-
lored to continuous-time models, which are crucial to allow
for efficient implementations. Optimizing continuous-time
TGNNs is an under-explored area, but prior work does ex-
ist such as TGOpt [32] which proposes redundancy-aware
optimizations for TGAT based on deduplication, memoiza-
tion, and precomputation. Aside from a temporal CSR graph
format and a parallel graph sampler, TGL does not provide

1
https://github.com/amazon-science/tgl/blob/main/config/TGAT.yml

much in the way of optimizing based on CTDG characteris-
tics. Naturally, PyG Temporal and DynaGraph do not offer
optimizations that are applicable to models for CTDGs.
Thus, the current status quo has a gap for a framework

that can enable practitioners to implement continuous-time
models while facilitating for their optimization. In this paper,
we introduce TGLite, a lightweight framework designed
for programming TGNN models for CTDGs. By lightweight,
we mean that TGLite only supplies a few key abstractions
and a set of composable operators. The user can use these
as building blocks to orchestrate computations common to
TGNNs, while we rely on a tensor backend to provide the
user with canonical tensor and neural network operations.
To facilitate composition, we introduce a novel data ab-

straction called a TBlock to capture message-flow depen-
dencies, which is commonly required for computations like
neighborhood aggregation. TBlocks have explicit support
for temporal-related attributes that are missing from the
message-flow graphs (MFGs) used with static GNNs. It also
differs from MFGs in a few key ways: 1) its doubly-linked list
design allows explicit representation and better support for
multi-hop aggregations, 2) it provides easier manipulation of
message-flow dependencies bymaking neighbor information
optional, and 3) it has a flexible hooks mechanism that op-
timizations can use to schedule post-processing operations
without imposing the burden on the user.

Given these design choices, TBlocks serve as a central rep-
resentation that different operators can be applied to, leading
to easy composition. With TGLite’s Python interface, users
can define new block operators for their needs or explore ap-
plying the operators in new ways. The framework currently
provides operators for temporal neighborhood sampling,
scatter/segmented computations, and redundancy-based op-
timizations (which are semantic-preserving transformations
and does not affect model accuracy). It also provides a few
other data representations useful for working with CTDG
data during the offline training scenario. More details are
discussed in §3.
We subsequently apply the TGLite framework to imple-

ment a collection of four existing TGNN models (see §4). All
these models work with continuous-time graphs, but use dif-
ferent techniques to capture the temporal information. Their
implementations make heavy use of the data representations
and operators in TGLite. This exercise demonstrates that
TGLite has the necessary generality and expressiveness for
programming this class of TGNN models.

To evaluate our framework, we compared these implemen-
tations to TGL as a strong baseline, using standard CTDG
datasets on two different GPU machines. Our results show
thatTGLite-basedmodels can achieve considerable speedups
for both training and inference. When optimization opera-
tors are enabled, TGLite can achieve speedups of 1.06−3.43×
for training and 1.09 − 4.65× for inference on these standard

https://github.com/amazon-science/tgl/blob/main/config/TGAT.yml

TGLite: Lightweight Framework for TGNNs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

benchmarks. We further evaluate on two larger-scale bench-
marks and obtain similar or better speedups, particularly for
TGAT with up to 9.02× on training and 15.63× on inference.

In summary, this paper makes the following contributions:
• We propose a framework centered on lightweight ab-
stractions and composable operators for programming
TGNNs for continuous-time graphs. In particular, we
introduce a novel TBlock abstraction for capturing the
message-flow computation dependencies commonly
seen in TGNN models, enabling easy manipulations
and optimizations.

• We identify and provide a set of TBlock-based opera-
tors, such as temporal neighborhood sampling, scat-
ter/segmented computations, and redundancy-aware
optimizations, that users can compose in flexible ways
to fit their needs.

• We conducted an exercise of implementing different
TGNNmodels using TGLite to demonstrate its expres-
siveness, and evaluated these on a variety of CTDG
datasets. Our results show that TGLite is capable of
yielding substantial speedups compared to TGL, reach-
ing 1.06 − 3.43× for training and 1.09 − 4.65× for in-
ference when using semantic-preserving optimization
operators. On large-scale datasets, TGLite (with opti-
mizations) can reach up to 9.02× for training and up
to 15.63× for inference, while TGL can run out of GPU
memory for some cases.

2 Background
We review a few key concepts relevant to Temporal GNNs.

Graph Neural Networks. GNNs act as graph operators
that aggregate node features with local neighborhood in-
formation. They compute 𝑑𝑣-dimensional vectors ℎ ∈ R𝑑𝑣 ,
called node embeddings, that are used for downstream tasks
such as node classification and edge prediction. GNNs typi-
cally assume the graph is static and temporal changes have
no affect on node embeddings, often leading to poorer predic-
tive performance on time-sensitive tasks. Temporal GNNs
are designed to extend static GNNs to learn on temporal
graphs. Computations for continuous-time graphs aremainly
based on temporal neighborhood aggregations as well as en-
coding time information (i.e. edge timestamps, time deltas,
etc) using either RNNs or other time-encoding techniques.

Temporal Message Passing. Neighborhood aggregation
is often expressed in the message-passing style [4], which
splits the process into three key steps:

𝑚 𝑗 (𝑡) = msg
(
ℎ𝑖 (𝑡), ℎ 𝑗 (𝑡 𝑗), 𝑒𝑖 𝑗 (𝑡 𝑗)

)
(1)

𝑟𝑖 (𝑡) = agg
(
{𝑚 𝑗 (𝑡) : 𝑗 ∈ N (𝑖, 𝑡)}

)
(2)

ℎ𝑖 (𝑡) = upd (ℎ𝑖 (𝑡), 𝑟𝑖 (𝑡)) (3)

where 𝑖, 𝑗 are nodes, 𝑒𝑖 𝑗 (𝑡 𝑗) is edge features, and 𝑡 is a time
parameter, indicating that embeddings are now a function

of the node and time [32]. In brief, Eq. (1) creates a message
vector for each neighbor 𝑗 , Eq. (2) reduces them into a single
vector, and Eq. (3) combines this with the node features.
N(𝑖, 𝑡) denotes the set of neighbors of node 𝑖 restricted to
those with edge timestamps less than 𝑡 , and further sampled
based on a strategy such as most-recent neighbors.
TGNN models often perform message-passing in several

layers, thereby recursively aggregating neighbor information
from multiple hops away. MFGs from DGL (a static GNN
library) are often used to represent this computation, where
each MFG captures the 1-hop relationships and performs
the three steps mentioned above. Figure 2 shows a 2-hop
aggregation example, where the result of mfg0 is passed to
mfg1 and the final result is stored in dstdata['h']. More
importantly, note that for TGNNs the user has to manage
time-related properties themselves, as well as orchestrating
how data is passed between the individual MFG objects.

target
node/time

1-hop neighbors 2-hop neighbors

dst
nodes

src
nodes

mfg0.update_all()mfg1.update_all()

mfg0mfg1
mfg1.dstdata['h']

Figure 2. An example of 2-hop aggregation using MFG ob-
jects and operators.

Temporal Learning Techniques. Existing TGNNmodels
leverage two main techniques for learning temporal patterns.
TGAT [34] is a representative model using the time-encoding
technique, where it uses a time-encoder functionΦ : 𝑇 → R𝑑𝑡
that maps a time value to a 𝑑𝑡 -dimensional vector. TGAT
performs the following computation for each layer [32]:

𝑧𝑖 (𝑡) = ℎ𝑖 (𝑡) ∥ Φ(0) (4)
𝑧 𝑗 (𝑡) = ℎ 𝑗 (𝑡 𝑗) ∥ 𝑒𝑖 𝑗 (𝑡 𝑗) ∥ Φ(𝑡 − 𝑡 𝑗) (5)
𝑟𝑖 (𝑡) = Attn

(
𝑧𝑖 (𝑡), {𝑧 𝑗 (𝑡) : 𝑗 ∈ N (𝑖, 𝑡)}

)
(6)

ℎ𝑖 (𝑡) = FFN (𝑟𝑖 (𝑡) ∥ ℎ𝑖 (𝑡)) (7)

where the time vector is injected into message-passing by
concatenatingwith node/edge features in Eq. (4) and (5), then
performs aggregation using self-attention [26] in Eq. (6), and
lastly a feed-forward network in Eq. (7). Time-encoding is
often computed using weight (𝜔) and bias (𝜙) vectors, and a
time delta Δ𝑡 scalar value as input [32]:

Φ(Δ𝑡) = cos (𝜔 · Δ𝑡 + 𝜙) . (8)

Meanwhile, other TGNNs can be classified as memory-
based models, where the key idea is to encode a node’s his-
torical interactions in long-term memory (as a vector). Ab-
stractly, these models update the memory in a similar fashion

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yufeng Wang and Charith Mendis

as message-passing [19]:

𝑚𝑖 (𝑡) = msg
(
𝑠𝑖 (𝑡−), 𝑠 𝑗 (𝑡−),Δ𝑡, 𝑒𝑖 𝑗 (𝑡)

)
(9)

�̄�𝑖 (𝑡) = agg (𝑚𝑖 (𝑡1),𝑚𝑖 (𝑡2), . . . ,𝑚𝑖 (𝑡𝑏)) (10)
𝑠𝑖 (𝑡) = mem (�̄�𝑖 (𝑡), 𝑠𝑖 (𝑡−)) (11)

where for a node 𝑖 it create messages using its memory 𝑠𝑖 (𝑡−)
and neighbor 𝑗 ’s memory, aggregating across 𝑡𝑏 number of
edges in a batch, then applies a memory update function.

Redundancy-Aware Optimizations. Techniques based
on redundancy exploit observations that CTDG-based mod-
els (like TGAT) often perform redundant computations. Op-
timizations such as deduplication, memoization, and time-
precomputation eliminate these redundancieswithout chang-
ingmodel semantics or accuracy. Deduplication filters out du-
plicates to ensure embeddings are only computed for unique
node-time pairs, while memoization exploits the observation
that previously computed embeddings could be reused and
cached, thus avoids running computations altogether. For
time-precomputation, the time-encoder often produces the
same time vectors, so those can be precomputed ahead-of-
time and reused. For more details, refer to [32].

Model Training. The training scheme is more compli-
cated formemory-basedmodels. In order formemory-related
modules to receive a gradient, the memory vectors will need
to be involved in the loss calculation. But care must be taken
to avoid the issue of information leakage, where information
about the current batch is leaked to the model when it makes
predictions for that same batch [19]. The strategy adopted
by most TGNN models is to store raw messages in a mailbox
and use those in a later batch (thereby effectively delaying
the memory update caused by the current batch).

