Dias: Dynamic Rewriting of Pandas Code

STEFANQOS BAZIOTIS, University of Illinois (UIUC), U.S.A
DANIEL KANG, University of Illinois (UIUC), U.S.A
CHARITH MENDIS, University of Illinois (UIUC), U.S.A

In recent years, dataframe libraries, such as pandas have exploded in popularity. Due to their flexibility, they are
increasingly used in ad-hoc exploratory data analysis (EDA) workloads. These workloads are diverse, including
custom functions which can span libraries or be written in pure Python. The majority of systems available to
accelerate EDA workloads focus on bulk-parallel workloads, which contain vastly different computational
patterns, typically within a single library. As a result, they can introduce excessive overheads for ad-hoc EDA
workloads due to their expensive optimization techniques. Instead, we identify source-to-source, external
program rewriting as a lightweight technique which can optimize across representations, and offer substantial
speedups while also avoiding slowdowns. We implemented D1as, which rewrites notebook cells to be more
efficient for ad-hoc EDA workloads. We develop techniques for efficient rewrites in Dias, including checking
the preconditions under which rewrites are correct, dynamically, at fine-grained program points. We show
that D1as can rewrite individual cells to be 57X faster compared to pandas and 1909 faster compared to
optimized systems such as modin. Furthermore, D1as can accelerate whole notebooks by up to 3.6x compared
to pandas and 27.1X compared to modin.

CCS Concepts: » Information systems — Data management systems.
Additional Key Words and Phrases: pandas, rewriting, dynamic, cross-representation

ACM Reference Format:
Stefanos Baziotis, Daniel Kang, and Charith Mendis. 2024. D1as: Dynamic Rewriting of Pandas Code. Proc.
ACM Manag. Data 2, 1 (SIGMOD), Article 58 (February 2024), 27 pages. https://doi.org/10.1145/3639313

1 INTRODUCTION

In recent years, dataframe-based libraries, such as pandas, have become increasingly popular
with users ranging from social scientists to business analysts [40, 51]. This growth is driven by
many reasons, including the flexibility of such libraries, the ability to work within a notebook
environment, and the interoperability with other libraries.

Due to the popularity of dataframe libraries, academic and industrial work has focused on
improving the scalability of pandas in the context of bulk-parallel operations. For example, libraries
including modin [36], dask [31], and PySpark [10] focus on parallel or distributed dataframes. Many
of these libraries focus on scaling out pandas across multiple servers, as pandas will fail if the
dataframe does not fit in main memory.

However, there has been an emerging class of important workloads that operate on a single
machine, combined with ad-hoc functions. For example, in our conversations with law professors
at Stanford University, we have found that provisioning and managing distributed clusters is
challenging and time-consuming for social scientists. As a result, much of the work done by such

Authors’ addresses: Stefanos Baziotis, University of Illinois (UIUC), Champaign-Urbana, U.S.A, sb54@illinois.edu; Daniel
Kang, University of Illinois (UIUC), Champaign-Urbana, U.S.A, ddkang@illinois.edu; Charith Mendis, University of Illinois
(UIUC), Champaign-Urbana, U.S.A, charithm@illinois.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.
BY

© 2024 Copyright held by the owner/author(s).
ACM 2836-6573/2024/2-ART58
https://doi.org/10.1145/3639313

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

https://doi.org/10.1145/3639313
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3639313

58:2 Stefanos Baziotis, Daniel Kang, and Charith Mendis

for i in range(1, 15):
lhs = DF_PH.loc[i, 'VendorID']
rhs = DF_PH.loc[i-1, 'VendorID']

if lhs == rhs:
counter += 1
else:

counter = 1
DF_PH.loc[i, 'discourse_nr'] = counter

Fig. 1. Loop which accesses individual elements (source: Kaggle [6]). This loop can be hundreds of times
slower in bulk-parallel frameworks like modin, dask etc. and PolaRS, which are not optimized for individual
accesses.

