N
Check for
Updates

TGOpt: Redundancy-Aware Optimizations for
Temporal Graph Attention Networks

Yufeng Wang
University of Illinois at
Urbana-Champaign, USA
yufengw2@illinois.edu

Abstract

Temporal Graph Neural Networks are gaining popularity
in modeling interactions on dynamic graphs. Among them,
Temporal Graph Attention Networks (TGAT) have gained
adoption in predictive tasks, such as link prediction, in a
range of application domains. Most optimizations and frame-
works for Graph Neural Networks (GNNs) focus on GNN
models that operate on static graphs. While a few of these op-
timizations exploit redundant computations on static graphs,
they are either not applicable to the self-attention mechanism
used in TGATSs or do not exploit optimization opportunities
that are tied to temporal execution behavior.

In this paper, we explore redundancy-aware optimization
opportunities that specifically arise from computations that
involve temporal components in TGAT inference. We ob-
serve considerable redundancies in temporal node embed-
ding computations, such as recomputing previously com-
puted neighbor embeddings and time-encoding of repeated
time delta values. To exploit these redundancy opportunities,
we developed TGOpt which introduces optimization tech-
niques based on deduplication, memoization, and precompu-
tation to accelerate the inference performance of TGAT. Our
experimental results show that TGOpt achieves a geomean
speedup of 4.9x on CPU and 2.9% on GPU when performing
inference on a wide variety of dynamic graphs, with up to
6.3x speedup for the Reddit Posts dataset on CPU.

CCS Concepts: « Computing methodologies — Neural
networks; « Software and its engineering — Software
performance.

Keywords: Temporal Graph Neural Networks, Redundancy-
Aware Optimizations, Memoization, Dynamic Graphs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP °23, February 25-March 1, 2023, Montreal, QC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0015-6/23/02...$15.00
https://doi.org/10.1145/3572848.3577490

354

Charith Mendis
University of Illinois at
Urbana-Champaign, USA
charithm@illinois.edu

1 Introduction

Graph Neural Networks (GNNs) [24] have gained rapid adop-
tion across a wide range of application domains, including
social network analysis [40], financial fraud detection [4, 30],
and drug discovery [13, 27]. GNNs perform predictive mod-
eling on graph-structured data, typically by learning node
embedding representations using node features and their
neighborhood information. Many of the popular GNN mod-
els [9, 16, 29] were developed to primarily operate on static
graphs. Subsequently, there have been many efforts at opti-
mizing GNNs for CPUs [15], GPUs [33, 34, 39], and hardware
accelerators [1, 38, 43] aimed at minimizing training and in-
ference times. Furthermore, multiple frameworks such as
DGL [31], PyTorch Geometric [5], and NeuGraph [19] have
enabled practitioners to more easily experiment with dif-
ferent GNN topologies while achieving high performance.
However, most of these frameworks and optimizations focus
on GNNs that solely operate on static graphs.

Recently, Temporal GNNs (TGNNs) have gained popular-
ity for their ability to learn predictive models on dynamic
graphs, which are graphs that evolve their topologies over
time with new nodes or edges. Among these TGNN models,
Temporal Graph Attention Networks (TGAT) [37] have seen
adoption in applications ranging from modeling temporal
knowledge graphs [10, 11] to temporal propagation-based
fake news detection [26]. TGAT performs predictive model-
ing on continuous-time dynamic graphs, processing batches
of edge interactions that occur across time. Compared to its
static counterparts, TGAT training and inference is compu-
tationally more expensive as it relies on a complex attention
mechanism, along with other encoding operations, to cap-
ture the temporal nature of neighborhoods [41]. Therefore,
optimizing TGAT remains challenging, yet important to in-
crease end-user productivity.

In this paper, we introduce techniques to increase TGAT
inference performance by primarily focusing on eliminating
redundant computations. Redundancy elimination has been
explored in the context of static GNNs. For example, HAG
[12] and ReGNN [2] are methods to reduce redundancies by
identifying and reusing aggregations on overlapping neigh-
bors. These methods require conversion to a custom com-
putation graph representation and are restricted to simple
aggregation operators, thus not applicable to attention-based
models like TGAT. In the temporal context, there is limited

https://doi.org/10.1145/3572848.3577490
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3572848.3577490&domain=pdf&date_stamp=2023-02-21

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

effort at optimizing TGNNs. One such work is [41] which
replaces self-attention with simpler calculations and focuses
on FPGA-based accelerators. Comparatively, in this paper,
we take a different approach of focusing on the time aspects
of TGAT and exploiting temporal redundancies that occur
across time and inference executions. We observe and lever-
age redundancies in temporal embedding and time-encoding
computations to considerably reduce TGAT inference run-
time. In contrast to prior work, the redundancy elimination
techniques we consider are not restricted to simple aggrega-
tions and do not require replacing self-attention.

We observe three main sources of redundant computations
during TGAT inference. First, processing the source and des-
tination nodes of edge interactions within a batch can lead
to the same node embedding calculations. For some graphs,
there can be as much as 55% of these same calculations in a
batch. Second, calculating embeddings for a given node and
timestamp will explore the same temporal neighborhoods
that have been explored in a previous time step, resulting
in recalculations of the same embeddings. In our analysis,
we have found that some dynamic graphs can repeat calcu-
lations for 89.9% of the total embeddings that get generated
during their evolutionary lifetime. Third, the time-encoding
operation in TGAT is frequently invoked with the same time
delta values. We elaborate on these observations in §3.

With these key observations, we developed TGOpt to ex-
ploit these opportunities by reusing values instead of re-
computing them during TGAT inference. TGOpt acceler-
ates inference computation by performing: 1) deduplication
of repeated nodes/timestamps when processing a batch of
edge interactions, 2) memoization of previously computed
node embeddings, and 3) precomputation of time-encodings
for a select window of time delta values. These techniques
are semantic-preserving redundancy-aware transformations
that preserve the computation semantics and end-user in-
terfaces of the baseline version, leading to transparent per-
formance improvements from the end-user’s perspective.
Node embeddings generated by TGOpt are the same, within
floating-point tolerance, as from the baseline and thus re-
tains model accuracy. The reuse exploiting techniques in
TGOpt require additional memory to cache computed values
for later reuse. To balance between performance from these
reuses and memory consumption, TGOpt offers settings to
limit the memory footprint of its computed values cache.

To evaluate our approach, we compared the inference
performance of TGOpt against the baseline implementation
of TGAT on both CPU and GPU environments. Our results
show that TGOpt achieves a geomean speedup of 4.9x on
CPU and 2.9% on GPU for a wide variety of dynamic graphs,
with up to 6.3X speedup for the Reddit Posts dataset on
CPU. We elaborate on our results and findings in §5. Overall,
our results show that TGOpt yields substantial speedups for
TGAT inference across datasets and machine environments
while preserving model semantics and accuracy.

355

Wang et al.

This paper makes the following specific contributions:

e Exploration of redundancies that exist in Temporal
Graph Attention Networks. We perform a systematic
study that examines the temporal redundancies that exist
in TGAT in three different areas: within edge interaction
batches, within embedding calculations that explore the
temporal neighborhood, and within time-encodings.

e Optimizations that exploit redundant computations
in the context of TGAT inference. We minimize redun-
dant computations by introducing techniques that perform
deduplication, memoization, and precomputation to reuse
previously computed values.

e Implementation and evaluation on a wide variety
of dynamic graphs on both CPU and GPU. We built
TGOpt that implements the redundancy-aware optimiza-
tions for TGAT to allow transparent inference performance
benefits to end-users. We show that TGOpt is capable of
yielding 3 — 6x speedup on CPU and 2 —3x on GPU, while
incurring reasonably low overhead and memory usage.

2 Background

In this section, we provide an overview of Temporal GNN
notations, concepts, and abstractions of their computations.

GNN Operators. GNNs are neural network models that
operate on graph data. A (static) graph is a 2-tuple G = (V, E)
where V = {vy, 0y, ...,0;} isa set of nodesand EC VX Visa
set of edges. Each node v; has a feature vector x; € R%, and
each edge a feature vector e;; € R%. GNNs act as graph oper-
ators that aggregate node features with local neighborhood
information. They output node embedding vectors h; € R%
used for downstream tasks such as node classification and
edge prediction. Node features are inherent attributes, while
these node embeddings are computed representations.

Dynamic Graphs. While the graph structure of a static
graph is stable, a dynamic graph evolves over time with new
nodes or edges. We define a dynamic graph as a 2-tuple G =
(V(T),E(T)) where the node/edge sets are parameterized
by time. An edge e;;(t;) € E(T) represents an interaction
between nodes v; and v; with edge timestamp t; € T. We
also define the temporal neighborhood of a node v; at time
ttobe N(i,t) = {j : e;;(t;) € E(T) Atj < t}, i.e. neighbor
Jj is in the temporal neighborhood if it has an interaction
with node v; where the edge timestamp ¢; is less than t. Two
nodes can have multiple edges at different times, making a
dynamic graph a multi-graph. So the temporal neighborhood
may contain the same neighbor j but with different edge
interaction timestamps. Since an edge is uniquely identified
by the node indices i, j and time ¢;, we will also use e;;(t;)
as notation for the edge feature vector. Also note that node
features may change in a dynamic graph, but we assume
they are static in this work.