3 The TGLite Framework
First we provide an overview of TGLite, before diving into
the core abstractions and operators.

3.1 Overview
TGLite is designed to be a lightweight framework that sup-
ports the offline training and inference scenarios. By light-
weight, we mean that TGLite provides a few core abstrac-
tions and operators that users can use to compose together a
TGNN model. However, TGLite is not complete on its own
since these core abstractions mainly deal with the temporal
graph, graph operations, as well as common TGNN compu-
tation patterns, but does not provide other operators such
as tensor math. As such, users can pair TGLite with the
PyTorch deep learning library [18]. This design allows us to
focus on providing TGNN abstractions while reusing and
integrating with many of the facilities provided by PyTorch,
such as tensor operations and automatic differentiation.

The abstractions provided byTGLite are designed tomake
it easier to implement various TGNNmodels (which often re-
quires tedious and error-prone programming efforts), as well
as to easily apply optimizations on these models. There are
two main groups of abstractions that TGLite provides: data
representations/objects and compute operators. The data
objects serve as containers for graph and tensor data needed
during training and inference, with easy-to-use interfaces.
Meanwhile, the compute operators capture common compu-
tation patterns on these objects, optimization techniques, as
well as data loading/management functions.

To demonstrate the programmability and ease-of-use of
TGLite, we compare implementations of TGAT with and
without our framework. Listing 1 shows an example without
our framework and with manually applied optimizations.
The forward pass of the model (not shown) computes time-
aware node embeddings for both the source and destination
nodes of edges in a batch by calling compute(), then calcu-
lates a score using these embeddings to predict edges. The
code in region H○ implements Eqs. (4-7), and I○ implements
Eq. (8). A few key observations:

• ManualOptimizations:Applying redundancy-aware
optimizations like deduplication requires applying pre-
and post-processing which the programmer needs to
manually manage (A○). For the caching optimization,
the programmer needs to manually check for cache
hits/misses (C○), run computation for the misses, and
then populating the cache afterwards. Because these
optimizations operate in-between layers it is difficult
to pair these with MFG objects since they lack facilities
for these kinds of in-between processing.

• C++Extension:Applying optimizations is feasible but
an efficient implementation requires writing a C++ "ex-
tension", which demands systems-level programming
knowledge and bindings to integrate with Python (F○).
These codes are not presented in Listing 1 for brevity.

• Recursive Flow: The recursive nature of temporal
message-passing results in a tricky recursive imple-
mentation. In the base case (before any computations),
node features are retrieved (B○). For the actual compu-
tations, it requires sampling temporal neighbors and
recursively computing their node embeddings (D○).

• Ad-hoc Data Structures: A way to store the tempo-
ral graph and sampling the neighbors is needed. Con-
sequently, implementations often have one-off data
structures (e.g. NeighborFinder in G○) that has to be
repeated for other implementations and projects.

In contrast, when compared to an implementation of TGAT
using our TGLite framework shown in Listing 2, we observe
the following benefits:

• Reusable Library: TGLite provides a Python library
(J○) as the main interface for users to use and interact

TGLite: Lightweight Framework for TGNNs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

1 class TGAT(nn.Module):
2 def compute(self , nids , ts, layer , n_nbr): A○
3 nids ,ts ,inv = self.opt.dedup_filter(nids ,ts)
4 embs = self.embeds(nids , ts, layer , n_nbr)
5 return self.opt.dedup_invert(embs , inv)
6
7 def embeds(self , nids , ts, layer , n_nbr):
8 if is_last(layer):
9 return self.lookup_nfeats(nids ...) B○
10 idx ,embs = self.opt.cache_lookup(nids ,ts...)
11 if not is_all_hits(idx):
12 nids = nids[misses(idx)] C○
13 ...
14 D○ nbr ,nbr_ts ,... = self.sample(nids ,ts,n_nbr)
15 nbr_ft = self.compute(nbr...,layer - 1...)
16 feats = self.embeds(nids ,ts,layer - 1,n_nbr)
17 ...
18 deltas = ts - nbr_ts
19 E○ nbr_tfeat = self.opt.time_embs(deltas , ...)
20 tfeats = self.opt.time_zeros(batch_size)
21 ...
22 res = attn(feats ,tfeats ,nbr_ft ,nbr_tfeat ...)
23 self.opt.cache_store(layer , res , nids , ts)
24 embs[misses(idx)] = res
25 return embs
26
27 class Optimizer: F○
28 def dedup_filter(self , nids , ts):
29 return cpp_ext.dedup_node_time(nids , ts)
30 ...
31 class NeighborFinder: G○
32 def sample(self , nids , ts, n_nbr):
33 return cpp_ext.sample_recent(n_nbr , ts, ...)
34
35 class TemporalAttnLayer(nn.Module):
36 def forward(self ,feat ,feat_t ,nbr ,nbr_t ,...):
37 Q = torch.cat([feat , feat_t], ...)
38 Z = torch.cat([nbr , nbr_e , nbr_t], ...)
39 ...
40 attn = torch.bmm(Q, K.transpose (...)) H○
41 attn = attn.masked_fill(mask , -1e10)
42 attn = self.softmax(attn)
43 out = torch.bmm(attn , V)
44 return ...
45 class TimeEncode(nn.Module): I○
46 def forward(self , ts):
47 return torch.cos(ts*self.weight + self.bias)

Listing 1. Truncated TGAT implementation with manual
optimizations, derived from [32]. See descriptions in §3.1.

with the framework. This allows users to reuse con-
structs and benefit from the framework across projects.

• Built-in Optimizations: Optimizations can be ap-
plied by calling operators on the TBlock objects (L○),
allowing users to easily experiment with different ones.
Post-processing steps are scheduled by TGLite with-
out manual intervention from the user, compared to
the tedious bookkeeping required in Listing 1. Because
TBlocks can capture multi-hop relationships (see §3.2),
built-in operators can apply these processing steps and
bookkeeping in-between layers. Also, all the C++ ex-
tension code in F○ are built into the framework.

• Built-in Operators: Feature data necessary for the
computations can be efficiently loaded using an opera-
tor from the framework (M○), and additional tensor data
can be attached using a simple dictionary-like interface.
For temporal self-attention, Listing 1 requires intricate

1 import tglite as tg J○
2
3 class TGAT(nn.Module):
4 def __init__(self , ctx: tg.TContext , ...):
5 self.sampler = tg.TSampler(n_nbr , 'recent ')
6 ...
7 def forward(self , batch: tg.TBatch):
8 head = batch.block(self.ctx) K○
9 for i in range(self.n_layers):
10 tail = head if i == 0 \
11 else tail.next_block (...)
12 tail = tg.op.dedup(tail) L○
13 tail = tg.op.cache(self.ctx , tail , ...)
14 tail = self.sampler.sample(tail)
15 tg.op.preload(head , use_pin=True) M○
16 tail.dstdata['h'] = tail.dstfeat ()
17 tail.srcdata['h'] = tail.srcfeat ()
18 embs = tg.op.aggregate(
19 head , self.attn_layers , key='h') N○
20 return self.edge_predictor(embs)
21
22 class TemporalAttnLayer(nn.Module):
23 def __init__(self , ctx: tg.TContext , ...): O○
24 self.time_encoder = tg.nn.TimeEncode (...)
25 ...
26 def forward(self , blk: tg.TBlock):
27 tfeats = tg.op.precomputed_zeros (...) P○
28 nbr_t = tg.op.precomputed_times (...)
29 Q = torch.cat([blk.dstdata['h'],tfeats],...)
30 Z = torch.cat([blk.srcdata['h'],
31 blk.efeat(), nbr_t], ...)
32 ...
33 attn = torch.sum(Q * K, ...)
34 attn = tg.op.edge_softmax(blk , attn) Q○
35 out = torch.reshape(V * attn ...)
36 out = tg.op.edge_reduce(blk , out , op='sum')
37 return ...

Listing 2. Example TGAT implementation using our TGLite
framework. See descriptions in §3.1 for details.

tensor manipulations like batched matrix-multiply and
masked softmax (H○), while TGLite allows the user to
express these more naturally with "edge-wise" com-
putation operators on TBlocks (Q○). Moreover, time
feature computations and lookups are manually or-
chestrated by the programmer in E○ of Listing 1, while
in Listing 2 these can be queried from precomputed
time vectors managed by the framework (P○).

• Iterative Flow: Users can easily organize the recur-
sive computation by creating TBlocks and sampling
neighbors in a more succinct and iterative manner (K○).
It is also more straightforward for a user to see which
optimizations are applied (L○). Additionally, the node
embedding computation using self-attention across
multiple blocks (i.e. multiple layers) is simply encap-
sulated by an operator from the framework (N○).

• Domain-Specific Data Structures: TGLite provides
built-in objects for the temporal graph, temporal sam-
pling, and the TimeEncodemodule that users can reuse
(O○). See §3.4 for more details.

In summary, TGLite provides core abstractions for users
to succinctly express computation patterns of TGNN models
and applying relevant optimizations.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yufeng Wang and Charith Mendis

3.2 The TBlock Data Abstraction
TBlock, or temporal block, is an important centerpiece of
our framework. A TBlock essentially captures the 1-hop
message-flow dependencies between target node-time pairs
(i.e. destination nodes) and their temporally sampled neigh-
bors (i.e. source nodes), along with their respective edges.
Blocks are motivated by the MFG objects available from the
DGL library. Although MFGs work well for static GNNs and
can be leveraged for TGNNs (as is done by TGL), it lacks
explicit timestamps which are important for CTDG models.
Following this point, we devised a novel block representation
to better allow us to perform manipulations and optimiza-
tions for CTDGs. Figure 3 illustrates the high-level design
and internal structure of a TBlock. There are three key de-
sign choices that distinguish these blocks from MFGs.

head tail

prev next

registered
hooks

cached
data

neighbor
information
(src nodes)

target
pairs (dst nodes)

Figure 3. Diagram of the doubly-linked list design and inter-
nal structure of a TBlock (target ⟨𝑖, 𝑡⟩ denotes the destination
node-timestamp pairs).