social scientists is done on a single machine. Similarly, Kaggle and Google Colab provide single-
machine notebooks for data scientists to explore datasets. Furthermore, many tasks require custom
user-defined functions (UDFs) that are not well suited to working directly within the pandas APL

While these bulk-parallel dataframe libraries improve the horizontal scalability of dataframes,
as we show in this work, they unfortunately can fail to accelerate a wide range of single-machine,
ad-hoc workloads. For example, modin, dask, and PySpark are all 2-200x slower than pandas for
a range of operations: when interfacing with numpy, looping over individual rows, and even for
simple operations like multiplying two columns (on a single machine). For example, a simple loop
(Figure 1) can be many hundreds of times slower (see Section 6.6). Furthermore, all distributed
dataframe libraries we are aware of do not maintain full pandas compatibility, requiring domain
experts to learn new libraries.

We propose an alternative approach to address the vertical scalability of dataframe libraries:
rewriting notebook cells to accelerate dataframe computations by utilizing faster, but semantically
equivalent code sequences. To understand the potential for rewriting notebook cells, consider the
two cells in Figure 2. The first cell is a simplified cell from a real-world, Kaggle notebook. The
second cell is an optimized cell with identical semantics. While identical semantically, the second
cell can run up to 1000x faster, showing that simple rewrites of notebook cells can accelerate
workloads.

A natural question that emerges is why can’t the users write optimized code themselves. As
witnessed in compilers, automatic tools that accelerate code can reduce developer effort and
improve comprehensibility. Furthermore, several rewrite rules in this paper were not apparent to the
authors (e.g., the rules used to perform the rewrites in Figure 3 and Figure 4), even after devoting
considerable time studying the internals of Python and pandas. To understand how this translates
to non-experts, there are whole videos and articles dedicated to patterns for speeding up pandas
code via manual rewriting [7, 9, 11, 16, 44, 47]. Even then, optimizing code correctly is challenging
for non-experts and can lead to subtle bugs.

To realize the vision of rewriting notebook cells transparently, we propose Dias, a tool that
automatically rewrites notebook cells. As we show, D1As can accelerate notebook cells by up to
57x completely transparently to the user.

Dias is the first source-to-source, dynamic rewriter for a Python library. Source-to-source rewrit-
ing/compilation, especially over Python code, is challenging because source languages are high-level,
while traditional compiler optimizations work better in low-level intermediate representations. But,
we observe that operating at the source level creates novel opportunities. One such opportunity
is that it enables us to rewrite across different representations (e.g., Python and pandas). Such

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

Dias: Dynamic Rewriting of Pandas Code 58:3

def weighted_rating(x, m=m, C=C): def weighted_rating(x, m=m, C=C):
v = x['vote_count'] v = x['vote_count']
R = x['vote_average'] R = x['vote_average']
return (v/(vtm) * R) + (m/(m+v) * C) return (v/(vtm) * R) + (m/(m+v) * C)

Pass the whole “df " directly.

df.apply(weighted_rating, axis=1) weighted_rating(df)

(a) Loop through rows (extracted from a Kaggle (b) The function contains only column operations
notebook [5]). This, effectively, loops sequentially and thus can be applied directly to the whole
over each row, and the operations are performed DataFrame.

in the Python interpreter.

Fig. 2. A rewrite example where we avoid apply(). The rewritten version, which uses vectorized, native
execution, can run up to 1000X faster.

rewrites are high-level (leading to significant speedups), and thus, the source language is a suitable
representation for performing them. It may be useful to compare and contrast a high-level rewrite
like the one in Figure 3 with a traditional low-level rewrite such as a*2 — a«1.

To perform these rewrites, DiAs needs to operate externally, in contrast with previous work (e.g.,
TensorFlow Grappler [46], modin [36], BELE [53]), which are implemented as libraries. Namely, it
views all user’s code compared to just library code and can modify any part of it. This allows Dias
to rewrite across library boundaries (e.g., Figure 3), which is infeasible with current techniques.