Graph Representation. Dynamic graphs are represented
in two ways [14]: discrete-time dynamic graphs (DTDGs)

TGOpt: Redundancy-Aware Optimizations for TGAT

or continuous-time dynamic graphs (CTDGs). A CTDG is
a stream of timestamped graph events G = {§(t1), §(t2), ...}
where the timestamps 0 < #; < t; < ... are ordered [32].
Event §(t) indicates a change event, such as a change to
a node’s features or a new edge between two nodes (i.e. a
new edge interaction). A DTDG is a sequence of static graph
snapshots S = {G(t1), G(t2), ... } taken at intervals, where
G(t) = (V]0,t],E[0,t]) can be derived from a CTDG [22].
Thus, DTDGs lose some time information that may be crucial
for certain applications. In this work, we focus on CTDGs as
it is the data that TGAT operates on and because it captures
richer temporal information.

GNNs for Dynamic Graphs. There is a growing body
of work on extending static GNNs to model and learn on
dynamic graphs. Early work on these dynamic GNNs focus
on generating embedding representations for discrete-time
dynamic graphs. Their computations mainly involve apply-
ing a structural operator on individual DTDG snapshots and
a temporal operator across snapshots, or a combination of
these operators [8, 21, 23, 25]. Recent work focuses more on
continuous-time dynamic graphs, with computations mainly
based on structural neighborhood aggregations and tempo-
ral encoding methods involving granular timestamps or time
deltas for new edge interactions in CTDGs [22, 32, 37, 42].
We follow these later works and adopt Temporal GNNs in
this paper as the term for GNN models for dynamic graphs.

Temporal Message Passing. Many GNN models can be
expressed in the message-passing style [6], which abstracts
a GNN operator as three steps. To facilitate later discussions,
we extend message-passing to capture the notion of time,
which is a critical parameter for dynamic graphs:

mj(6) =msg ("0 (0, BV (@), ey(t) ()
ri(t) = agg ({m;(t) : j e N(i,1)}) @
B (6) = upd (" (0, ri(1)) 3)

where 7 < t. Common choices for 7 are time ¢ or edge times-
tamp t;. h;l_l) (t) and hﬁ.l_l) (7) are the temporal embeddings,
which are computed for a target node and time. We will refer
to this target node-timestamp pair with the notation (i, t).

In brief, Eq. (1) describes message creation where a “mes-
sage” vector is created for each neighbor j. Eq. (2) is mes-
sage aggregation where messages are reduced into a single
neighborhood vector. And Eq. (3) is feature update where it
combines this vector with the node features to produce the
embedding hlw (). The specific functions may be learnable
or non-learnable, e.g. agg(-) might be a summation while
upd(-) can be a neural network.

Furthermore, many GNN models use a layered architec-
ture where the same GNN operator is stacked into L layers,
thereby recursively aggregating neighbor information from
L-hops away. Thus, the current layer I computes the output
h?l) (t) using embeddings from the (I — 1)*" layer.

356

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

Temporal Graph Attention Network. The TGAT model
is a Temporal GNN that can generate temporal embeddings
for CTDG data. It learns a function ® : T — R% that maps a
time value to a d;-dimensional vector. This time-encoding
technique allows it to capture temporal patterns of the graph.
The time-encoding vector is then injected into the input
features of a GNN operator, thereby incorporated into the
output embeddings. TGAT’s computations can be expressed
using the temporal message-passing model:

zi(t) = h{ "V (1) | @(0) (@)
zj(t) = SV (1) [l e () | @(t = 1)))
ri(t) = Attn (z;(2), {z;(¢) : j € N(, t)}) 6)
nP (t) = FEN (ri(0) | B (1)))

where || is the concatenation operator, and FFN is a feed-
forward neural network. Egs. (4, 5) is the message creation
step in Eq. (1), while Eq. (6) is the agg(+) in Eq. (2), and Eq. (7)
is the update function seen in Eq. (3).

Attn(+) in Eq. (6) is the self-attention mechanism from [28],
except now parameterized by time. For the optimizations
we consider, the specifics are not essential and we abstractly
refer to this attention mechanism as M (see [37] for details).

These equations make up one layer in the TGAT model
architecture. The input to a layer is simply the target (i, t)
while everything else is computed. Computing the embed-
ding starts at the L‘" layer (the starting layer) and works
back through the layers until the first layer where h;o) = X;.

More importantly, note that TGAT’s choice for 7 is edge
timestamp ¢;, and the time value being encoded is the delta
between the target time t and ¢; (thus it is 0 for the target
node). The time-encoding function is formulated as:

O(At) = cos (w - At + ¢) (8)

where w, ¢ are learnable vectors and At is a time delta [41].

Temporal Sampling. While computing h;l) () for a tar-
get (i, t), a layer needs previous layer embeddings for the
node and neighbors. All of the neighbors could be consid-
ered, but in practice, this is rarely done due to scalability
concerns. Rather, a model typically limits to a max number
of neighbors via sampling [9]. Common strategies for this in-
clude uniform/random sampling and most-recent neighbors
sampling. While both work with the TGAT model, we only
focus on most-recent sampling due to better performance
characteristics as shown in [22].

Batched Training and Inference. The equations above
are formulated from the perspective of a single target node.
In practice, the TGAT model processes a batch of edge in-
teractions together and generates embeddings for both the
source and destination nodes. The batching procedure allows
processing nodes in parallel by packing them into tensors.

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

3 Redundancies & Reuse Opportunities

We start by sharing observations and insights on redundan-
cies that motivated our optimization work. We identify three
main places where redundancy and the potential for reuse
occur: duplication when processing edges in batches (§3.1),
performing the same computations on the same temporal
subgraphs (§3.2), and encoding the same time deltas (§3.3).

3.1 Duplication From Batched Edges

We observed that the specific way edges are packed into a
batch leads to duplicate target (i, t) pairs for which duplicate
embeddings are being computed. For CTDG data, a list of
edges is grouped into a batch. Each edge e;;(t;) is decoupled
into their source and destination nodes, using the same t; as
the target timestamp in the resulting node-timestamp pairs.

In a graph structure, nodes often share common neighbors
and this can lead to duplicate (i, t) pairs. For instance, sup-
pose source nodes a, b have an edge to the same neighbor c at
time ¢. As seen in Figure 1, this will result in (c, t) appearing
in the batch twice, one being a duplicate. To be precise, we
define the rule that given a batch of edges as a list of node-
timestamps 8 = {(v;, t;), (v}, t;), ...}, a duplicate exists if
there is a pair of elements such that v; =0; A t; = t;.

graph batch node-times
t t <a7 t>
@ e # a—c # <C, t>
/ b t ~ (bt)
@4 —c le,t)

Figure 1. Example of new edges in a graph being grouped
into a batch, resulting in a duplicate node-timestamp pair.

We reasoned that there are several scenarios where du-
plicates occur. First, they may exist in the batch 8 a model
receives as input at the starting layer. Second, as a model re-
cursively computes embeddings, the batching process means
it will pool together neighbors of all the target nodes in the
batch to serve as input to the previous layer, leading to poten-
tial duplicates. Lastly, when the recursion hits layer 0 where
node features are retrieved, the target timestamps are irrele-
vant since features are static, so the rule above only needs
to check the target node and this can result in duplicates
when there might not have been any before. To inform our
intuition, we have analyzed several datasets and found that
duplicates can account for an average of 55% of the batch,
and can rapidly increase down the layers as Table 1 shows.

3.2 Temporally Redundant Embedding Calculations

One of our main insights is that the model will inevitably
compute the same embeddings for the same nodes over time.
Our intuition is that not all the nodes in a dynamic graph are
changing at once. When coupled with the fact that model
parameters and weights do not change during inference time,

357

Wang et al.

Table 1. Percentage of duplication per batch of 200 edges for
each model layer, averaged over all batches in the dataset.
See Table 2 for a summary of these datasets.

Dataset M

0 1 2
jodie-lastfm 94% 48% 0%
jodie-mooc 96% 74% 2%
jodie-reddit 88% 41% 0%
jodie-wiki 9%6% 68% 0%
snap-email 96% 55% 19%
snap-msg 96% 70% 16%
snap-reddit 83% 35% 8%

a layer will end up performing the same computations. In
this case, a previously generated embedding could be reused
instead of redoing the computation.