First, one distinguishing factor is that we use a doubly-
linked list structure for the blocks. A single TBlock captures
1-hop for one layer, and multiple blocks are chained together
with previous and next links. This helps to explicitly capture
the multi-hop neighbor sampling/aggregation relationship
that blocks are used for, whereas the MFGs in DGL/TGL
are standalone objects without these links. One advantage
of this design is that operators on a TBlock can figure out
what other blocks are related to the one it’s working on. For
example, this is helpful when we need to pass computed
data across a multi-hop aggregation operation. From the
perspective of aggregation, the computation starts at the
“tail” which can be found by traversing next links to successor
blocks, and then passing data to predecessor blocks.
Second, TBlock objects only require information on the

target destination nodes, and optionally the neighbor source
nodes. By making the neighbor information optional to start
with, this allows us to manipulate the target node infor-
mation more easily. This is necessary to make certain op-
timizations (like deduplication and caching from TGOpt)
more effective, since these should be applied on the destina-
tion nodes before sampling for the neighbors. In contrast,
MFGs require both destination and source node information
upfront. Although a user can deal with these information
separately before creating an MFG, the block representation
provides a central abstraction for doing these manipulations.

Third, TBlock provides a hooks mechanism for running
any post-processing procedures. These hooks are callable
functions that are invoked after computations are performed
on the block. This mechanism is useful for scheduling cer-
tain transformations on the computed output. For example,
when applying deduplication there is an extra step after
computations to revert filtering and preserve output seman-
tics. Rather than putting the burden on the user to call this
post-processing step (which they may forget to do), we can
register a hook with the block and the TGLite runtime will
handle running it automatically at the appropriate compu-
tation stage (usually in-between layers during aggregation).
The user may also leverage this hooks mechanism for any
post-processing that they will like to perform.
A block object also contains cached data that it manages

internally. TBlock allows for a simple interface for accessing
feature data specific to the nodes and edges in the block (e.g.
dstfeat(), efeat()). These data are stored in the block’s
cached area so we avoid fetching them a second time and
incurring data movement costs. If desired, these cached data
can be flushed by the user and the TBlock will gracefully
reload them when needed. Aside from these, a TBlock also
provides methods for creating and accessing other blocks
for multi-hop operations.

create
block

optimize

sample

compute &
run hooks

Figure 4. Typical workflow of constructing and using a
TBlock object, and applying optimizations on it.

Lifecycle of a Block. To put the pieces together, Figure 4 il-
lustrates the typical lifecycle that a block object goes through.
Listing 2 demonstrates how blocks are created and used in
practice. TBlocks can be created via several methods (lines 8
and 11), or constructed directly by the user. Once created,
users can apply optimizations to it (lines 12 and 13) before
sampling its neighbors (line 14) so to minimize the size of
the following subgraphs and thus minimize potential compu-
tations. TBlock operators can manipulate the block in-place,
register hooks, or cache data in the block. Then, we can use
the block for computations (as in code region Q○).

3.3 TBlock-based Operators
The block representation provides a powerful and general
abstraction for defining various graph operations (e.g. sam-
pling) and computations (e.g. segmented softmax). Optimiza-
tions can also be framed in terms of blocks. Table 1 describes
a subset of these operators. We can categorize TBlock-based
operators as whether they perform an optimization or not.

TGLite: Lightweight Framework for TGNNs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 1.A subset of operators currently provided by TGLite.
Brackets in top-right corner of each row indicates whether
its a single-block, multi-block, or optimization operator.

TSampler.sample(blk) [single]
Update block with sampled 1-hop source neighbors.
edge_softmax(blk, data) [single]
Computes segmented softmax on given data using edge
information from the block.
edge_reduce(blk, data, op='sum') [single]
Computes segmented reduction (e.g. sum or mean) on
given data using edge information from the block.
coalesce(blk, by='latest') [single]
Segmented operation to reduce source nodes for each
destination node by a certain property, such as selecting
node with the latest timestamp.
aggregate(blk, fn_or_list, key) [multi]
Performs pull-style multi-hop aggregation from the tail
block back towards the given block by applying function
to each block, using the key to pass along results.
propagate(blk, fn_or_list) [multi]
Performs push-style multi-hop propagation from given
block to the tail block by applying function to each block.
preload(blk, use_pin=True) [opt]
Prefetch data (e.g. features, memory, mails) needed by the
TBlock and its subsequent blocks for computations.
dedup(blk) [opt]
Applies the deduplication optimization to the TBlock by
rewriting the destination nodes.
cache(ctx, blk, ...) [opt]
Applies the caching optimization to the TBlock by rewrit-
ing the destination nodes and using ctx as scratch space.

Optimization Operators. The framework provides sev-
eral redundancy-aware optimizations, such as deduplication
and memoization. Their corresponding operators in TGLite,
dedup() and cache(), will manipulate the block’s destina-
tion node-time pairs in-place and register post-processing
hooks on the block. For instance, cache() will filter destina-
tion node-time pairs to ones that have not been cached and
register a hook to combine computed outputs with cached
results, thus avoiding repeated computations for cached em-
beddings and retaining expected output semantics.

preload() is a block operator that manages loading data
for all the blocks in the linked list, and focuses on optimizing
data movements. During training, data are often stored on
CPU host memory and transferred to GPU device memory,
which is costly. Therefore, one technique is to use pinned
memory to minimize data transfer costs by allowing the GPU
to directly access host memory for copying. preload() uses

this by default, and TGLite manages a pool of pre-allocated
pinned memory so no manual user intervention is required.

Computation Operators. Other operators are designed
to perform some computation-related tasks. For example,
edge_reduce() performs segmented reduction, where for
each destination node it applies a reduce operation to its
group of source nodes to combine their data (thus being seg-
mented). Meanwhile, coalesce() re-arranges and reduces
the source nodes for each destination node based on some
property, such as latest edge timestamp. In general, these
single-block operators can be applied during any stage of
the block lifecycle to manipulate/optimize the block or to
compute an output.
Furthermore, multi-block operators can apply some com-

putation across multiple blocks, where the doubly-linked
structure of blocks represents a multi-hop subgraph. A key
computation pattern used in TGNN models is operating
on neighborhood information. We can distill this pattern
into two types based on the direction of data flow (push
versus pull). One is aggregation, which pulls information
from neighbors in a multi-hop subgraph. This is the typical
message-passing paradigm as used bymodels like TGAT. The
aggregate() operator implements the pull-style of neigh-
borhood aggregation, where given a block it will traverse the
linked list to the tail and apply a function provided by the
user to each block all the way back up to the starting block.
It also handles some tedious bookkeeping that is necessary
when passing information across blocks, such as assigning
the correct data to the destination and source nodes. On the
other hand, the propagate() operator does the push-style
where it starts at the given block and works its way toward
the tail of the list. This propagation pattern is useful for the
APAN model (as seen in Appendix A).

3.4 Other Abstractions and Operators
Graphs and Batches. Table 2 summarizes the core data

objects provided by TGLite. These data objects act as con-
tainers for graph/tensor data needed for computations, and
present users with a central way to access related data. These
also allow TGLite to perform more efficient data storage
and movement, without imposing the burden on the user.

In particular, a TGraph is the central hub for all data related
to a CTDG dataset. Temporal graphs are sparse in nature and
thus benefits from the compact storage footprint of formats
such as coordinate (COO) and compressed sparse row (CSR).
TGLite initially stores temporal edges in COO format, sort-
ing based on timestamp so that the common case of iterating
through the edges chronologically will be fast. When amodel
needs to perform neighborhood sampling, such as TGAT, it
is best to use a CSR format for faster lookups. TGLite auto-
matically handles the construction and management of these
graph formats without intervention from the user.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yufeng Wang and Charith Mendis

Table 2. Summary of the core data representations/objects
currently supported by TGLite.

TContext - Settings and scratch space used by the TGLite
runtime, such as for caching values.
TGraph - Manages storage of the temporal graph topology,
serves as a container for node and edge tensor data.
TBatch - Represents a batch of temporal edges to process.
TBlock - Captures 1-hop relationships between node/time
pairs and their neighbors for doing computations, such
as segmented softmax and message-passing aggregation.
TSampler - Parallel temporal neighborhood sampling, us-
ing either uniform or most-recent sampling strategies.
Memory - Storage for node memory vectors and their last
updated timestamps.
Mailbox - Storage for node mailbox message vectors and
delivery timestamps.

Meanwhile, a TBatch represents a set of edges to be pro-
cessed. In some implementations, batches are haphazardly
represented as several arrays containing the nodes and times-
tamps, whereas a TBatch in TGLite is a thin wrapper with
a TGraph reference and without actually materializing any
arrays until they are needed.

Memory and Mailbox. For memory-based TGNN mod-
els, it is useful to have support for node memory and mail-
box. TGL provides a nice representation for these, which we
also use in TGLite. However, one key difference is that the
Memory and Mailbox storage components are made part of
the TGraph interface so that users can access these data in
a central place and it allows TGLite to better manage and
optimize for them, such as preloading and caching the data.

Temporal Sampling. Neighborhood sampling is natu-
rally implemented as a block operator. TGLite provides a
TSampler module that exposes 1-hop temporal sampling via
its sample() method, which can be used as a block operator.

Non-block Operators. The standalone functions called
precomputed_zeros() and precomputed_times() imple-
ments the time-precomputation optimization. The first is
specialized to the case when a user knows that they have
time deltas of zeros, while the latter is the more general ver-
sion. These precomputed-time operators will compute time
vectors ahead-of-time for the time-encoder modules and
reuse them as much as possible.

4 Case Study: TGN
Here we describe applying TGLite to implement a different
TGNN model called TGN. We also applied TGLite to imple-
ment memory-based models called JODIE and APAN. See
Appendix A for more details on these latter two.

1 class GRUMemoryUpdater(nn.Module):
2 def forward(self , mfg): R○
3 d = mfg.srcdata['ts'] - mfg.srcdata['memts ']
4 tfeat = self.time_encoder(d)
5 mail = cat([mfg.srcdata['mail'],tfeat], ...)
6 mem = self.gru_cell(mail ,mfg.srcdata['mem'])
7 self.last_updated_ts = ...
8 self.last_updated_mem = ...
9 self.last_updated_nids = ...
10 mfg.srcdata['h'] =
11 mem + self.linear(mfg.srcdata['h'])
12 ...
13
14 class MailBox ():
15 def update_mailbox(self , ...): S○
16 src_mail = cat([mem_src ,mem_dst ,efeats],...)
17 dst_mail = cat([mem_dst ,mem_src ,efeats],...)
18 mail = torch.cat([src_mail , dst_mail], ...)
19 ...
20 uniq , inv = torch.unique(nids , ...) T○
21 perm = torch.arange(inv.size (0), ...)
22 perm = inv.new_empty(uniq.size (0))
23 .scatter_ (..., inv , perm)
24 mail = mail[perm]
25 self.mailbox[nids ..] = mail
26 ...