However, implementing a source-to-source, external rewriter introduces new challenges. First,
D1as needs to understand more than one representation (i.e., pandas and Python). Second, providing
any guarantees when operating in a high-level language is naturally harder, especially when it
comes to Python which has no formal semantics and liberal typing and scoping rules. A specific
challenge was performing the precondition checks at the correct program points, as we explain in
Section 4.2. Finally, D1as must operate within interactive time scales: the overhead of rewriting
cannot dominate cost savings.

We designed Dias’ rewrite engine with two components: a pattern matcher and a rewriter with
design decisions that specifically address the aforementioned challenges. The rewrite engine is
lightweight, with a fast pattern matcher that can quickly match patterns that we can rewrite into
faster versions and a rewriter which emits, or performs, necessary static and runtime precondition
checks to guarantee correctness, within interactive latencies.

We show that on real-world Kaggle notebooks, Dias can accelerate cells by up to 57x (1.27x
geometric mean) and whole notebooks by up to 3.6 (1.31X geometric mean). We also compare
Dias with modin and show that it can be up to 27.1x faster for whole notebooks (4.9X geometric
mean). Furthermore, D1As can avoid rewriting cells that cause slowdowns, resulting in overheads
that are only due to the pattern matcher. We show that these overheads, even in the cases where
cells are not rewritten, are below noise thresholds. Finally, D1As uses no extra memory or disk
capacity.

In summary, we make the following contributions.

(1) We identify program rewriting as a lightweight technique to speed up pandas-heavy EDA

workloads.

(2) We develop Dias, the first external rewriter to rewrite code across different representations

in a dynamic setting. We introduce rewrite rules that can significantly speed up pandas code,
including ones that cross library boundaries.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

58:4 Stefanos Baziotis, Daniel Kang, and Charith Mendis

(3) D1as applies these rewrite rules automatically, at runtime, and verifies whether applying a
rule is correct by injecting checks at fine-grained program points.

(4) We evaluate D1as on real-world notebooks and show that it can speed up cells by up to 57x
and notebooks by up to 3.6%, with almost no memory or disk overheads. We further compare
Dias with modin [36] and show that it can be up to 27.1x faster for whole notebooks (4.9x
geometric mean).

2 BACKGROUND
2.1 Setting

In this work, we focus on the broad class of workloads commonly referred to as exploratory data
analytics (EDA) [39]. In EDA workloads, the data is iteratively analyzed for interesting patterns.
Since the patterns of interest are unknown ahead of time, much of this work is done interactively,
in a notebook environment (e.g., Jupyter notebooks, other REPLs) using a dataframe library. We
focus on pandas and related libraries in this work.

In one common setting, analysts are interested in analyzing large datasets, which typically do not
fit in main memory on a single server. To accelerate such workloads, both industry and academia
have invested in accelerating bulk-parallel workloads.

Frameworks including modin [36] and dask [31] aim to accelerate such workloads. They operate
by providing APIs close to the standard pandas AP]I, distributing data across servers, and evaluating
functions lazily. When working within these libraries, they can accelerate workloads by up to 100X
[36].

Unfortunately, these bulk-parallel libraries have several drawbacks. In particular, these libraries
were not designed for ad-hoc, single-machine workloads.

Ad-hoc operations. The primary drawback of these libraries is that they have poor support for
ad-hoc operations outside of the library APIL For example, operations such as looping over rows,
column-wise operations that require intermediate materialization for inspection (e.g., comparing a
column to a constant), or inspecting the first n rows can be 30-1900x slower than standard pandas
on a single machine. For example, as we explain in Section 6.6, a simple loop, shown in Figure 1,
can be many hundreds of times slower.

Single-machine overheads. In addition to slowdowns for ad-hoc operations, these libraries
can add substantial memory overheads. We selected 20 random EDA notebooks from Kaggle
(under criteria described in Section 6.1), which had heavy pandas usage. modin generally increased
memory usage, with the peak memory usage being up to 772X higher than native pandas. The
peak memory usage increased 53X on average (geometric mean).