As the model recursively computes embeddings through
the previous layers, so too will it recursively sample the
neighbors. This in effect induces a L-hop subgraph for a
L-layer model that starts at the target node. As neighbors
are sampled, it needs to uphold the temporal constraint that
tj < t. During recursion, time ¢ becomes ¢; and this results in
the property that all neighbors in the L-hop subgraph have
edge timestamp less than the initial target time. We will refer
to this induced L-hop subgraph as the temporal subgraph.

While examining this sampling process, we realized that a
node’s neighborhood can remain mostly the same despite a
node changing. In particular, the choice of using most-recent
sampling provides the nice property that the most recent
neighbors of a node are mostly retained in the same relative
order. This means that as a node evolves new interactions,
older neighbors can still remain in the sampled temporal
subgraph as long as they uphold the constraint of t; < ¢
where ¢ is now the new interaction time.

(v,t4) new (v, tg)
interaction
t1 t2 t3 ts t2 t3 ts
v—d |

same
subgraphs

299
000

time

®: ® @®0

!
7.0 .08-
Figure 2. Example of a node v retaining most of its temporal
subgraph over time when sampling 3 most-recent neighbors.

Take, for example, the scenario presented in Figure 2.
When sampling for the target pair (v,), the temporal sub-
graph will include neighbors a, b, and ¢ with edge timestamps
t1, t2, and t5 respectively. Suppose now node v has a new in-
teraction with a new neighbor d at time ¢5. When we perform
sampling again at time #, this new neighbor will be included

TGOpt: Redundancy-Aware Optimizations for TGAT

in the subgraph. However, notice that neighbors b and ¢ are
still retained in node v’s neighborhood, and their sampled
subgraphs will remain unchanged as well since their edge
interaction timestamps are still ¢, and #3.

In fact, we can generalize from this example and claim that
given the same target (i, t), the sampled temporal subgraph
will be exactly the same. In Figure 2, if we sample for (v, t;) a
second time before the new interaction, then this is trivially
true since there have not been any changes. When we sample
(v, t4) again after the new interaction, the new neighbor will
not be considered since it violates the temporal constraint
(i.e. edge time must be < t;). Thus, the resulting temporal
subgraph will be the same as before.

When the induced temporal subgraph is the same, it im-
plies that the model will be performing the same computa-
tions on the same set of nodes, neighbors, and timestamps.
To validate if we can exploit this observation in order to
reuse previously generated embeddings, we performed an
analysis on the embeddings being computed in dynamic
graphs. Specifically, we ran model inference on each edge of
the graph and tracked the embeddings being generated and
how many could be reused based on our insight above.

From this initial analysis, we observed that there are com-
pelling and favorable opportunities for reusing computed
embeddings. Figure 3 illustrates the trend of embeddings
being reused versus recomputed for one of the datasets we
studied. This trend also showed us that as a graph evolves
over time, the amount of embeddings that could be reused
also increases. At its peak, the ratio of reused embeddings
to recomputed ones is about 8.9 to 1, or about 89.9% of the
total embeddings. In fact, we see that the number of reuses
already exceeds the number of recomputed embeddings after
the first few days of its temporal evolution.

le6
20l T # reused
recomputed

51.5
c
<
°
2
1.0
(]
kS
I

0.5 2 4 6 8

0.0

0 50 100 150 200
time (days)

Figure 3. Embeddings reused vs. recomputed over time for
the snap-msg dataset (x-axis based on edge timestamps).

3.3 Repeated Time Encodings

One last insight is in regards to how TGAT encodes and
injects time information into the embedding computation.

358

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

Returning to Egs. (4, 5), we immediately notice that it always
uses 0 for the time-encoding of z;(t). Performing this compu-
tation every time is unnecessary—since the weights for the
time-encoder are fixed at inference time, we can compute
this once ahead-of-time and reuse it indefinitely.

Meanwhile, for z;(t) we noticed that the time-encoder
is repeatedly encoding the same time deltas (At). In fact,
we observed that At follows a power-law distribution and
clusters near 0, as Figure 4 shows. We note that the authors
in [41] reported the same observation about the nature of At
but it was made with a different interpretation and context.
In our case, we reasoned that because the model uses most-
recent sampling, the time difference t — t; will be relatively
small and close to 0. Plus, sampling the same neighbors
and inducing the same temporal subgraphs means the time-
encoder will frequently encounter the same At. Once again,
we see this as an opportunity to avoid doing computations
by reusing previously computed values.

1.8 1leb

frequency

© o =~

N w [e)}
-

.
-

0.4 0.6 0.8
time deltas (secs)

0.0 0.2 1.0 1.2

le6

Figure 4. Distribution of time delta values processed by the
time-encoder for the snap-msg dataset.

4 Redundancy-Aware Optimizations

In this section, we propose optimizations to exploit the redun-
dancies we presented in §3. All our optimizations preserve
model semantics and produce the same outputs as before,
thereby conserving model accuracy as well.

Algorithm 1 outlines the inference function in our TGOpt
system. It uses a memoization cache in the computation of
temporal embeddings for a batch of target (i, t) pairs, and
is a drop-in replacement for the original TGAT inference
function. Cache lookup on line 8 is performed before any
computations are done. When there are cache misses, it sam-
ples the neighborhood (the NghLookup operation) and carries
out the original calculations, before finally storing the results
on line 17 (§4.2). Deduplication filtering and inverse map-
ping on lines 6 and 20 is executed before and after the cache
operation (§4.1). And the TimeEncode operation on line 14
will internally use precomputed time-encodings (§4.3).

4.1 Deduplicating Nodes

As we explored in §3.1, many duplicates can exist when
performing batch processing of edge interactions.

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

Wang et al.

Algorithm 1: End-to-end redundancy-aware calcu-
lation of TGAT temporal embeddings with TGOpt.

Algorithm 2: Deduplication of target nodes and
timestamps, and building the inverse index.

Data: Dynamic graph G, node features X, edge
features E, GNN attention operator M,
sampling N number of neighbors

Input: Current layer [, target nodes and times (ns, ts)

Output: Node embedding features H for layer I

1 function Embed(l, ns, ts)

2 if [== 0 then
3 H « lookup node features for ns in X;
4 return H;
5 end
6 ns, ts,ino_idx < DedupFilter(ns,ts); > §4.1
7 keys « ComputeKeys(ns,ts); > §4.2
8 hits, H < CachelLookup(keys); > §4.2
9 if not all hits then
10 shrink keys, ns, ts lists to only the misses;
11 NSpgh, tSngh <— NghLookup(G, N, ns, ts);
12 HUY « Embed(l — 1,ns U NSngh, t5 U tSpgh);
13 At — ts — ESpgn;
14 H; <« TimeEncode (0, At); > §4.3
15 H, « lookup edge features in E;
16 H,, «— M(H""Y, H,, H,); > Egs. (6,7)
17 CacheStore(keys, Hp); > §4.2
18 copy Hp, into H;
19 end
20 H « DedupInvert(H,inv_idx); > §4.1
21 return H;
22 end

The deduplication filter (DedupFilter) preprocesses the
input batch B and produces unique elements. In practice,
batch B is represented as two arrays: one is a list of nodes and
the other is a list of edge timestamps, both of the same length.
The source and destination node of each edge in the batch is
concatenated to form one node list. Notice that TGOpt only
applies this filter to the input node and timestamp lists for
layers [> 0. Although Table 1 indicates that many duplicates
exist in the input to layer 0, since it only needs to lookup the
node features, there is no need to apply DedupFilter.

In addition, an inverse index (inv_idx) is used to map
the unique items back to the original arrays. This index is
used after computations are done in order to produce output
embeddings of the expected shape and with duplicated re-
sults, so to preserve semantics and produce results that are
comparable with the baseline implementation.

Optimizing the Filter. One can easily implement the op-
erations DedupFilter and DedupInvert using the NumPy
and PyTorch libraries. However, doing so for DedupFilter
will incur unnecessary overhead and memory footprint. Since
uniqueness is determined by both the node and timestamp,

359

Input: Target nodes and times (ns, ts)
Output: Unique target lists and inverse index
1 NSunigs tSunigs inv_idx — {}, {}, {};
2 processed < mapping from key to index;
3 for i € 0..size(ns) do
n,t « retrieve element i from (ns, ts);
key « Hash(n,t);
if key already in processed then
idx « get index from processed,;
inv_idx « inv_idx U {idx};
else
idx < current size of nsynig;
inv_idx «— inv_idx U {idx};
NSuniq <= NSuniqg U {n};
ZLSuniq — tsuniq U {t}§
store key, idx in processed,
end

O e N G

10
11
12
13
14

15
16 end

17 retUrn nsunig, tSuniq, inv_idx;

one will need to first construct a 2-D tensor by concatenating
the two arrays, which consumes memory.