Listing 3. Memory-related modules in the TGL framework
for the TGN model, derived from [37].

1 class TGN(nn.Module):
2 def forward(self , batch: tg.TBatch):
3 ...
4 mem = self.update_memory(tail)
5 nfeat = self.linear(tail.nfeat())
6 tail.dstdata['h'] = nfeat [:...] + mem [:...]
7 tail.srcdata['h'] = nfeat [...:] + mem [...:]
8 embeds = tg.op.aggregate(head , ...) U○
9 self.save_raw_msgs(batch)
10 return self.edge_predictor(embeds)
11 def update_memory(self , blk: tg.TBlock):
12 ...
13 delta = mail_ts - blk.g.mem.time[nodes]
14 tfeat = tg.opt.precomputed_times (..., delta)
15 mail = torch.cat([blk.mail(), tfeat], ...)
16 mem = self.gru_cell(mail ,blk.mem_data ()) V○
17 blk.g.mem.update(nodes , mem , mail_ts)
18 return mem
19 def save_raw_msgs(self , batch: tg.TBatch):
20 blk = batch.block_adj(self.ctx)
21 blk = tg.op.coalesce(blk , by='latest ') W○
22 ...
23 uniq , nbrs = blk.dstnodes , blk.srcnodes
24 mail = cat([mem[uniq],mem[nbrs],efeats],...)
25 blk.g.mailbox.store(uniq , mail , mail_ts)

Listing 4. Relevant model implementation and memory-
related code for TGN using our TGLite framework.

TGN [19] is a model that combines techniques from TGAT
with memory-based learning techniques. For node memory
updates, it uses a GRU cell and only retains the latest message
in the batch for each node. Nodememory is thenmergedwith
node features before feeding them into message-passing.
Listing 3 shows the relevant memory-related modules

provided by the TGL framework, which implements Eqs. (9-
11). Memory is updated using mailbox messages and time
features in R○. Various time- and mail-related data must be
present in the MFG object, which is error-prone as these

TGLite: Lightweight Framework for TGNNs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

are string-based mappings that can be easily altered by end-
users or other processes. Additionally, information about
“last updated” are needed for later processing. In S○, mailbox
messages are created by combining node memory with other
data. A complex code sequence is needed to find the unique
nodes and to select their latest messages to be stored (T○).

Comparatively, Listing 4 shows how TGN is handled using
our TGLite framework. For the forward pass, TGN borrows
the time-encoder and self-attention from TGAT, so we can
use code similar to Listing 2 for those components (U○). For
node memory updates, relevant memory and mailbox data
for the update operation can be safely and efficiently re-
trieved from the TBlock in V○. Additionally, in W○ the block
abstraction and the coalesce() operator can be used to ex-
press the reduction operation needed to extract the latest
message from the batch.

Overall, this example (along with others in §A) illustrates
the generality of TGLite, and as we will see in §5.2 we do
not lose out on performance. What’s more is that users can
easily apply optimization operators with a single line of code
(e.g. Listing 2 line 12) to gain speedups as compared to frame-
works like TGL. In contrast, users of TGL must write their
own implementations and expose new configuration settings.
In fact, we observe that TGL’s design is not general enough
for all models, such as JODIE, and that the configuration
must expose settings specific to JODIE to accommodate2.

5 Evaluation
We evaluated the effectiveness of our TGLite framework
against TGL as a strong baseline on a set of widely-used
CTDG datasets, four different TGNN models, and across two
GPUs (V100 and A100). In summary, the results show that an
implementation using TGLite is on-par or outperforms TGL
in terms of running time. By enabling semantic-preserving
optimization operators, TGLite can achieve speedups of
1.06−3.43× for training and 1.09−4.65× for inference (across
machines and experimental settings, see §5.2). To scale our
evaluation, we further examine two larger datasets and ob-
tain speedups of 1.15 − 9.02× for training and 1.15 − 15.63×
for inference (see §5.5). For larger datasets and more complex
models like TGAT and TGN, the TGL framework runs out-
of-memory while TGLite is able to finish the experiments.

5.1 Experimental Setup
We closely follow the training setup of TGL’s experiments
for a fairer comparison. The specific models we evaluated
on are: JODIE, APAN (1 layer, mailbox of size 10), TGAT
(2 layers, 10 neighbors), and TGN (2 layers, 10 neighbors).
Unless otherwise noted, we use a batch size of 600, train for
10 epochs, using recent sampling, and with default values
from TGL for the rest of the model hyperparameters.

2
https://github.com/amazon-science/tgl/blob/main/config/JODIE.yml

Benchmark Selection. We use standard datasets as seen
from the literature [11, 32, 37]: Wiki, MOOC, Reddit, and
LastFM (see Table 3). For larger-scale performance evalua-
tion, we use two additional datasets: WikiTalk and GDELT.
WikiTalk is a temporal graph from the SNAP repository [13]
(with name wiki-talk-temporal) representing users editing
each other’s Talk pages on Wikipedia. GDELT is a temporal
knowledge graph of events happening around the world as
reported by news outlets [37]. We use the GDELT dataset
as prepared by TGL. These are considerably larger than the
standard benchmarks in terms of nodes and edges, with
edges in GDELT being two orders of magnitude larger.

Table 3. Benchmark datasets. ∗ denotes randomly generated
node feature vectors (𝑑𝑣), while † denotes randomly gener-
ated edge features (𝑑𝑒).

Dataset |𝑉 | |𝐸 | 𝑑𝑣 𝑑𝑒 max(𝑡)
Wiki 9,227 157,474 172∗ 172 2.7e6
MOOC 7,144 411,749 128∗ 128† 2.6e6
Reddit 10,984 672,447 172∗ 172 2.7e6
LastFM 1,980 1,293,103 128∗ 128† 1.4e8
WikiTalk 1,140,149 7,833,140 128∗ 128† 1.2e9
GDELT 16,682 191,290,882 413 186 1.8e5

Testbed Machines. We conducted our experiments on
two different machines. One is an AWS p3.8xlarge machine
instance provisioned with 32 vCPUs @ 2.3GHz, 244GB mem-
ory, and using a single Nvidia Tesla V100 16GB GPU (hence-
forth the V100 machine). Another is a compute cluster node
allocated with 2x Intel Xeon Platinum 8358 @ 2.6GHz, total
of 64 cores, 251GB main memory, and a single Nvidia A100
80GB GPU (henceforth the A100 machine).

Implementation Details. The 4 model implementations
are described in Appendix A, and use preload() and other
optimization operators where applicable. The temporal sam-
pler in both frameworks uses 32 threads on the V100 ma-
chine and 64 on A100. We note that TGL has multi-GPU
support, but with TGLite being a lightweight framework
our objective is to target programmability and single-GPU
optimizations, with multi-GPU support left as future work.

5.2 Training Performance
We evaluate training performance under different experi-
mental settings, using the total time to run a single epoch in
seconds as the main metric. One crucial factor that affects
the running time is where the training data (i.e. node/edge
features, memory, mailbox) are stored. We first examine the
scenario where all data resides on GPU device memory (all-
on-GPU case, §5.2.1). In practice, it is unlikely that real-world
datasets will fit entirely in GPU memory (see §5.5). There-
fore, we examine the second case where data resides on

https://github.com/amazon-science/tgl/blob/main/config/JODIE.yml

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yufeng Wang and Charith Mendis

JODIE APAN TGAT TGN0

2

4

6

8

10

av
g

ep
oc

h
tim

e
(s

ec
s)

 1
.2

0x

 1
.3

9x

 1
.0

5x

 1
.0

3x

 1
.3

5x

 1
.2

6x 1
.5

1x

Wiki on V100
TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

10

20

30

 1
.3

4x

 1
.3

2x

 0
.9

4x

 1
.0

1x

 1
.3

3x

 1
.1

9x 1
.5

8x

MOOC on V100
TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

10

20

30

40

50

 1
.3

0x

 1
.3

4x

 0
.9

5x

 1
.0

1x

 1
.2

9x

 1
.0

6x

 1
.3

0x

Reddit on V100
TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

20

40

60

80

100

 1
.2

6x

 1
.2

6x

 0
.9

6x

 1
.0

1x

 1
.3

5x

 1
.1

6x 1
.5

5x

LastFM on V100
TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

2

4

6

av
g

ep
oc

h
tim

e
(s

ec
s)

 1
.0

0x

 1
.2

5x

 0
.9

5x

 0
.9

8x

 1
.2

8x

 1
.3

8x

 1
.4

4x
Wiki on A100

TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

5

10

15

20

 0
.9

2x

 1
.2

9x

 0
.8

7x

 1
.0

0x

 1
.2

5x

 1
.2

0x 1
.8

1x

MOOC on A100
TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

10

20

30

 1
.1

2x

 1
.1

7x

 0
.8

7x

 1
.0

1x

 1
.2

6x

 1
.1

7x

 1
.3

8x

Reddit on A100
TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

20

40

60

 1
.0

6x

 1
.2

3x

 0
.8

3x

 1
.0

0x

 1
.2

4x

 1
.1

9x 1
.6

9x

LastFM on A100
TGL
TGLite
TGLite+opt

Figure 5. Training time per epoch (seconds) for different datasets with data residing on GPU device memory (all-on-GPU case).
Top row is V100 and bottom is A100. Bar labels are speedups against TGL. TGLite+opt for JODIE is same as TGLite setting.

JODIE APAN TGAT TGN0

10

20

30

40

av
g

ep
oc

h
tim

e
(s

ec
s)

 1
.4

2x

 1
.6

2x 1
.4

9x

 1
.4

1x

 1
.5

9x

 2
.2

9x 3
.2

8x

Wiki on V100
TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

25

50

75

100

125

 1
.3

3x

 1
.5

2x 1
.4

3x

 1
.3

5x

 1
.5

2x

 2
.2

6x 3
.1

8x
MOOC on V100

TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

50

100

150

200

 1
.4

1x

 1
.5

5x 1
.4

8x

 1
.3

9x

 1
.5

9x 1
.9

5x

 2
.0

4x

Reddit on V100
TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

100

200

300

400

 1
.2

9x

 1
.5

2x 1
.4

2x

 1
.3

7x

 1
.5

0x 2
.1

1x

 2
.6

4x

LastFM on V100
TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

5

10

15

20

av
g

ep
oc

h
tim

e
(s

ec
s)

 1
.4

1x

 1
.5

3x 1
.4

4x

 1
.5

2x

 1
.5

3x 2
.2

1x 3
.4

3x

Wiki on A100
TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

20

40

60

 1
.4

1x

 1
.3

8x 1
.5

3x

 1
.4

2x

 1
.4

1x 2
.1

2x 3
.1

9x

MOOC on A100
TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

25

50

75

100

125

 1
.3

6x

 1
.5

3x 1
.5

1x

 1
.5

9x

 1
.5

0x 2
.1

3x

 2
.0

7x

Reddit on A100
TGL
TGLite
TGLite+opt

JODIE APAN TGAT TGN0

50

100

150

200

 1
.4

4x

 1
.4

2x 1
.5

3x

 1
.5

2x

 1
.4

3x 2
.2

4x

 2
.6

9x

LastFM on A100
TGL
TGLite
TGLite+opt

Figure 6. Training time per epoch (seconds) for different datasets with data residing on CPU host memory (CPU-to-GPU case).
Top row is V100 and bottom is A100. Bar labels are speedups against TGL. TGLite+opt for JODIE is same as TGLite setting.