Usability. In discussions with social scientists and law professors at Stanford University and
the University of California, Berkeley, we have found that learning new APIs is challenging and
time-consuming. In particular, these bulk-parallel libraries are not direct drop-in replacements. To
show this, we sampled 20 notebooks from Kaggle at random (under criteria described in Section 6.1).
Six of these notebooks (30%) were unable to run when pandas was replaced with modin.

Furthermore, setting up distributed clusters can be difficult in these settings. As a result, the
distributed speedups are difficult to realize in the settings we focus on.

In this paper, we introduce program rewriting as an automatic optimization technique for Python
code that interfaces with pandas, focusing on accelerating single-server, ad-hoc EDA workloads.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

Dias: Dynamic Rewriting of Pandas Code 58:5

pd.Series(df['A'].tolist() + df['B'].tolist())

(a) Original: Concatenate Series by first turning them into lists. Extracted from a Kaggle notebook [48].

pd.concat([df['A'], df['B']], ignore_index=True)
(b) Rewritten: Use a pandas-provided function for concatenation

Fig. 3. Rewrite example that crosses library boundaries, and thus cannot be performed by previous techniques.
The rewritten version can be up to 11X faster.

dff['a', 'b']J] = df['C'].str.split(' (', expand=True)

(a) Splitting a pandas. Series using pandas.Series.str.split(). Extracted from a Kaggle notebook [1].

a=1[1]
b =1[1]
1s = df['C'].tolist()
for it in ls:
spl = it.split(' (', 1)
a.append(spl[0])
b.append(spl[1] if len(spl) > 1 else None)
df['a'] = pd.Series(a, df['C'].index)
df('b'] = pd.Series(b, df['C'].index)

(b) Splitting a pandas. Series in pure Python

Fig. 4. Splitting in pandas and Python. Surprisingly, the pure Python implementation is up to 7x faster.

2.2 Rewriting as an alternative optimization

Rewriting, for optimization purposes, is the process of replacing some part of code with a func-
tionally equivalent but faster version. Rewriting avoids the previously mentioned drawbacks of
library-based optimization systems. First, it inherently does not suffer from a lack of API sup-
port because it is not a replacement for pandas and it can leave the code untouched if it cannot
handle it. Second, rewriting is a lightweight technique incurring minimal overheads, which scale
proportionally only to the code, not the data.

Additionally, there are fundamental advantages Dias has over library-based optimization ap-
proaches. The rewrite system is transparent. When the user observes a speedup, they can always
see the code that the rewriter used. In other words, the user does not need to understand the system
to understand the cause of the speedup. At the same time, the user’s code remains intact. Further,
rewriting has the benefit of being able to optimize across library boundaries. For example, D1as can
automatically perform the rewrite in Figure 3 (taken from a real-world notebook). The original code
crosses the library boundaries (twice!) as we move from pandas to Python (by converting to a list)
and then back to pandas. To perform this rewrite, a tool needs to view all the code and understand
semantic equivalences and differences across library boundaries (e.g., pandas and the host language,
Python). This is not possible with optimization approaches that purely aim at accelerating the
pandas APL

Rewriting appears simple, but it can be challenging when performed manually. There are many
non-obvious rewrites that the user may not be able to discover easily. For example, it might seem

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

58:6 Stefanos Baziotis, Daniel Kang, and Charith Mendis

that the only way to make pandas code faster through rewriting is by replacing it with other
pandas code, or using a similar library such as numpy. This has been reinforced over years of data
scientists being trained to remain within pandas/numpy as much as possible because these use
native, vectorized implementations and are thus deemed to be much faster than pure Python. It
might, then, be surprising that moving out of pandas and into pure Python can lead to significant
speedups. One example is shown in Figure 4. The task here is to split a Series of strings by
the delimiter ’ (’. The code in Figure 4a (extracted from a Kaggle notebook) does it by using a
pandas-provided function. One would expect that this is the best way to perform this operation.
Nevertheless, the version in Figure 4b is 3.5% faster. It moves from pandas to pure Python (by
converting df [’ C’] to a Python list) and performs the operation with a sequential Python loop (in
our case studies in Section 6.5, we explain why this version is faster).