We outline an approach in Algorithm 2 that jointly oper-
ates on the two separate arrays in order to avoid creating
intermediate tensors. It checks uniqueness by using a Hash
function that yields collision-free hash values (key). Since
the node and timestamp are 32-bit values, Hash constructs a
64-bit value by bitwise shifting and OR-ing the two values,
which is efficient and provides the collision-free property.

4.2 Memoization of Embeddings

Our goal is to persist computed embeddings so they could be
reused at a later time, which requires a way to identify each
embedding and to retrieve them when needed. We develop
an efficient scheme based on memoization techniques to
achieve this. Generally, a memoization cache maps inputs to
an output, with different inputs resulting in different outputs.
In our case, the output is the embedding tensor H () and the
inputs will be the values needed to compute the embedding,.
We first discuss computing cache keys for the inputs, then
go into details about storing/looking up values in §4.2.2.

4.2.1 Computing Cache Keys. Lines 11-15 in Algorithm 1
suggest that we will need to consider at least the list of neigh-
bors, their edge timestamps, edge features, and HU-D a5
inputs. The inputs will generally be combined into a single
key value by hashing, but doing this for the full set of inputs
will be detrimental to performance.

As we have established in §3.2, sampling for the same tar-
get (i, t) will yield the same temporal subgraph, and the same

TGOpt: Redundancy-Aware Optimizations for TGAT

computations will be performed. As a consequence, we can
exploit this to exclude everything else except for the target
(i, t) pair in our consideration. Therefore, the ComputeKeys
operation only needs to consider these two values in order
to produce a key that maps the inputs to stored embeddings.
The same hashing function introduced for the deduplication
filter is used for this purpose as well.

Also note that since each (i, t) pair in a batch is inde-
pendent of each other, the ComputeKeys operation can be
performed in parallel across the pairs, which we exploit in
our implementation of TGOpt.

4.2.2 Cache Storage and Lookup. The storage scheme
for keeping the computed embeddings will affect how cache
lookup operates. TGOpt currently has a simple scheme of
using a hash table that maps a key to an embedding vector.
With this scheme, cache lookup will only need to search a
single data structure and this also makes other bookkeeping
simple as well, but more sophisticated design choices are
possible. Algorithm 3 presents the CacheStore operation.

Algorithm 3: Store operation for the TGOpt cache.

Input: List of cache keys, embeddings Hy,
(each key in keys corresponds to a vector in Hy,)
size « current cache table size + size of keys;

=Y

if size > limit then
‘ evict items from the cache table;
end
if using GPU then
‘ move H,, to CPU device;
end
for key € keys do
hp, < next embedding vector in Hy,;
store key, h,, in cache table;
end

O 0 N G e W N

= e
= o

As for the Cachelookup operation, TGOpt searches the
cache table for hits using the given list of keys and returns an
embedding tensor. To avoid creating intermediate tensors, it
will construct the final embedding tensor (H) of the expected
shape, and partially fills it in during the search. Any missing
embeddings will be indicated by the hit index that is returned
alongside H. Finally, if using a GPU device for computations
it will move the tensor to the GPU before returning it.

We also note that each of the keys can be operated on
independently, so the main loop in both CacheStore and
CachelLookup can be parallelized, given that TGOpt uses a
concurrent hash table implementation. We selectively paral-
lelize these operations depending on the hardware.

Storage Memory Limit. In order to be conscious of mem-
ory usage, we impose a memory budget on TGOpt’s cache.
The CacheStore operation will check the size of the cache
against this limit, and evict items as necessary. Currently, it

360

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

uses a simple FIFO eviction policy. We further reduce mem-
ory usage by only caching the L — 1 layers. This is based on
the fact that H~ is required to compute H"). While on
the flip side, H) of the last layer is not required for other
computations. What cache limit to adopt is a decision that
balances between performance and memory usage. By set-
ting a lower limit, the performance gain will be lower since
more computations will need to be done, while a higher limit
allows for more reuse but higher memory usage as well. We
explore this tension in our experiments in §5.2.4.

Storage Memory Location. Another design decision is
where to store the embeddings, whether on CPU or GPU
memory. When running inference on GPU, tensors need to
reside on the same device. In this work, we propose to store
the cached embeddings solely on the CPU rather than GPU.
This means the CacheStore and CacheLookup operations
will incur data movement costs. But we reasoned that the
data size during cache lookup is often small, and the current
lookup approach emphasizes doing many small data copies
as hits are found, all of which are not favorable to GPUs. We
present an analysis of our design choice in §5.2.5.

4.3 Precomputing Time Encodings

To reduce the redundancy mentioned in §3.3, TGOpt pre-
computes time-encoding vectors in advance before running
inference. Since the time-encoder parameters are fixed dur-
ing inference and At are simple values with no other depen-
dencies, we can directly apply the @(-) function and keep
the time vectors for later use.

Unlike the lookup table described in [41] which is split
into 128 time intervals, TGOpt will instead precompute a
select window of At values starting at 0. Because this time
window is contiguous from 0, the At value itself can serve as
an index into a dense tensor that stores the time-encoding
vectors, allowing for a simple lookup process. However, we
will still need to account for any misses and perform the orig-
inal computation for those. Thus, the TimeEncode function
operates similarly to CacheLookup, in that it constructs the
final time-encoding tensor (H;) of the expected shape and
partially fills it in with hit vectors.

5 Evaluation

We evaluated TGOpt against the baseline on a wide variety
of dynamic graph datasets, achieving geomean speedups of
4.9% on CPU and 2.9x on GPU. We summarize our experi-
mental setup, results, and analysis in this section.

5.1 Experimental Setup

Our main metric is model runtime on a standard inference
task. To simulate the evolution of a graph over time, the
inference task is set up to iterate through all edges in a graph
ordered chronologically and in batches of 200. For each batch,
we run the model to generate temporal embeddings. We

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

measure runtime as the total time to iterate through all the
edges in the dynamic graph dataset. The model is trained
according to standard training procedures for link prediction,
and the trained parameters are then used during inference.

5.1.1 Baseline Model and Datasets. Our baseline is the

official TGAT implementation!, which we updated to use

more recent versions of Python (v3.7) and PyTorch (v1.12).

The TGAT model used is 2 layers, 2 attention heads, sampling

of 20 most-recent neighbors, and the rest are default settings.
We evaluated on bipartite and homogeneous dynamic

graphs of various sizes. Following the baseline, bipartite
graphs are treated as homogeneous, and all graphs are con-
sidered as undirected. Further description of the datasets
follow, while Table 2 summarizes their data statistics.

e Bipartite: jodie-lastfm, jodie-mooc, jodie-reddit
(Reddit Posts), and jodie-wiki are widely-used bipartite
graphs with user and item node types. We use the curated
datasets from JODIE [17] for all four.

e Homogeneous: snap-email is a dataset of emails sent at a
research institute. snap-msg captures messages between
users on a college social media-like network. snap-reddit
represents hyperlink references between subreddits made
within a post’s title or body. All three are from the SNAP
data repository [18], under the names CollegeMsg, email-
Eu-core-temporal, and soc-RedditHyperlinks, respectively.

Table 2. Datasets for our evaluation of TGOpt. Node fea-
tures use a zero-vector with the same dimension as the edge
features. T A randomly generated 100-dimensional vector is
used when missing edge features.

Dataset V| |E| d] max(t)
jodie-lastfm 1,980 1,293,103 - 1.4e8
jodie-mooc 7,144 411,749 4 2.6e6
jodie-reddit 10,984 672,447 172 2.7e6
jodie-wiki 9,227 157,474 172 2.7e6
snap-email 986 332,334 - 6.9e7
snap-msg 1,899 59,835 - 1.1e9
snap-reddit 67,180 858,488 86 1.5e9

5.1.2 Machine Environment. We conducted our exper-
iments on two different machines. One is a CPU server
equipped with 2x Intel Xeon Gold 6348 @ 2.6GHz, 28 cores
each, and 1TB Mem. Our GPU machine is an AWS p3.2xlarge
instance provisioned with 8 vCPUs @ 2.3GHz, 61GB Mem,
and an Nvidia Tesla V100 GPU (16GB).

5.1.3 Implementation. TGOpt uses Python and PyTorch
(same versions as the baseline). Portions of TGOpt are imple-
mented as a PyTorch C++ custom extension, which is then

Thttps://github.com/StatsDLMathsRecomSys/Inductive-representation-
learning-on-temporal-graphs

361

Wang et al.

exposed as a Python module via PyBind11. All three cache
operations in TGOpt are parallelized on the GPU machine
to help spread work across the slower CPU cores, while on
the CPU server only CacheLookup is parallelized so to mini-
mize on synchronization overhead. For cache size, we limit
to 2 million embedding items. Considering that most em-
beddings are a 100-dimensional vector of 32-bit floats, this
limit roughly translates to a limit of less than 1GB. For the
time-encodings, we chose 10,000 as the time window.