CPU host (CPU-to-GPU case, §5.2.2). To show the impact
of optimizations, we evaluate the models with optimization
operators (i.e. preload(), dedup(), cache(), and the two
precomputed-time operators) applied as mentioned in §A
(henceforth labeled TGLite+opt). As an ablation variant, we
also present results with only the preload() operator and
no other optimizations (simply labeled TGLite). Note that
no further optimization operators are applied for the JODIE
model due to its simplicity, so we skip the TGLite+opt setting
for JODIE. We then present a breakdown analysis in §5.2.3.
Overall, we observe that our framework is able to match or
outperform TGL across datasets, models, and GPUs.

5.2.1 All-on-GPU Training Case. In Figure 5, we ob-
serve that optimizations used in TGLite+opt can lead to
speedups against TGL, with 1.06 − 1.81×. Although the
preload() operator in TGLite has no effect in this scenario
since all data are already on GPU, TGLite is able to perform

on-par with TGL as the similar epoch times show. However,
TGL seems to have an advantage in some cases, such as
for the TGAT model on A100 where TGLite (without other
optimizations) has poorer performance of 0.83 − 0.95×. We
note that applying optimization operators as in the case of
TGLite+opt helps to offset these slowdowns.

Table 4 lists the training accuracy results on the A100
machine, using the average precision (AP) scoring metric
on the evaluation set. We observe that across models and
datasets, implementations using our framework achieves
similar levels of model accuracy as TGL. More importantly,
the optimizations we provide in the framework (and applied
in the TGLite+opt setting) are semantic-preserving and does
not affect the accuracy of the model. The minor differences
measured are due to stochasticity in training, such as nonde-
terministic algorithms used in the PyTorch/CUDA libraries.
Similar trends can be observed for the V100 machine and the
CPU-to-GPU scenario, and are not shown here for brevity.

TGLite: Lightweight Framework for TGNNs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 4. Training evaluation AP scores for best epoch in the
all-on-GPU case on A100 machine. TGLite+opt for JODIE is
same as TGLite setting and is skipped (denoted with -).

Data Model A100 Machine
TGL TGLite TGLite+opt

Wiki

JODIE 94.99 96.80 -
APAN 95.43 95.09 94.80
TGAT 98.77 98.66 98.74
TGN 99.03 99.48 99.52

MOOC

JODIE 99.17 100.0 -
APAN 99.00 99.01 98.99
TGAT 99.38 99.38 99.39
TGN 99.40 99.42 99.42

Reddit

JODIE 99.57 99.10 -
APAN 99.61 99.47 99.41
TGAT 99.66 99.65 99.65
TGN 99.67 99.69 99.69

LastFM

JODIE 72.24 83.43 -
APAN 77.80 75.75 75.32
TGAT 89.42 89.17 89.17
TGN 87.42 89.63 88.67

5.2.2 CPU-to-GPU Training Case. First, between Fig-
ures 5 and 6we observe that TGL generally takes 4× longer to
run (e.g. 107 vs 438 seconds for the TGN/LastFM/V100 case),
indicating the high cost of data transfers. Next, in Figure 6
we observe that TGLite+opt achieves the best performance,
with speedups of 1.41−3.43×. Lastly, we observe that TGLite
is able to benefit from using pinned memory to outperform
TGL, with speedups of 1.29 − 1.62×, indicating that using
data movement optimizations like preload() is worthwhile.

Comparing TGLite with TGLite+opt in both cases, we see
that performance is relatively the same for APAN, which
is unsurprising since no further optimization operators are
applied during training. We skip JODIE because it has no fur-
ther optimizations applied. For TGAT and TGN, we observe
that the dedup() operator brings significant improvements
to the speedup across the datasets, especially for TGN since
deduplication helps avoid costly memory update operations.

5.2.3 Breakdown Analysis. To better understand the re-
sults in the all-on-GPU case, we focus on the TGAT model
with the LastFM dataset on the A100machine. Figure 7 shows
a cost breakdown of each major operation of interest for the
TGL, TGLite, and TGLite+opt settings.

Both the backward pass and evaluation times are simi-
lar between TGL and TGLite, but TGLite is more efficient
with preparing the batch/input data, which we attribute to
the better data management in our framework. However,
it incurs higher cost compared to TGL for time-encoding
of neighbor time delta values (2.88 vs 1.76 seconds). This is
because an additional step is needed to compute the deltas,

while TGL is calculating these as it samples the neighbors
during which it already has access to the time values. This
is a trade-off between generality and efficiency, where we
choose to provide more general abstractions and operations
at the cost of slightly more overhead, and TGL vise-versa.
Next, we see that the attention operation has a much

higher cost than in TGL (14.39 vs 9.20 seconds). Upon fur-
ther investigation, we attribute this to the edge_softmax()
operator used in self-attention, where it currently uses an
external kernel library under-the-hood. This results in addi-
tional costs for transforming data for library calls and over-
head of crossing the library boundary. This can be addressed
within the framework as part of future work and all users
will benefit from it simply by upgrading to a newer version of
TGLite. Compared to the other two, TGLite+opt has slightly
more overhead for the precomputed-time operators (labeled
as time_zero and time_nbrs in Figure 7). But otherwise,
the redundancy optimizations applied in TGLite+opt help
reduce the cost of all the other operations, most notably the
expensive self-attention operation, and thus gain speedups.

Figure 7. Breakdown of major operations in TGAT training
epoch runtime (in seconds) with LastFM dataset on A100.

5.3 Inference Performance
We examined inference runtime (in seconds) for the test-
ing set using the same experimental settings. In the all-on-
GPU case, TGLite+opt achieves speedups of 1.09− 1.54× and
TGLite is 0.85− 1.61× (slowdowns due to reasons mentioned
above). For the CPU-to-GPU case, TGLite+opt achieves bet-
ter speedups of 1.28−4.65×while TGLite is 1.17−1.75×. For
the sake of space, Table 5 only shows the all-on-GPU case.

For APAN, TGLite+opt tends to result in lower speedups
than TGLite, indicating that applying the precomputed-time
operators alone might not be worthwhile. There is a wider
margin for the LastFM dataset accuracy due to TGL’s training
script not saving node memories after training but instead
recreates it before inference from training data. For TGAT
and TGNwith the TGLite+opt setting, TGAT tends to achieve
higher speedups than TGN (on both the all-on-GPU and CPU-
to-GPU cases), suggesting that the addition of the cache()
operator during inference can bring noticeable benefits.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yufeng Wang and Charith Mendis

Table 5. Testing set inference times (in seconds) and AP (average precision) scores for standard benchmarks in the all-on-GPU
case. Speedups against TGL are in parenthesis. TGLite+opt for JODIE is same as TGLite setting and is skipped.

Data Model V100 Machine A100 Machine
TGL AP TGLite AP TGLite+opt AP TGL AP TGLite AP TGLite+opt AP

Wiki

JODIE 0.28 96.15 0.20 (1.40×) 96.49 - - 0.17 95.47 0.11 (1.55×) 97.25 - -
APAN 0.45 95.26 0.29 (1.55×) 95.17 0.34 (1.32×) 94.67 0.24 95.44 0.17 (1.41×) 95.37 0.19 (1.26×) 95.02
TGAT 0.94 98.35 0.96 (0.98×) 98.36 0.74 (1.27×) 98.38 0.54 98.39 0.56 (0.96×) 98.23 0.38 (1.42×) 98.36
TGN 1.29 98.70 1.36 (0.95×) 99.47 1.04 (1.24×) 99.43 0.78 98.75 0.79 (0.99×) 99.41 0.55 (1.42×) 99.42

MOOC

JODIE 0.79 99.14 0.49 (1.61×) 99.34 - - 0.44 99.12 0.28 (1.57×) 99.69 - -
APAN 1.17 98.91 0.77 (1.52×) 98.68 0.86 (1.36×) 98.68 0.61 98.89 0.45 (1.36×) 98.72 0.50 (1.22×) 98.74
TGAT 2.53 99.22 2.80 (0.90×) 99.23 1.98 (1.28×) 99.26 1.49 99.22 1.54 (0.97×) 99.25 0.97 (1.54×) 99.23
TGN 3.97 99.43 4.01 (0.99×) 99.31 2.97 (1.34×) 99.29 2.25 99.38 2.27 (0.99×) 99.34 1.59 (1.42×) 99.31

Reddit

JODIE 1.29 99.20 0.82 (1.57×) 99.36 - - 0.72 99.56 0.59 (1.22×) 99.39 - -
APAN 1.82 99.36 1.30 (1.40×) 99.26 1.44 (1.26×) 99.42 1.01 99.00 0.88 (1.15×) 99.39 0.83 (1.22×) 99.31
TGAT 4.70 99.66 4.92 (0.96×) 99.65 3.66 (1.28×) 99.65 2.61 99.66 2.80 (0.93×) 99.64 1.86 (1.40×) 99.64
TGN 6.93 99.65 7.00 (0.99×) 99.69 6.35 (1.09×) 99.70 3.92 99.67 4.13 (0.95×) 99.69 3.39 (1.16×) 99.69

LastFM

JODIE 2.32 66.63 1.54 (1.51×) 83.25 - - 1.32 66.85 0.85 (1.55×) 83.69 - -
APAN 3.46 68.21 2.50 (1.38×) 76.31 2.61 (1.33×) 77.00 1.99 63.27 1.50 (1.33×) 75.99 1.67 (1.19×) 77.17
TGAT 8.14 86.56 9.27 (0.88×) 87.30 6.52 (1.25×) 87.06 4.73 87.50 5.54 (0.85×) 85.46 3.18 (1.49×) 86.29
TGN 12.37 87.38 12.83 (0.96×) 85.74 10.27 (1.20×) 87.06 7.33 87.59 7.19 (1.02×) 87.22 5.64 (1.30×) 86.42

5.4 Ablation Studies
To further investigate the benefits of our design and the
semantic-preserving optimizations that it provides, we con-
ducted several ablation studies. For consistency, we use the
experimental setting of TGAT with LastFM dataset on A100.