It is unreasonable to expect general pandas users to comprehend Python, pandas, and numpy
to such an extensive level to be able to discover such equivalent versions and evaluate their
relative performance. Second, even if the user succeeds in these tasks, the rewritten version can
be significantly harder to write and read, as is evident from Figure 4. This can further lead to
correctness concerns about the rewrite. Third, manual rewriting breaks the library abstraction. In
the original code of Figure 4, the user has to think only of what split() does. But, to come up
with the rewritten version, this abstraction’s veil has to be removed as the user needs to think of
how to implement it.

These issues motivated us to build Dias, a system that performs such rewrites automatically, by
guaranteeing correctness and with minimal overhead. Section 3 provides an overview of Dias.

3 DIAS OVERVIEW

We now present the high-level architecture of Dias, a rewrite engine that automatically applies
rewrite rules to improve the performance of ad-hoc EDA workloads.

We designed Dias with two high-level components. First, D1As’ syntactic pattern matcher matches
the input code against the syntactic patterns the rewrite rules. The second component is a rewriter,
which checks the runtime preconditions of the rewrite rules and on success, rewrites the code to
an equivalent, but faster version and executes it. We show a high-level overview in Figure 5.

We have several desiderata for Dias: it should facilitate applying complex rewrites automati-
cally with minimal overhead. Further, it should guarantee that the rewritten code is semantically
equivalent to the original code i.e., that it is sound, which presents the main technical challenge.

To guarantee soundness, we first formalize the rewrites (Section 3.1). Second, we accurately
describe the conditions under which a rewrite can be applied, some of which can be quite involved.
For example, some require D1as to check the form of whole functions. And finally, most of these
conditions can only be checked at runtime, and checking them at the correct program points
requires delicate program transformations (Section 4.2).

3.1 Pandas Rewrite Rules

The abstract form of the rewrite rules Dias supports can be modeled as transforming a Left
Hand Side (LHS) set of statements to Right Hand Side (RHS) set of statements subject to certain
preconditions on the LHS.

The most general form of a rule consists of the following:

(1) LHS: A code fragment with some parts that may vary. We call those the varyingSet. This
LHS must be recognizable with a subtree search on the AST.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

Dias: Dynamic Rewriting of Pandas Code 58:7

Jupyter Cell Source

print(...)
foo().sort_values().head(n=5)

Pattern Matcher

print(...)
foo().sort_values().head(n=5)

I

Rewrite the Code

print(...)

def sort_head(tmp):
if type(tmp) == pd.Series:
return tmp.nsmallest()
else:
tmp.sort_values() .head(n=5)

sort_head(foo())

Execute the Rewritten Code

ipython.run_cell(new_source)

Fig. 5. DiAs overview. Dias identifies patterns in the source code, which it rewrites using its rewriter. The
optimized version is used only if certain dynamic checks pass, to ensure correctness.

df['A'].sort_values().head(n=5)
(a) Select the 5 smallest elements by sorting first. Extracted from a Kaggle notebook [32].
df['A"'].nsmallest(n=5)
(b) Select the 5 smallest elements directly. This avoids sorting.

Fig. 6. Selecting the 5 smallest elements. By comprehending the pandas API, Dias is able to recognize that
the second version is equivalent to, and faster than, the first.

(2) TransformLHS: An AST transformer that transforms the LHS. We call the result the RHS
of the rule.