We use a custom C++ parallel neighborhood sampler that
we implemented instead of the official implementation for
both TGOpt and the baseline. We observed that the origi-
nal sampler in Python has noticeable runtime fluctuations,
which is not ideal for experimental measurements. Our sam-
pler is inspired by the one proposed in [42]. The custom
sampler helps speed up graph operations and provides more
consistent performance, which aids in experimentation.

All the optimizations that TGOpt implements are semantic-
preserving and produce the same final embedding values as
the baseline, within floating-point tolerance of 1e—5 or le—6.
To validate this and to confirm the correctness of TGOpt, we
collected and compared the embeddings from both TGOpt
and the baseline for all of our datasets.

5.2 Results

We present our experimental findings below. We report
inference performance results for all graphs and our in-
depth analyses on two select datasets. For our ablation study
(§5.2.2) and other analyses (§5.2.3, 5.2.4, 5.2.5), we focus on
jodie-lastfm and snap-msg as representative datasets of
large/small and bipartite/homogeneous graphs, respectively.

5.2.1 Inference Performance. As Figure 5 demonstrates,
TGOpt significantly outperforms the baseline on all datasets
and machine environments. It yields speedups in the range
of 3 — 6x on CPU and 2 — 3% on GPU.

As the results indicate, performance gain tends to be
higher on CPU than GPU. As we show in our breakdown
analysis (§5.2.3), tensor operations on GPU are much more
efficient than CPU, and by reusing values TGOpt is able to
minimize the expensive recomputation of embedding tensors
on CPU. Among the CPU results, we see that the bipartite
jodie-* datasets attain higher speedups than the snap-*
datasets. In [17], the JODIE authors mention that the bipar-
tite datasets were specifically curated for users’ repetitive
behavior of interacting with the same item consecutively.
Naturally, this results in new interactions with a single neigh-
bor but the rest of the neighborhood is mostly unchanged,
which is exactly the kind of redundancy TGOpt exploits.
Specifically, one implication of this is that there will be more
repeated time-encodings of the same time deltas for the un-
changed neighborhoods. As our ablation study shows, the
precomputation optimization is able to exploit this to yield
higher speedups for the jodie-* datasets on CPU.

https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs

TGOpt: Redundancy-Aware Optimizations for TGAT

B baseline *

= TGOpt

N
o
o

avg cpu runtime (secs)

0asE 00 o eddit o it
jodie P jodie MO e T iodle ™

avg gpu runtime (secs)

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

mmm baseline *

= TGOpt

200

C Wik A\ \
‘od‘\e-\asﬁr:od\e'““’c’ xod\e—fedd jodie W p-em? Snap'“‘sqsﬂap-‘edd

Figure 5. Inference performance across various datasets (left is CPU server, right is GPU machine). Runtime is averaged over
10 runs. Line at top of bars is its standard deviation. Bar label for TGOpt is speedup. *baseline is the TGAT official code.

Meanwhile, the results on GPU are more consistent, with
lower standard deviations than the CPU results. Since TGOpt
uses CPU memory for its cache, this allows for better uti-
lization of each device’s physical cache hierarchies and less
memory contention, thereby yielding more consistent GPU
speedups. Although everything took longer to run on CPU,
the relative performance of the datasets against each other
is similar for both machines (e.g. jodie-lastfm takes about
20 times longer to run than snap-msg on both).

» o

N

cpu speedup (x)

o

jodie-lastfm

snap-msg

N w

gpu speedup (x)
=

o

jodie-lastfm

snap-msg

I base HE cache BN cache+dedup B cache+dedup+time

Figure 6. Accumulative inference speedup when applying
optimizations sequentially.

5.2.2 Ablation Study. To better understand the contribu-
tion from each of our three optimizations, we carried out
an ablation study where we incrementally enabled each one.
As Figure 6 (top) shows, we saw a speedup of at least 3x
just by applying the cache optimization on CPU. Enabling
deduplication contributed a slight increase to the speedup,
while enabling time precomputation yielded a bigger boost
to performance. In fact, the jodie-lastfm dataset saw a
significant jump in speedup. Since tensor computations are
more expensive on CPU (as shown in Table 3), the avoid-
ance of recomputations afforded by the precomputation op-
timization outweighs the incurred overheads. When coupled

362

with the repetitive behavior of interactions as mentioned in
§5.2.1, this leads to more noticeable performance gains for
the jodie-x datasets.

To gain another perspective, we ran the same ablation
study on the GPU machine (Figure 6 bottom). Enabling the
cache/dedup optimizations yielded at least 2x speedup for
both datasets, but time precomputation produced a small
regression. As the cost breakdown in Table 3 shows, the time-
encoding lookup contributes overhead to the TimeEncode
operation, which is negatively impacting performance on
the GPU machine. Since GPUs are efficient at performing
the time-encoding tensor operations, the cost savings from
reused time-encoding values become marginal while lookup
overheads become more noticeable. From this, it appears
that tuning the optimizations to the hardware (and perhaps
the dataset as well) could yield better performance gains.

5.2.3 Breakdown Analysis. We conducted a breakdown
analysis of the cost of each major operation in TGOpt, along
with other metrics. We have three main conclusions.

First, by caching and reusing embeddings TGOpt is able
to avoid heavy operations while lowering the cost of other
operations. In Table 3, for the GPU machine we noticed the
NghLookup operation took the most time on the baseline,
which TGOpt is able to significantly reduce. For instance,
jodie-lastfm saw a decrease of 132 seconds while incur-
ring just 44 seconds of overhead for the cache/dedup oper-
ations. TimeEncode of zeros involves creating intermediate
zero tensors and data movement, thus having higher cost on
GPU compared to TimeEncode of neighbor At which only
involves tensor computations. TGOpt helps avoid most of
the cost of TimeEncode (0) by using precomputed values,
but incurs noticeable overhead on GPU for TimeEncode (At).
Meanwhile, on the CPU server tensor computations tend to
dominate the runtime. The “attention M” operation is the
GNN operator of Egs. (6, 7). TGOpt avoids running this oper-
ation as well as the TimeEncode operation by reusing values,
while incurring similarly low overheads for the cache/dedup
operations. The overhead associated with TimeEncode (At)
is outweighed by the reduction of recomputations on CPU.

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

Table 3. Total runtime of operations from Algorithm 1 on
both the CPU server and GPU machine. Two additional met-
rics are shown, with values the same on both machines.

Operation (secs) jodie-lastfm snap-msg

base ours base ours

CPU server
NghLookup 99.09 10.74 4.35 0.44
DedupFilter - 5.19 - 018
DedupInvert - 0.78 - 0.06
TimeEncode (0) 5.38 0.53 027 0.02
TimeEncode (At) 149.93 4533 6.17 536
ComputeKeys - 0.49 - 0.01
CachelLookup - 10.57 - 030
CacheStore - 3.73 - 039
attention M 314.21 32,50 19.25 4.39

GPU machine
NghLookup 147.84 15.33 6.17 0.48
DedupFilter - 10.65 - 023
DedupInvert - 1.35 - 0.07
TimeEncode (0) 54.50 0.73 252 0.04
TimeEncode (At) 5.00 12.01 030 0.58
ComputeKeys - 1.73 - 0.03
CachelLookup - 2773 - 099
CacheStore - 2.72 - 014
attention M 22.53 15.15 1.75 1.30
average hit rate (%) - 90.94 - 85.85
used cache size (MiB) - 931 - 46,5

Second, the average hit rate shows that we are getting
sustained cache usage from TGOpt. The hit rate in Table 3
shows the overall hit rate averaged across all batches. Look-
ing at the hit rate trend in Figure 7, we see that the hit rate
reaches about 80% very early on and continues to increase,
indicating that cache reuse grows with time.

Lastly, although TGOpt has a cache limit, the datasets
were still able to attain performance benefits. snap-msg
stores at most 100,007 cache items, which is well within the
limit, as its approximate used cache size of 46.5MiB shows.
jodie-lastfm, being one of our larger datasets, stores at
most 2,581,675 cache items which far exceeds the cache limit.
Despite this limit, we were able to achieve a 2.5X speedup
on GPU while consuming no more than 1GB of memory.

5.2.4 Cache Memory Usage. The balance between per-
formance and memory usage is an important trade-off when
considering TGOpt’s cache. Table 4 shows results for other
cache limits on the GPU machine aside from the 2M we
used for inference runtime in §5.2.1 (similar trends can be
observed for CPU). As the table shows, a lower limit means
fewer cached values for reuse which leads to longer run-
times. The effect on a small dataset like snap-msg is mar-
ginal, but becomes significant for a larger dynamic graph like

363

Wang et al.

o
©

o
o

jodie-lastfm

o
IS

0 1000 2000 3000 4000 5000 6000

o
o

running avg hit rate

o
o

—— snap-msg
0.4

0 50 100 150

batches

200 250 300

Figure 7. Evolution of TGOpt’s cache hit rate, averaged over
a sliding window of the last 10 batches.