Optimizations. This ablation examines the gain from in-
dividual optimizations by enabling only one at a time. We
only look at the inference runtime since this is where all 3
optimizations are applicable for TGAT. In Table 6 the first
column shows speedup of TGLite without these optimiza-
tions. We see that optimizing it with the time-precompute
operators (+time) help to increase the speedup in both the
CPU-to-GPU and all-on-GPU cases, showing that reusing
the time vectors for this model and dataset is beneficial. The
dedup() and cache() operators (+dedup and +cache, re-
spectively) each bring even more speedups, as those help to
reduce expensive computations such as self-attention.

Table 6. Inference runtime speedups compared to the TGL
baseline for the TGAT/LastFM/A100 setting, with one opti-
mization at a time.

TGLite +dedup +cache +time
CPU-to-GPU 1.72× 2.94× 3.23× 1.77×
All-on-GPU 0.85× 1.29× 1.15× 0.94×

TBlock-vs-MFG. This ablation examines the impact of
our TBlock abstraction by removing it from our framework
and instead use MFGs. We found that an implementation
for TGAT with MFGs leads to noticeable slowdowns (i.e.

about 9% and 3% slower for the CPU-to-GPU and all-on-
GPU training cases, respectively). One contributing factor
is higher data movement costs since MFGs require all data
associated with the MFG to be stored on the same device, but
this is not always necessary and TGLite can better control
this with the TBlock abstraction. The user also needs to
reimplement several operators, such as multi-hop operators
like aggregate(), since those are no longer provided by
the framework with the use of MFGs. Along with various
helper functions, a user has to write an additional 200 lines of
user-level application code. These will need to be repeatedly
written by other users for other projects.

Hooks Mechanism. This ablation examines the impact
of the hooks feature by removing it from TGLite. With
a few changes in TGLite to provide users with callable
post-processing functions that they can run themselves, we
found that users can emulate this feature in their applications
without incurring noticeable performance regressions. We
note that what the user implements here is effectively what
TGLite provides via the hooks mechanism. Additionally,
the user needs to reimplement operators like aggregate()
themselves, since the framework will no longer be schedul-
ing the necessary post-processing steps in this case. Overall,
this results in an additional 49 lines of user-level code.

5.5 Large-Scale Benchmarks
Due to the scale of the larger datasets, we only evaluate cases
where all data resides on CPU host memory. For instance,
GDELT has 191M edges and each edge has a 186-dimensional
feature vector of 4-byte floats, so it is well over 130GB of data,
which cannot fit on most modern GPUs (including the A100

TGLite: Lightweight Framework for TGNNs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 7. Training and inference times (in seconds) for larger benchmarks on both V100 and A100 machines. Speedups against
TGL in parenthesis. OOM indicates GPU out-of-memory.

Data Model
V100 Machine A100 Machine

TGL TGLite+opt TGL TGLite+opt
Train Test Train Test Train Test Train Test

W
ik
iT
al
k JODIE 120.66 17.71 23.07 (5.23×) 3.79 (4.67×) 72.02 10.66 51.39 (1.40×) 6.93 (1.54×)

APAN 302.19 46.97 133.55 (2.26×) 22.05 (2.13×) 157.22 23.72 114.78 (1.37×) 17.08 (1.39×)
TGAT 639.95 83.52 154.93 (4.13×) 26.40 (3.16×) 318.96 37.37 264.95 (1.20×) 27.43 (1.36×)
TGN 1603.84 199.63 420.53 (3.81×) 69.88 (2.86×) 716.09 83.70 621.91 (1.15×) 72.65 (1.15×)

GD
EL

T JODIE 837.39 146.25 716.08 (1.17×) 121.23 (1.21×) 538.27 96.46 425.58 (1.26×) 78.27 (1.23×)
APAN 5891.39 988.89 3703.84 (1.59×) 644.34 (1.53×) 2761.27 451.27 2123.00 (1.30×) 367.37 (1.23×)
TGAT OOM OOM 4686.81 490.75 20569.59 3454.65 2280.99 (9.02×) 220.98 (15.63×)
TGN OOM OOM 10958.43 2192.70 33937.89 7359.72 5105.93 (6.65×) 1003.29 (7.34×)

that we test with). So we store data on CPU for both GDELT
and WikiTalk for consistency. We also only compare the
baseline with TGLite+opt where all available optimizations
for the model are enabled. Lastly, to make experimentation
more tractable, we use a batch size of 4000 (as suggested by
TGL experiments) and only 3 training epochs for GDELT.
Table 7 lists the training and testing inference times. Refer
to Appendix B for training and inference accuracy results.

We observe that TGLite+opt achieves reasonable speedups
against TGL for larger datasets, at least 1.15× for both train-
ing and inference. For TGAT/TGN, speedups are much more
amplified for the GDELT dataset. In fact, TGAT achieves
up to 9.02× for training and 15.63× for inference on the
A100 machine, indicating that the effectiveness of the opti-
mization operators is more beneficial as the temporal graph
size grows. Interestingly, TGL runs out of GPU memory for
TGAT and TGN on the V100 machine, despite all feature data
being stored on CPU host, whereas TGLite+opt is able to fin-
ish running the experiment. This suggests that our TGLite
framework (with optimizations) can be space-efficient while
being faster in terms of training and inference.

6 Related Work
Lightweight Frameworks and Abstractions. This work

is inspired by the approach of designing lightweight frame-
works and abstractions for domain-specific problems, par-
ticularly for graph analytics workloads. In particular, our
work is influenced by Ligra [24], which is a lightweight
framework for implementing graph processing algorithms
such as BFS and PageRank. Its interface consists of a vertex
subset data abstraction, and exposes only three core opera-
tors that are applied on this vertex subset. Flash [14] builds
upon Ligra’s interface to support more advanced distributed
graph algorithms, while Gunrock [31] provides abstractions
for GPUs. Many other works exist to provide abstractions
to ease the programming/optimizing of graph processing
solutions [1, 5, 10, 12, 15, 23]. However, these systems lack

tensor operators, neural network primitives, and gradient-
based training support, thus not applicable to our domain.
In the GNN machine learning space, FeatGraph [7] pro-

vides a programming abstraction for GNN kernels that com-
bines sparse templates with user-defined functions. Mean-
while, uGrapher [38] presents a unified abstraction that de-
couples the computation and scheduling of GNN operators,
particularly CUDA kernels. Seastar [33] is another work that
proposes a vertex-centric programming model for GNNs that
generates efficient kernels from user-provided Python code.
From the perspective of TGLite, these are orthogonal works
that can be viewed as lower-level kernel libraries, which
it can potentially incorporate internally or expose as block
operators. However, it will require more investigation into
how these can be generalized to the Temporal GNN space.

GNN Frameworks. DGL [28] is a popular framework for
programming static GNNs. It provides a flexible graph ab-
straction and operators for message-passing. Our interfaces
take inspiration from DGL so to lower the learning curve
for developers. PyTorch Geometric (PyG) [3] is another well-
established framework for GNNs. However, these frame-
works are often larger in scope, such as providing imple-
mentations of full GNN models or layers as compared to the
lightweight building blocks provided by TGLite.

7 Future Work
While this work focuses on continuous-time TGNN mod-
els, it will be important to explore extending support for
discrete-time models as a future direction. Rather than sim-
ply taking inspiration from discrete-time frameworks like
DynaGraph, this exploration will be done in accordance
with TGLite’s design approach of providing core data ab-
stractions and composable operators. An attractive avenue
to explore is incorporating optimizations from these other
frameworks, perhaps as composable operators on a graph
snapshot abstraction. Another prospective future direction

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yufeng Wang and Charith Mendis

is adding support for multi-GPU and distributed training,
which TGLite currently lacks. This will be helpful as users
work with ever-larger temporal graph datasets. These ef-
forts and directions will guide TGLite towards being a more
full-featured and unified framework for programming both
current and subsequent TGNN models.

8 Conclusion
We have described TGLite, a lightweight framework for
programming TGNNs for CTDGs. TGLite is designed to pro-
vide a core set of data abstractions and composable operators.
Our novel TBlock representation for capturing the 1-hop
message-flow dependencies allows for many operators to be
defined on it, ranging from temporal-related computations
to optimizations. We also discussed using TGLite for various
model implementations to demonstrate its expressiveness
and applicability. Our experiments show that TGLite-based
implementations can achieve speedups of 1.06 − 3.43× for
training and 1.09−4.65× for inference against the TGL frame-
work across different experimental settings.

Acknowledgments
We thank the anonymous reviewers for their constructive
feedback and our shepherd for their guidance. This work was
supported in part by ACE, one of the seven centers in JUMP
2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA and by NSF under grant CCF-2316233.

Appendix A Implementation Details
For the TGL baseline, we used the open-sourced code from
the authors3. We updated this code to use newer versions of
Python (v3.7), PyTorch (v1.12.1), and DGL (v1.0.1). We also
fixed an issue with recent sampling, did a bit of cleanup, and
added timing code. For TGLite, we implemented it using the
same version of Python and PyTorch.

TGAT. Listing 2 illustrates the main code for TGAT, where
it iteratively creates and operates on TBlocks. As for further
optimizations, we enable the dedup() operator during train-
ing, and additionally the precomputed-time and cache()
operators during inference (following the work in [32]).

TGN. Listing 4 shows code relevant to TGN. Similar to
TGAT, we apply the same optimization operators in the same
fashion, except we do not apply the cache() operator during
inference since it does not seem effective as node memory
will be updated thus invalidating cached results.

JODIE. JODIE [11] focuses on interactions between nodes
in a bipartite graph and predicting future interactions. For
example, an e-commerce network can be represented as a
bipartite graph with user and item nodes, and an interaction
is a user buying an item. JODIE does not perform neighbor
3
https://github.com/amazon-science/tgl

sampling or aggregation, but rather mainly updates node
memory using RNNs (as the update_memory() function in
Listing 5 shows). It also stores messages in a mailbox for later
batches in save_raw_msgs(). We do not apply any further
optimization operators for JODIE due to its simplicity.