(3) RuntimePrecond: An algorithm for checking the runtime preconditions under which using
the RHS instead of the LHS is semantic-preserving. This is essentially a callback function,
with inputs a subset of the varyingSet, but evaluated. This callback also gets a state snapshot
of the interpreter as input. It returns true or false.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

58:8 Stefanos Baziotis, Daniel Kang, and Charith Mendis

@{expr: called_on}.sort_values().head(n=@{Const(int): first_n})
—

@{called_on}.nsmallest(n=@{first_n})

(a) LHS - RHS

type(@{called_on}) == pandas.Series
(b) Preconditions

Fig. 7. An example of a rewrite rule, named SortHead. If we match the LHS in the source code, we can
replace it with the RHS only if the preconditions hold (at runtime).

"{}.nsmallest(n={})".format(called_on, first_n)

Fig. 8. A sketch of the implementation of the RHS of the rule in Figure 7

def foo(x):
return True if x['Fare'] > 10 else False
df.apply(foo, axis=1)

(a) A function applied to the whole dataframe.

def foo(x):
return True if x > 10 else False
df['Fare'].apply(foo)

(b) The function touches only one column so we can increase locality by iterating only that column.

Fig. 9. Apply a function to a single column instead of a whole dataframe and increase locality

LHS. We introduce some notation to show the structure of the LHS. Consider the original code
in Figure 6(a) rewritten to Figure 6(b) using the rewrite rule shown in Figure 7. A @{. ..} entry
denotes a varying part of the rule (i.e., an element of the varyingSet). These parts can be matched to
multiple valid options. Inside the curly brackets, we describe these valid options using a derivation
rule of the Python grammar [2]. For example, @{expr} denotes that any expression can appear
in its place. For Constants, which we refer to as Const for short, we optionally specify the type
of the constant inside parentheses.! So, @ Const(int)} denotes that any integer constant can
appear in its place. We need to refer to elements of the varyingSet in other components of the
rewrite rule. So, we bind them to names. For example, the code string df . sort_values() .head()
matches the LHS of Figure 7 and called_on is bound to (the string) df. Everything that is not in
@{} should appear as is. With these in mind, we can read the LHS of Figure 7 as matching any
Python expression on which sort_values() is applied, followed by head() with any constant
integer as the argument of the formal parameter n.

TransformLHS. This is a function which takes as input the LHS as an AST and outputs the
RHS as an AST. The simplest form is a function that outputs a constant string, with some elements

We can determine the type of constants from the AST [3].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

Dias: Dynamic Rewriting of Pandas Code 58:9

@{expr: called_on}.apply(@{Name: func}, axis=@{expr: axis})

Fig. 10. RemoveAxis1 rule’s LHS

of varyingSet (also strings) interpolated. For example, the RHS of Figure 7 can be implemented as
shown in Figure 8. The values of called_on and first_n are part of the varyingSet. This LHS
transformer is quite simple, but others can be significantly more complex and they can also depend
on dynamic information (the transformer we just described does not as called_on and first_n
are extracted from the text).

RuntimePrecond. The runtime preconditions describe conditions which have to hold at runtime
for the original (LHS) and the RHS to be semantically equivalent. For example, in Figure 7, the
result of the called_on expression that was matched in the LHS should be a pandas.DataFrame.
The runtime preconditions implicitly impose an order of evaluation. In this example, called_on
must be evaluated first, then the preconditions are checked on the resulting object, and then this
object is used in place of called_on in the RHS. Note that unconditionally evaluating called_on
is correct even if the conditions do not hold because it would be evaluated anyway in the original.

In general, RuntimePrecond imposes some restrictions which are up to the rule designer
and implementer. For example, it should be the case that the subset of varyingSet used in the
preconditions is evaluated regardless of the result of the precondition check.

In their generic form, the runtime preconditions are also functions that depend on dynamic infor-
mation. These can be simple, like the one in Figure 7, or more complicated (i.e., whole algorithms).

Table 1 shows nine more rewrite rules we use in D1as. The first two correspond to the examples
in Figure 4 and Figure 3, respectively. The TransformLHS’s are simple transformers which output
a paremeterized string, similar Figure 8 which we saw above. Also, we introduce some notation
for syntactic preconditions, which are prefixed by &. These are simple syntactic conditions (i.e.,
equalities on ASTs) which are part of the LHS (and which are checked in the pattern matcher).
They differ from the runtime preconditions (RuntimePrecond), which are prefixed by R.