Table 4. Runtime on GPU machine (top) and memory usage
(bottom) when varying the TGOpt cache limit of embeddings.

of embeddings

Dataset
10K 100K 1M 3M
jodie-lastfm 153.48s 103.52s 94.04s 89.41s
4.7MiB 46.5MiB 465MiB 1201MiB
snap-msg 5.26s 4.13s 4.07s 4.04s
4.7MiB 46.5MiB 46.5MiB 46.5MiB

jodie-lastfm. On the other hand, memory usage increases
as we set higher limits. We have chosen 2M as it yields good
performance while keeping memory footprint of the TGOpt
cache to under 1GB for the various datasets we studied.

5.2.5 Cache Storage Analysis. In regards to memory, we
further analyzed the trade-off of storing cache items on CPU
versus GPU device memory. To shed light on this, we profiled
all data movement overhead between CPU and GPU, using
the time spend on CUDA memcpy as a proxy measure (as
obtained from the nvprof tool?).

As Table 5 shows for the two select datasets, storing cache
items on GPU memory incurs significant overhead. The three
main data movement costs are: host-to-device (HtoD), device-
to-host (DtoH), and device-to-device (DtoD). Storing on CPU
incurs a noticeable increase in cross-device overhead, which
is to be expected. But this is a reasonably low percentage of
GPU activity time, about 13% for jodie-lastfm. But when
storing on GPU, the DtoD cost saw a significant jump and
dominates the time spend (~75% for jodie-1lastfm). In other
words, the GPU is spending a majority of its time doing data
movement within device and less time on executing kernels.

This analysis corroborates that our current caching scheme
is not favorable to GPUs and that keeping cache items on
CPU memory yields better performance, although we note
that this can change given a different design.

Zhttps://docs.nvidia.com/cuda/profiler-users-guide/index.html

https://docs.nvidia.com/cuda/profiler-users-guide/index.html

TGOpt: Redundancy-Aware Optimizations for TGAT

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

Table 5. Overall time spent on data movement between CPU and GPU. Parenthesis is % of all GPU activities.

Dataset

CUDA memcpy, storing on CPU

CUDA memcpy, storing on GPU

HtoD DtoH

DtoD

HtoD DtoH DtoD

1.08 (08.37%)
50.51 (10.11%)

jodie-lastfm (s)
snap-msg (ms)

0.61 (4.71%) 0.02 (0.16%)
11.66 (2.33%) 0.95 (0.19%)

0.45 (0.96%) 0.30 (0.64%) 34.81 (74.87%)
2334 (1.87%) 8.4 (0.68%) 780.61 (62.43%)

6 Related Work

Optimizing Temporal GNNs. Compared to static GNNs,
there has been limited work on optimizing TGNNs. To the
best of our knowledge, only [41] proposes applying a redun-
dancy related optimization of precomputing a time-encoding
lookup table, which is hardcoded to 128 intervals. More im-
portantly, the self-attention in TGNNs was replaced with a
simplified version, thereby altering the semantics, whereas
our work retains the semantics and model accuracy. An-
other work proposes the TGL framework for efficient TGNN
training [42]. The proposed contributions do not include any
redundancy optimizations. Rather, the proposed T-CSR data
structure and parallel sampler helps with graph operations
and is otherwise orthogonal/complementary to TGOpt.

Caching for Temporal GNNs. A recent system called
DynaGraph [8] utilizes a technique for caching intermediate
message-passing results. This is different from our scheme of
caching the final embeddings. Additionally, the DynaGraph
system only supports models that operate on the DTDG
representation, with caching done in the context of graph
snapshots. It is not clear how this can be extended to models
for CTDG data with embedding computations for streaming
edge interactions, which is the focus of our work.

Redundancy Elimination for GNNs. There exists a
body of work on optimizing static GNNs ([34-36, 39]), but
few utilize redundancy-aware techniques, and none target
dynamic graphs. Computation redundancy has been explored
in [12] which proposes the HAG abstraction. The HAG rep-
resentation eliminates redundant computations while retain-
ing model accuracy by reusing intermediate aggregation
results for overlapping subsets of neighbors. However, HAG
is restricted to simple aggregation operators, thus not ap-
plicable to models that use the more complex self-attention
mechanism such as the TGAT model that we studied. Along
the same line of work is ReGNN [2], which proposes similar
redundancy elimination techniques based on intermediate
overlapping results. Further, ReGNN is more tailored to hard-
ware accelerators, and is similarly restricted as HAG.

Redundancy Elimination for Deep Learning. Data
redundancy optimizations have been well explored for Deep
Neural Networks (DNN). One common trend is techniques
for detecting redundancies in image, video, or text data and
exploiting these to reduce computations and reuse interme-
diate results within or across DNN layers [3, 7, 20]. These
often trade performance gains for a slight drop in model
accuracy. For instance, Deep Reuse [20] reuses computation

364

results for similar sub-vectors of image pixels, which are clus-
tered by a similarity metric and have room for accuracy loss.
Meanwhile, our work focuses on graph data, their redundan-
cies arising from the temporal computations in TGAT, and
optimizations that preserve model semantics and accuracy.

7 Future Work

While our work focuses on accelerating TGAT inference, an
important future direction is exploring redundancy oppor-
tunities in the training process. During training, the model
parameters will be updated via backpropagation, and so the
effectiveness of the caching technique will be limited, but
optimizations like deduplication can still be applied to bring
benefits. There may be other computation or data redun-
dancy opportunities in the training process.

Currently, our caching method assumes the most-recent
neighbor sampling strategy. This makes reasoning about the
temporal neighborhood straightforward and enables reuse
without incurring overhead from comparing the neighbor-
hood to what was used for previously computed embeddings.
Future work can explore other sampling schemes and inves-
tigate efficient ways to compare the neighborhood for reuse.
Other assumptions in our approach are that node features
are static and the graph only evolves new edge interactions.
Future work here will be to extend support for other graph
change events, such as node feature changes and deletion
of edges, in a way that efficiently updates the cache while
maximizing reuse.

8 Conclusion

In this work, we introduced TGOpt, a system that targets
redundancies arising from the temporal nature of dynamic
graphs and TGAT computations. We detailed these redun-
dancy opportunities and developed semantic-preserving op-
timization techniques of deduplication, memoization, and
precomputation to eliminate them from the temporal em-
bedding computations. In our experiments, we showed that
TGOpt is able to yield considerable speedups for TGAT infer-
ence for a wide selection of dynamic graphs, while incurring
reasonably low overhead and memory usage.

Acknowledgments

We are grateful to the anonymous reviewers for their valu-
able feedback. We also thank Damitha Lenadora and Stefanos
Baziotis for their proofreading and helpful comments.

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

References

(1]

(2]

(3]

(6]

(10]

(11

—

[12]

(13]

[14]

Adam Auten, Matthew Tomei, and Rakesh Kumar. 2020. Hardware
Acceleration of Graph Neural Networks. In 2020 57th ACM/IEEE Design
Automation Conference (DAC). 1-6.

Cen Chen, Kenli Li, Yangfan Li, and Xiaofeng Zou. 2022. ReGNN:
A Redundancy-Eliminated Graph Neural Networks Accelerator. In
2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 429-443.

Jou-An Chen, Wei Niu, Bin Ren, Yanzhi Wang, and Xipeng Shen. 2022.
Survey: Exploiting Data Redundancy for Optimization of Deep Learn-
ing. ACM Comput. Surv. (sep 2022).

Dawei Cheng, Xiaoyang Wang, Ying Zhang, and Liging Zhang. 2022.
Graph Neural Network for Fraud Detection via Spatial-Temporal At-
tention. IEEE Transactions on Knowledge and Data Engineering 34, 8
(2022), 3800-3813.

Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation
Learning with PyTorch Geometric. In ICLR Workshop on Representation
Learning on Graphs and Manifolds.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. 2017. Neural Message Passing for Quantum Chemistry.
In Proceedings of the 34th International Conference on Machine Learning
- Volume 70 (Sydney, NSW, Australia) (ICML’17). JMLR.org, 1263-1272.
Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan
Chakaravarthy, Yogish Sabharwal, and Ashish Verma. 2020. PoOWER-
BERT: Accelerating BERT inference via progressive word-vector elim-
ination. In International Conference on Machine Learning. PMLR, 3690
3699.

Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. 2022. Dyna-
Graph: Dynamic Graph Neural Networks at Scale. In Proceedings of the
5th ACM SIGMOD jJoint International Workshop on Graph Data Man-
agement Experiences & Systems (GRADES) and Network Data Analytics
(NDA) (Philadelphia, Pennsylvania) (GRADES-NDA °22). Association
for Computing Machinery, New York, NY, USA, Article 6, 10 pages.
William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive
Representation Learning on Large Graphs. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems (Long
Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook,
NY, USA, 1025-1035.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. 2021. Explainable
Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs.
In International Conference on Learning Representations.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S.
Yu. 2022. A Survey on Knowledge Graphs: Representation, Acquisition,
and Applications. IEEE Transactions on Neural Networks and Learning
Systems 33, 2 (2022), 494-514.

Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec, and Alex
Aiken. 2020. Redundancy-Free Computation for Graph Neural Net-
works. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (Virtual Event, CA, USA) (KDD
’20). Association for Computing Machinery, New York, NY, USA.
Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. 2019.
Learning multimodal graph-to-graph translation for molecular opti-
mization. ICLR (2019).

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay
Sethi, Peter Forsyth, and Pascal Poupart. 2020. Representation Learning
for Dynamic Graphs: A Survey. J. Mach. Learn. Res. 21, 1, Article 70
(jan 2020), 73 pages.

Taehyun Kim, Changho Hwang, KyoungSoo Park, Zhiqi Lin, Peng
Cheng, Youshan Miao, Lingxiao Ma, and Yongqiang Xiong. 2021. Ac-
celerating GNN Training with Locality-Aware Partial Execution. In
Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop on Systems
(Hong Kong, China) (APSys °21). Association for Computing Machin-
ery, New York, NY, USA, 34-41.

365

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Wang et al.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification
with Graph Convolutional Networks. In International Conference on
Learning Representations (ICLR).

Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting
Dynamic Embedding Trajectory in Temporal Interaction Networks.
In Proceedings of the 25th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM.

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data.

Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong
Zhou, and Yafei Dai. 2019. Neugraph: Parallel Deep Neural Network
Computation on Large Graphs. In Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference (Renton, WA, USA)
(USENIX ATC ’19). USENIX Association, USA, 443-457.

Lin Ning and Xipeng Shen. 2019. Deep Reuse: Streamline CNN Infer-
ence on the Fly via Coarse-Grained Computation Reuse. In Proceedings
of the ACM International Conference on Supercomputing (ICS °19). As-
sociation for Computing Machinery, New York, NY, USA, 438-448.
Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro
Suzumura, Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E.
Leiserson. 2020. EvolveGCN: Evolving Graph Convolutional Networks
for Dynamic Graphs. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence. AAAI Press, 5363-5370.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard,
Federico Monti, and Michael Bronstein. 2020. Temporal Graph Net-
works for Deep Learning on Dynamic Graphs. In ICML 2020 Workshop
on Graph Representation Learning.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang.
2020. DySAT: Deep Neural Representation Learning on Dynamic
Graphs via Self-Attention Networks. In Proceedings of the 13th Interna-
tional Conference on Web Search and Data Mining (Houston, TX, USA)
(WSDM °20). Association for Computing Machinery, New York, NY,
USA, 519-527.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. 2009. The Graph Neural Network Model.
Trans. Neur. Netw. 20, 1 (jan 2009), 61-80.

Youngjoo Seo, Michaél Defferrard, Pierre Vandergheynst, and Xavier
Bresson. 2016. Structured Sequence Modeling with Graph Convolu-
tional Recurrent Networks. arXiv (2016).

Chenguang Song, Kai Shu, and Bin Wu. 2021. Temporally evolving
graph neural network for fake news detection. Information Processing
& Management 58, 6 (2021), 102712.

Wen Torng and Russ B. Altman. 2019. Graph Convolutional Neural
Networks for Predicting Drug-Target Interactions. Journal of Chemical
Information and Modeling 59, 10 (2019), 4131-4149. PMID: 31580672.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All You Need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach,
California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY,
USA, 6000-6010.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. 2018. Graph Attention Net-
works. ICLR (2018).

Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming
Fang, Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. A Semi-
Supervised Graph Attentive Network for Financial Fraud Detection. In
2019 IEEE International Conference on Data Mining (ICDM). 598—-607.
Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,
Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He,
George Karypis, Jinyang Li, and Zheng Zhang. 2019. Deep Graph Li-
brary: A Graph-Centric, Highly-Performant Package for Graph Neural
Networks. arXiv preprint arXiv:1909.01315 (2019).

http://snap.stanford.edu/data

TGOpt: Redundancy-Aware Optimizations for TGAT

(32]

(34]

(35]

36

—

(37]

(38]

(39]

[40]

[41]

[42]

(43]

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen
Wang, Xinguang Wang, Ping Cui, Yupu Yang, Bowen Sun, and Zhenyu
Guo. 2021. APAN: Asynchronous Propagation Attention Network
for Real-Time Temporal Graph Embedding. In Proceedings of the 2021
International Conference on Management of Data (Virtual Event, China)
(SIGMOD °21). Association for Computing Machinery, New York, NY,
USA, 2628-2638.

Yuke Wang, Boyuan Feng, and Yufei Ding. 2022. QGTC: Acceler-
ating Quantized Graph Neural Networks via GPU Tensor Core. In
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Seoul, Republic of Korea) (PPoPP "22).
Association for Computing Machinery, New York, NY, USA, 107-119.
Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan
Xie, and Yufei Ding. 2021. GNNAdvisor: An Efficient Runtime System
for GNN Acceleration on GPUs. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI’21).

Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chenguang
Zheng, James Cheng, and Fan Yu. 2021. Seastar: Vertex-Centric Pro-
gramming for Graph Neural Networks. In Proceedings of the Sixteenth
European Conference on Computer Systems (Online Event, United King-
dom) (EuroSys "21). Association for Computing Machinery, New York,
NY, USA, 359-375.

Zhigiang Xie, Minjie Wang, Zihao Ye, Zheng Zhang, and Rui Fan. 2022.
Graphiler: Optimizing Graph Neural Networks with Message Passing
Data Flow Graph. In Proceedings of Machine Learning and Systems,
Vol. 4. 515-528.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. 2020. Inductive representation learning on temporal graphs.
In International Conference on Learning Representations (ICLR).
Bingyi Zhang, Sanmukh R. Kuppannagari, Rajgopal Kannan, and Vik-
tor Prasanna. 2021. Efficient Neighbor-Sampling-based GNN Training
on CPU-FPGA Heterogeneous Platform. In 2021 IEEE High Performance
Extreme Computing Conference (HPEC). 1-7.

Hengrui Zhang, Zhongming Yu, Guohao Dai, Guyue Huang, Yufei
Ding, Yuan Xie, and Yu Wang. 2022. Understanding GNN Computa-
tional Graph: A Coordinated Computation, I0, and Memory Perspec-
tive. In Proceedings of Machine Learning and Systems, D. Marculescu,
Y. Chi, and C. Wu (Eds.), Vol. 4. 467-484.

Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph
Neural Networks. In Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (Eds.), Vol. 31. Curran Associates, Inc.

Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor Prasanna,
and Carl Busart. 2022. Model-Architecture Co-Design for High Per-
formance Temporal GNN Inference on FPGA. In 36rd International
Parallel and Distributed Processing Symposium.

Hongkuan Zhou, Da Zheng, Israt Nisa, Vassilis N. Ioannidis, Xiang
Song, and George Karypis. 2022. TGL: A general framework for tem-
poral GNN training on billion-scale graphs. In VLDB 2022.

Zhe Zhou, Bizhao Shi, Zhe Zhang, Yijin Guan, Guangyu Sun, and
Guojie Luo. 2021. BlockGNN: Towards Efficient GNN Acceleration
Using Block-Circulant Weight Matrices. In 2021 58th ACM/IEEE Design
Automation Conference (DAC). 1009-1014.

366

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

PPoPP ’23, February 25-March 1, 2023, Montreal, QC, Canada

A Artifact Description
A.1 Overview

Our artifact packages together the source code, scripts, and
data necessary to reproduce the results in the paper. It also
contains scripts for setting up a Docker image or AWS in-
stance for those familiar and prefer those environments.

For evaluating the artifact, we provide with the artifact
the datasets used in our paper and already-trained models.
Users can download/preprocess their own datasets and train
the models themselves using our scripts as well. Running
the full experiments for CPU and GPU takes approximately
10 hours in total on the machines we used in our paper.

A.2 Requirements
Running the experiments requires the following:

e Operating System: Our instructions assumes Linux, but
should be adaptable to macOS and Windows.
e Hardware:

— For CPU experiments: Multicore x86_64 CPU, preferably
2-socket NUMA machine (we tested on a 2 NUMA server
with Intel Xeon Gold 6348).

— For GPU experiments: Nvidia GPU (we tested on Tesla
V100 16GB via an AWS instance).

— Disk space: Artifact is 1.6 GBs (uncompressed 3.2 GBs).