1 class JODIE(nn.Module):
2 def update_memory(self , batch: tg.TBatch):
3 ...
4 mem_ts = batch.g.mem.time[nodes]
5 mail_ts = batch.g.mailbox.time[nodes]
6 tfeat = self.time_encode(mail_ts - mem_ts ..)
7 input = batch.g.mailbox.mail[nodes]
8 input = torch.cat([input , tfeat], ...)
9 mem = batch.g.mem.data[nodes]
10 mem = self.rnn_cell(input , mem)
11 return mem , mail_ts
12 def save_raw_msgs(self , batch: tg.TBatch):
13 ...
14 blk = batch.block_adj(self.ctx)
15 mail = batch.g.mem.data[blk.srcnodes]
16 mail = torch.cat([mail , blk.efeat()], ...)
17 .. mailbox.store(blk.dstnodes ,mail ,mail_ts)

Listing 5. Truncated example of memory-related code for
JODIE model implementation with TGLite.

APAN. APAN [30] has all the same components as TGN:
attention-based aggregation, time-encoding, and node mem-
ory update, but is centered around propagating mailbox
messages. While other models first samples the neighbors
and then generate embeddings, APAN reorders and swaps
this around by first performing embedding generation using
stored messages, then propagating messages to neighbors.
Listing 6 illustrates this using the propagate() operator and
other single-block operators (such as sample() and a scatter-
based operator). Comparatively, TGL has special handling
code for this in the mailbox/memory-related modules. For
further optimizations, the only relevant ones that we apply
are the precomputed-time operators during inference.

1 class APAN(nn.Module):
2 def forward(self , batch: tg.TBatch):
3 embeds = self.attention(batch)
4 ...
5 blk = tg.TBlock(self.ctx , 0, nodes , times)
6 blk = self.sampler.sample(blk)
7 self.create_mails(batch , blk , ...)
8 tg.op.propagate(blk , self.send_mails)
9 return self.edge_predictor(embeds)
10 def create_mails(self , batch , blk , ...):
11 ...
12 mail_s = cat([mem_src , mem_dst , ...], ...)
13 mail_d = cat([mem_dst , mem_src , ...], ...)
14 blk.dstdata['mail'] = cat([mail_s ,mail_d]..)
15 def send_mails(self , blk: tg.TBlock):
16 ...
17 mail = blk.dstdata['mail'][blk.dstindex]
18 mail = tg.op.src_scatter(blk ,mail ,op='mean')
19 m_ts = ... src_scatter(blk ,mail_ts ,op='mean')
20 .. mailbox.store(blk.uniq_src ()[0],mail ,m_ts)

Listing 6. Truncated example of memory-related code for
APAN model implementation with TGLite.

https://github.com/amazon-science/tgl

TGLite: Lightweight Framework for TGNNs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Appendix B Additional Results
Table 8 lists AP scores for the larger datasets. We observe that
TGLite (with optimizations) is comparable to TGL in terms
of predictive performance, in both training and inference,
since our optimizations are semantic-preserving. Similar
trends are observed for the V100 machine.

Table 8. Training and inference AP (average precision)
scores for larger benchmarks on the A100 machine.

Data Model
A100 Machine

TGL TGLite+opt
Train Test Train Test

WikiTalk

JODIE 88.96 84.40 91.87 93.77
APAN 95.88 83.06 95.90 93.32
TGAT 87.58 85.69 90.73 87.18
TGN 94.02 95.41 98.24 98.44

GDELT

JODIE 98.59 98.66 98.83 98.95
APAN 97.49 97.45 96.80 97.21
TGAT 98.70 98.77 98.70 98.77
TGN 98.40 98.17 98.52 98.18

Appendix C Artifact Description
C.1 Abstract
The artifact packages together source code for our TGLite
framework, the TGL framework, as well as other scripts for
replicating the results in this paper. The four smaller standard
benchmark datasets are also bundled with the artifact so it
will be easier to get started with the experiments.

Our evaluation results were collected on two different ma-
chines: one contains an Nvidia V100 GPU (AWS p3.8xlarge
instance, 32 vCPUs, 244GB RAM) and another with an A100
GPU (2x Intel Xeon CPUs, 251GB RAM). Running the full
set of experimental settings for both machines takes ap-
proximately 5 days. You may choose to run a subset of the
experiments for one of the GPUs.

C.2 Artifact check-list (meta-information)
• Compilation: GCC >= 11.4.
• Model: TGNN models are included in the artifact.
• Data set: Smaller datasets included (1GB), larger datasets
can be downloaded via provided script (additional 53GB).

• Run-time environment: Linux, CUDA 11.8, Python 3.7,
PyTorch 1.12, DGL 1.0. See README.md file for more details.

• Hardware: x86 CPU, Nvidia V100 GPU and/or A100 GPU.
• Metrics: Execution time, model average precision accuracy.
• Output: Console text and CSV files.
• Experiments: Model training and inference, ablation stud-
ies. See README.md file and provided scripts for details. To
save time, run for only one of the GPU settings.

• Howmuch disk space required (approximately)?: 60GB.
• How much time is needed to prepare workflow (ap-
proximately)?: 1-2 hours.

• How much time is needed to complete experiments
(approximately)?: Up to 12 hours for smaller experiments,
additionally up to 3 days for larger experiments.

• Archived (provide DOI)?: 10.5281/zenodo.10504480

C.3 Description
C.3.1 How to access. Download artifact from Zenodo:
https://doi.org/10.5281/zenodo.10504480.

C.3.2 Hardware dependencies. A Linux-based system
with a modern x86 CPU (ideally a 2-node NUMA machine
with Intel Xeon). Smaller experiments require at least 6GB
RAM and GPU device with 16GB. Larger experiments require
at least 160GB RAM and GPU with at least 64GB. The artifact
file is about 200MB and unpacks to 1GB of disk space.

C.3.3 Software dependencies. Need CUDA 11.8 toolkit,
Python 3.7, PyTorch 1.12, and related Python packages. GCC
11.4 or higher compiler is needed to compile C++ extensions.
Conda is used to setup Python environment.

C.3.4 Data sets. Artifact includes four datasets, and the
two larger ones can be downloaded via included script.

C.3.5 Models. Both the TGL- and TGLite-based models
used in our experiments are included in the artifact.

C.4 Installation
Obtain the artifact, extract the files, and follow the instruc-
tions in the README.md file. To kick-the-tires, run the follow-
ing from the tglite/examples directory (see the readme):
$./exp/tgat.sh -d wiki --epochs 3 --move --opt-all

C.5 Experiment workflow
The bulk of the experiments is running model training and
inference. The artifact contains the necessary training scripts,
which by default will run several epochs of training and then
inference on the testing portion of the dataset. The code
and scripts for TGL and TGLite are in separate directories:
tgl/ and tglite/, respectively. Two of the ablation studies
make modifications to TGLite’s code, which are provided as
separate directories in the artifact.

C.6 Evaluation and expected results
The README.md file contains detailed step-by-step instruc-
tions to reproduce the results shown in our paper’s Evalua-
tion section (§5). When executing the commands and scripts,
they will write output text to the console and timing data to
CSV files. For some experiments, these CSV files need to be
manually consolidated, but then the provided Python scripts
can be used to plot the relevant figures from our paper.

C.7 Experiment customization
The training scripts provide several command-line flags to
allow for running customized experiments and workflows
(use --help for details).

https://doi.org/10.5281/zenodo.10504480
https://doi.org/10.5281/zenodo.10504480

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yufeng Wang and Charith Mendis

References
[1] Ilya V. Afanasyev, Vladimir V. Voevodin, Kazuhiko Komatsu, and Hi-

roaki Kobayashi. Vgl: a high-performance graph processing framework
for the nec sx-aurora tsubasa vector architecture. The Journal of Super-
computing, 77(8):8694–8715, Aug 2021. https://doi.org/10.1007/s11227-
020-03564-9.

[2] Dawei Cheng, Xiaoyang Wang, Ying Zhang, and Liqing Zhang. Graph
neural network for fraud detection via spatial-temporal attention. IEEE
Transactions on Knowledge andData Engineering, 34(8):3800–3813, 2022.
https://doi.org/10.1109/TKDE.2020.3025588.

[3] Matthias Fey and Jan E. Lenssen. Fast graph representation learning
with PyTorch Geometric. In ICLRWorkshop on Representation Learning
on Graphs and Manifolds, 2019. https://arxiv.org/abs/1903.02428.

[4] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl. Neural message passing for quantum chemistry.
In Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ICML’17, page 1263–1272. JMLR.org, 2017. https://dl.acm.

org/doi/10.5555/3305381.3305512.
[5] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and

Carlos Guestrin. Powergraph: Distributed graph-parallel computation
on natural graphs. In Proceedings of the 10th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’12, page 17–30, USA,
2012. USENIX Association. https://dl.acm.org/doi/10.5555/2387880.

2387883.
[6] Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. Dynagraph:

Dynamic graph neural networks at scale. In Proceedings of the 5th
ACM SIGMOD Joint International Workshop on Graph Data Manage-
ment Experiences & Systems (GRADES) and Network Data Analytics
(NDA), GRADES-NDA ’22, New York, NY, USA, 2022. Association for
Computing Machinery. https://doi.org/10.1145/3534540.3534691.

[7] Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng
Zhang, Zhiru Zhang, and YidaWang. Featgraph: A flexible and efficient
backend for graph neural network systems. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’20. IEEE Press, 2020. https://dl.acm.org/doi/

abs/10.5555/3433701.3433795.
[8] Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learn-

ing multimodal graph-to-graph translation for molecular optimization.
ICLR, 2019. https://arxiv.org/abs/1812.01070.

[9] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay
Sethi, Peter Forsyth, and Pascal Poupart. Representation learning
for dynamic graphs: A survey. J. Mach. Learn. Res., 21(1), jan 2020.
https://www.jmlr.org/papers/volume21/19-447/19-447.pdf.

[10] Sai Charan Koduru, Rajiv Gupta, and Iulian Neamtiu. Size oblivious
programming with infinimem. In Revised Selected Papers of the 28th
International Workshop on Languages and Compilers for Parallel Com-
puting - Volume 9519, LCPC 2015, page 3–19, Berlin, Heidelberg, 2015.
Springer-Verlag. https://doi.org/10.1007/978-3-319-29778-1_1.

[11] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic
embedding trajectory in temporal interaction networks. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’19, page 1269–1278, New York, NY,
USA, 2019. Association for Computing Machinery. https://doi.org/10.
1145/3292500.3330895.