— Memory: At least 6 GBs of free memory.

e Software:

— Python 3.7, PyTorch 1.12, and required dependencies in
requirements. txt (we recommend using conda).

— g++>=7.2, OpenMP >= 201511, Intel TBB >= 2020.1 (for
the TGOpt C++ extension).

e Datasets: Provided under the data/ subdirectory. See A.6
for preparing your own datasets.
e Models: Provided under the saved_models/ subdirectory.

See A.6 for training your own models.

Before running the experiments, we recommend minimiz-
ing background applications and processes, and quiescing
the machine to put it in a more controlled and consistent
state (e.g. disable hyper-threading, turbo-boost, etc).

A.3 Artifact Access

The artifact is archived and publicly available on Zenodo:
https://doi.org/10.5281/zenodo.7328505.

A.4 Setup Instructions

We provide different instructions depending on your pref-
erences and available environment/resources. Please first
download, uncompress, and cd into the artifact directory.

e Docker Setup: Build and run the docker image (it should
start a bash shell with conda base environment activated).

$ docker build -t tgopt:artifact .
$ docker run -it --rm
-v /path/to/artifact:/tgopt tgopt:artifact

367

Wang et al.

o AWS GPU Setup: For using AWS EC2 with GPU, we
provide the setup-aws-ec2. sh script under the scripts/
subdirectory. See the script for the recommended settings
and provisioning. Upload the artifact and run the script
inside the instance to set it up.

e Manual Setup: Most software dependencies can be in-
stalled via your system’s package manager. For Python,
we recommend using conda.

$ conda create -n tgopt python=3.7

$ conda activate tgopt

$ pip install -r requirements.txt

$ pip install torch==1.12.0+cul16
--extra-index-url
https://download.pytorch.org/whl/cul16

See PyTorch’s website® for CPU-only or other CUDA ver-
sions. Next, compile the C++ extension.

$ cd extension && make && cd ..

When the environment is ready, kick the tires by running
a small experiment. The inference.py script is the main
entry-point for our experiments. Add --gpu @ if GPU is
available (use -h to see all available options).

$ python inference.py -d snap-msg --model tgat
--prefix test --opt-all

A.5 Running Experiments

The following instructions walk through reproducing the
results and plots in §5.2 of the paper. The artifact writes
results to the terminal and generates PDF files (for plots). For
NUMA machines, you might need to set a NUMA policy by
prepending the python commands (or editing the provided
scripts) with: numactl --interleave all.

Step 1: Inference Performance (§5.2.1). To reproduce
results similar to Figure 5 in the paper, use the run-exp. sh
script. It will run all the datasets using the baseline and then
our optimized version, taking an average over 10 runs, and
generating a PDF plot file.

$./scripts/run-exp.sh <cpu | gpu>

Step 2: Ablation Study (§5.2.2). To reproduce our abla-
tion study, use the provided run-ablation. sh script. This
will save runtimes into various csv files and generate a plot of
the speedup comparison. When GPU is available, Figure 6 in
our paper can be reproduced by running the ablation for both
CPU and GPU, and then using the plot-ablation-both.py
script to generate the plot.

$./scripts/run-ablation.sh cpu

If GPU is available:

$./scripts/run-ablation.sh gpu

$ python ./scripts/plot-ablation-both.py
logs/ab-cpu.csv logs/ab-gpu.csv

3https://pytorch.org/get-started/previous-versions/#v1120

https://doi.org/10.5281/zenodo.7328505
https://pytorch.org/get-started/previous-versions/#v1120

TGOpt: Redundancy-Aware Optimizations for TGAT

Step 3: Breakdown Analysis (§5.2.3). The cost break-
down in Table 3 can be observed using the --stats flag.
Note that the output from the artifact uses different naming
(e.g. t_cache_keys in the output is ComputeKeys in the ta-
ble, t_attnisattention M, etc). One easy way to get a quick
view of the comparison is to run inference.py, saving the
output to a text file, and using a diff viewer. Additionally,
the --stats flag also collects hit rates and outputs a csv file
under the logs/ subdirectory. Use the plot-hit-rate.py
script to generate a figure similar to Figure 7 in our paper.

Run for jodie-lastfm and snap-msg:

$ python inference.py -d <name> --model tgat
--prefix bd --stats 2>&1
| tee out-bd-base.txt

$ python inference.py -d <name> --model tgat
--prefix bd --stats --opt-all 2>&1
| tee out-bd-opt.txt

... use diff viewer ...

$ python ./scripts/plot-hit-rate.py
jodie-lastfm logs/bd-jodie-lastfm-hits.csv
snap-msg logs/bd-snap-msg-hits.csv

Step 4: Cache Memory Usage (§5.2.4). To acquire the
results in Table 4, run the inference.py script with the
--stats flag. This will output more detailed statistics and
measurements. Use the --cache-1imit flag to change the
number of stored embeddings. For our paper, we ran us-
ing limits of {1e4, 1e5, 1e6, 3e6} for the jodie-lastfm and
snap-msg datasets.

$ python inference.py -d <name> --model tgat
--prefix exp-limit --opt-all --stats
--cache-limit <limit>

Step 5: Cache Storage Analysis (§5.2.5, GPU Only).
This section requires having a GPU device and Nvidia’s
profiling tool called nvprof*. Note: nvprof produces pro-
filing data that can take up significant disk space, so you
may want to delete it after each run (it should be located at
/tmp/ .nvprof).

By default, TGOpt will store embeddings on CPU memory
(even if GPU device is available). First, collect results using
this default setting, then re-compile the C++ extension so it
stores embeddings on GPU. Lastly, collect results for this new
setting. The results in Table 5 of our paper are generated by
looking for the [CUDA memcpy .. .] statistics in the output
files from nvprof.

$ nvprof --openacc-profiling off
--unified-memory-profiling off
--csv —-log-file nvprof-cpu-<name>.csv
python inference.py -d <name> --model tgat
--prefix store-cpu --opt-all --gpu @

$ cd extension

$ make clean

4https://docs.nvidia.com/cuda/profiler-users-guide/index.html

PPoPP 23, February 25-March 1, 2023, Montreal, QC, Canada

$ env tgopt_embed_store_dev=1 make

cd ..

$ nvprof --openacc-profiling off
--unified-memory-profiling off
--csv --log-file nvprof-gpu-<name>.csv
python inference.py -d <name> --model tgat
--prefix store-gpu --opt-all --gpu 0

“

A.6 Reuse and Repurposing

Our artifact and the accompanying scripts can be adapted
for other use cases. Below are a few suggestions.

Custom Datasets. Instead of using the dataset and mod-
els bundled with the artifact, you may prepare the datasets
and train the models yourself using the following:

$./data-download.sh <name>

$ python data-reformat.py -d <name>

$ python data-process.py -d <name>

$ python train.py -d <name> --model tgat [--gpu @]
To use your own dataset, you will need to create the fol-

lowing three files in the data/ subdirectory (see the TGAT

readme’ for more details):

e ml_{name}.csv - List of temporal edges.

e ml_{name}.npy - Edge features with shape (|E| + 1, d,).

e ml_{name}_node.npy - Node features, shape (|V| + 1, d,).
We recommend editing the data-reformat.py script to

preprocess your dataset into a csv file with the expected for-

mat, then the data-process. py file can be used unchanged.

Custom Models. You can train TGAT models with dif-
ferent settings, e.g. a model with 3 layers and sampling of
8 neighbors (be sure to use the same --model flag in later
inference commands):

$ python train.py -d <name> --model my-model
--n-layer 3 --n-degree 8 [--gpu @]

Custom Experiments. The inference.py script offers
various command-line flags, some of which control the opti-
mizations offered by TGOpt. You can use these flags, along
with editing our other provided scripts, to try different ex-
perimental settings.

Customizing TGOpt Extension. Finally, the TGOpt C++
extension has several compilation options to customize its be-
havior, mostly via environment variables and related to paral-
lelization. In the extension/ subdirectory, see the Makefile
and setup.py for the supported env vars. For example, to
force all the TGOpt operations to be single-threaded, try:

$ env tgopt_force_single=1 make

Shttps://github.com/StatsDLMathsRecomSys/Inductive-representation-
learning-on-temporal-graphs#use-your-own-data

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs#use-your-own-data
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs#use-your-own-data

	Abstract
	1 Introduction
	2 Background
	3 Redundancies & Reuse Opportunities
	3.1 Duplication From Batched Edges
	3.2 Temporally Redundant Embedding Calculations
	3.3 Repeated Time Encodings

	4 Redundancy-Aware Optimizations
	4.1 Deduplicating Nodes
	4.2 Memoization of Embeddings
	4.3 Precomputing Time Encodings

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Related Work
	7 Future Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Description
	A.1 Overview
	A.2 Requirements
	A.3 Artifact Access
	A.4 Setup Instructions
	A.5 Running Experiments
	A.6 Reuse and Repurposing