[12] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale
graph computation on just a pc. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, OSDI’12,
page 31–46, USA, 2012. USENIX Association. https://dl.acm.org/doi/

10.5555/2387880.2387884.
[13] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large net-

work dataset collection, June 2014. http://snap.stanford.edu/data.
[14] Xue Li, Ke Meng, Lu Qin, Longbin Lai, Wenyuan Yu, Zhengping Qian,

Xuemin Lin, and Jingren Zhou. Flash: A framework for programming

distributed graph processing algorithms. In 2023 IEEE 39th Interna-
tional Conference on Data Engineering (ICDE), pages 232–244, 2023.
https://doi.org/10.1109/ICDE55515.2023.00025.

[15] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph Hellerstein. Graphlab: A new framework for
parallel machine learning. In Proceedings of the Twenty-Sixth Con-
ference on Uncertainty in Artificial Intelligence, UAI’10, page 340–349,
Arlington, Virginia, USA, 2010. AUAI Press. https://dl.acm.org/doi/10.

5555/3023549.3023589.
[16] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong

Zhou, and Yafei Dai. Neugraph: Parallel deep neural network computa-
tion on large graphs. In Proceedings of the 2019 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC ’19, page 443–457,
USA, 2019. USENIX Association. https://www.usenix.org/system/files/

atc19-ma_0.pdf.
[17] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro

Suzumura, Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E.
Leiserson. EvolveGCN: Evolving graph convolutional networks for
dynamic graphs. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, pages 5363–5370. AAAI Press, 2020. https://arxiv.org/abs/
1902.10191.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Impera-
tive Style, High-Performance Deep Learning Library. Curran Associates
Inc., Red Hook, NY, USA, 2019. https://dl.acm.org/doi/10.5555/3454287.

3455008.
[19] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard,

Federico Monti, and Michael Bronstein. Temporal graph networks for
deep learning on dynamic graphs. In ICML 2020 Workshop on Graph
Representation Learning, 2020. https://arxiv.org/abs/2006.10637.

[20] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopou-
los, Alexander Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres,
Guzmán López, Nicolas Collignon, and Rik Sarkar. Pytorch geometric
temporal: Spatiotemporal signal processing with neural machine learn-
ing models. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, CIKM ’21, page 4564–4573,
New York, NY, USA, 2021. Association for Computing Machinery.
https://doi.org/10.1145/3459637.3482014.

[21] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang.
Dysat: Deep neural representation learning on dynamic graphs via self-
attention networks. In Proceedings of the 13th International Conference
on Web Search and Data Mining, WSDM ’20, page 519–527, New York,
NY, USA, 2020. Association for Computing Machinery. https://doi.org/
10.1145/3336191.3371845.

[22] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. Trans.
Neur. Netw., 20(1):61–80, jan 2009. https://doi.org/10.1109/TNN.2008.
2005605.

[23] Zechao Shang, Jeffrey Xu Yu, and Zhiwei Zhang. Tufast: A lightweight
parallelization library for graph analytics. In 2019 IEEE 35th Interna-
tional Conference on Data Engineering (ICDE), pages 710–721, 2019.
https://doi.org/10.1109/ICDE.2019.00069.

[24] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’13, page 135–146, New York, NY, USA, 2013. Association for
Computing Machinery. https://doi.org/10.1145/2442516.2442530.

[25] Wen Torng and Russ B. Altman. Graph convolutional neural networks
for predicting drug-target interactions. Journal of Chemical Informa-
tion and Modeling, 59(10):4131–4149, 2019. https://pubs.acs.org/doi/10.
1021/acs.jcim.9b00628.

https://doi.org/10.1007/s11227-020-03564-9
https://doi.org/10.1007/s11227-020-03564-9
https://doi.org/10.1109/TKDE.2020.3025588
https://arxiv.org/abs/1903.02428
https://dl.acm.org/doi/10.5555/3305381.3305512
https://dl.acm.org/doi/10.5555/3305381.3305512
https://dl.acm.org/doi/10.5555/2387880.2387883
https://dl.acm.org/doi/10.5555/2387880.2387883
https://doi.org/10.1145/3534540.3534691
https://dl.acm.org/doi/abs/10.5555/3433701.3433795
https://dl.acm.org/doi/abs/10.5555/3433701.3433795
https://arxiv.org/abs/1812.01070
https://www.jmlr.org/papers/volume21/19-447/19-447.pdf
https://doi.org/10.1007/978-3-319-29778-1_1
https://doi.org/10.1145/3292500.3330895
https://doi.org/10.1145/3292500.3330895
https://dl.acm.org/doi/10.5555/2387880.2387884
https://dl.acm.org/doi/10.5555/2387880.2387884
http://snap.stanford.edu/data
https://doi.org/10.1109/ICDE55515.2023.00025
https://dl.acm.org/doi/10.5555/3023549.3023589
https://dl.acm.org/doi/10.5555/3023549.3023589
https://www.usenix.org/system/files/atc19-ma_0.pdf
https://www.usenix.org/system/files/atc19-ma_0.pdf
https://arxiv.org/abs/1902.10191
https://arxiv.org/abs/1902.10191
https://dl.acm.org/doi/10.5555/3454287.3455008
https://dl.acm.org/doi/10.5555/3454287.3455008
https://arxiv.org/abs/2006.10637
https://doi.org/10.1145/3459637.3482014
https://doi.org/10.1145/3336191.3371845
https://doi.org/10.1145/3336191.3371845
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/ICDE.2019.00069
https://doi.org/10.1145/2442516.2442530
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00628
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00628

TGLite: Lightweight Framework for TGNNs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, page 6000–6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. https://dl.acm.org/doi/

10.5555/3295222.3295349.
[27] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yan-

ming Fang, Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. A semi-
supervised graph attentive network for financial fraud detection. In
2019 IEEE International Conference on Data Mining (ICDM), pages 598–
607, 2019. https://arxiv.org/abs/2003.01171.

[28] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,
Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He,
George Karypis, Jinyang Li, and Zheng Zhang. Deep graph library: A
graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019. https://arxiv.org/abs/1909.01315.

[29] Ruijie Wang, Zheng Li, Dachun Sun, Shengzhong Liu, Jinning Li, Bing
Yin, and Tarek Abdelzaher. Learning to sample and aggregate: Few-
shot reasoning over temporal knowledge graphs. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, volume 35, pages 16863–
16876. Curran Associates, Inc., 2022. https://arxiv.org/abs/2210.08654.

[30] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen
Wang, Xinguang Wang, Ping Cui, Yupu Yang, Bowen Sun, and Zhenyu
Guo. Apan: Asynchronous propagation attention network for real-time
temporal graph embedding. In Proceedings of the 2021 International
Conference on Management of Data, SIGMOD ’21, page 2628–2638,
New York, NY, USA, 2021. Association for Computing Machinery.
https://doi.org/10.1145/3448016.3457564.

[31] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. Gunrock: A high-performance graph pro-
cessing library on the gpu. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
’16, New York, NY, USA, 2016. Association for Computing Machinery.
https://doi.org/10.1145/2851141.2851145.

[32] Yufeng Wang and Charith Mendis. Tgopt: Redundancy-aware opti-
mizations for temporal graph attention networks. In Proceedings of the
28th ACM SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming, PPoPP ’23, page 354–368, New York, NY, USA,
2023. Association for Computing Machinery. https://doi.org/10.1145/
3572848.3577490.

[33] Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chenguang
Zheng, James Cheng, and Fan Yu. Seastar: Vertex-centric programming
for graph neural networks. In Proceedings of the Sixteenth European
Conference on Computer Systems, EuroSys ’21, page 359–375, New
York, NY, USA, 2021. Association for Computing Machinery. https:
//doi.org/10.1145/3447786.3456247.

[34] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. Inductive representation learning on temporal graphs. In
International Conference on Learning Representations (ICLR), 2020. https:
//arxiv.org/abs/2002.07962.

[35] Muhan Zhang and Yixin Chen. Link prediction based on graph neural
networks. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 5171–5181, Red Hook,
NY, USA, 2018. Curran Associates Inc. https://dl.acm.org/doi/10.5555/

3327345.3327423.
[36] Yuyue Zhao, XiangWang, Jiawei Chen, YashenWang,Wei Tang, Xiang-

nan He, and Haiyong Xie. Time-aware path reasoning on knowledge
graph for recommendation. ACM Trans. Inf. Syst., 41(2), dec 2022.
https://doi.org/10.1145/3531267.

[37] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang
Song, and George Karypis. Tgl: A general framework for temporal gnn
training on billion-scale graphs. Proc. VLDB Endow., 15(8):1572–1580,
apr 2022. https://doi.org/10.14778/3529337.3529342.

[38] Yangjie Zhou, Jingwen Leng, Yaoxu Song, Shuwen Lu, Mian Wang,
Chao Li, Minyi Guo, Wenting Shen, Yong Li, Wei Lin, Xiangwen Liu,
andHanqingWu. Ugrapher: High-performance graph operator compu-
tation via unified abstraction for graph neural networks. In Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, ASPLOS
2023, page 878–891, New York, NY, USA, 2023. Association for Com-
puting Machinery. https://doi.org/10.1145/3575693.3575723.

https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349
https://arxiv.org/abs/2003.01171
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/2210.08654
https://doi.org/10.1145/3448016.3457564
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/3572848.3577490
https://doi.org/10.1145/3572848.3577490
https://doi.org/10.1145/3447786.3456247
https://doi.org/10.1145/3447786.3456247
https://arxiv.org/abs/2002.07962
https://arxiv.org/abs/2002.07962
https://dl.acm.org/doi/10.5555/3327345.3327423
https://dl.acm.org/doi/10.5555/3327345.3327423
https://doi.org/10.1145/3531267
https://doi.org/10.14778/3529337.3529342
https://doi.org/10.1145/3575693.3575723

	Abstract
	1 Introduction
	2 Background
	3 The TGLite Framework
	3.1 Overview
	3.2 The TBlock Data Abstraction
	3.3 TBlock-based Operators
	3.4 Other Abstractions and Operators

	4 Case Study: TGN
	5 Evaluation
	5.1 Experimental Setup
	5.2 Training Performance
	5.3 Inference Performance
	5.4 Ablation Studies
	5.5 Large-Scale Benchmarks

	6 Related Work
	7 Future Work
	8 Conclusion
	Acknowledgments
	A Implementation Details
	B Additional Results
	C Artifact Description
	C.1 Abstract
	C.2 Artifact check-list (meta-information)
	C.3 Description
	C.4 Installation
	C.5 Experiment workflow
	C.6 Evaluation and expected results
	C.7 Experiment customization

	References