Together with the rules in Figure 7, the rule that achieves the rewrite in Figure 2 (named
ApplyOnlyMath), RemoveAxis1 (which we discuss below) and the VectorizedConditionals rule
(which we discuss as a case study in Section 6.5), they make up all the rules used in D1as. We note
that we leave for future work the formal description of the latter three rules.

RemoveAxis1. We will briefly discuss one more rule, called RemoveAxis1, whose RuntimePre-
cond and TransformLHS components are significantly more complicated. An example of applying
this rule is shown in Figure 9. This rule targets cases where apply () is applied to a whole DataFrame.
It checks whether the function passed to apply () touches only a single column and if so, it rewrites
the code so that the function is applied only to this column.

We show the LHS in Figure 10. The RuntimePrecond component, which we do not include
here for clarity purposes, is a whole algorithm which basically checks that only a single column
of the DataFrame is accessed. The TransformLHS component replaces all Subscript’s inside
@{func} with just their object and it removes the axis argument.

4 DIAS REWRITE SYSTEM

Dias consists of two main parts: a syntactic pattern matcher and a rewriter that rewrites the code
matched against patterns. We now describe how the two parts were designed in detail.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

58:10

Stefanos Baziotis, Daniel Kang, and Charith Mendis

LHS

TransformLHS

RuntimePrecond

SplitInPython
@{Name: df}[[@{Const(str): a}, @{Const(str): b}1] =
@{expr: ser}.str.split(
@{Const(str): sep}, expand=True)

a, b=1[1, [1
for it in @{ser}.tolist():

spl = it.split(e{sep})

a.append(spl[0])

y = spl[1] if len(spl) > 1 \

else None

b.append(y)
@{df}[e{a}] = pandas.Series(a, @{ser}.index)
@{df}[e{b}] = pandas.Series(b, @{ser}.index)

N: type(@{ser}) == pandas.Series

InplaceUpdate
@{Name: df1}[e{Const(str): c1}] = \
@{Name: df2}[e{Const(str): c2}]
.@{Name: f}(e{expr: arg})

e{df1}[e{c1}].e{f}(e{arg}, inplace=True)

N: type(@{df1}) == pandas.DataFrame
&: e{df1} == e{df2}

S: efc1} == e{c2}

&: e{f.id} in {"fillna", "replace",
"rename", "dropna", "sort_values",
"drop_duplicates", "sort_index"}

SubstrSearchApply
@{expr: ser}.apply(lambda @{Name: pari}:
e{Const(str): needle}
in @{Name: par2})

res = @{ser}.tolist()
res = [(@{needle} in s) for s in res]
pandas.Series(res, @{ser}.index)

N: type(e{ser}) == pandas.Series
&: e{par1} == e{par2}

ListConcatToSeries
pd.Series(@{expr: el}.tolist() + @{expr: e2}.tolist())

pd.concat([e{el}, e{e2}],
ignore_index=True)

: pd == pandas
: type(@{el1}) == pandas.Series
: type(@{e2}) == pandas.Series

333

ReplaceRemovelist
@{expr: e}.replace([€{Const(str): x1}],
@{Const(str): x2})

@{e}.replace(e{Const(str): x1},
@{Const(str): x2})

N: type(e{e}) == pandas.DataFrame

InToString @{e}.astype(str).str.contains(x).any() N: type(e{e}) == pandas.Series
e{Const(str): x} in @{expr: e}.to_string() N: @{e}.index.dtype == np.int64
N: no_whitespace(@{x})
FuselIsIn e@{o1}[e{x1}].isin(e{s1}+e{s2}) 9 type(e{o1}) == pandas.DataFrame
(@{Name: o1}[@{Const(str): x1}].isin(@{Name: s1})) | \ S: e{o1} == e{02}
(@{Name: o2}[e{Const(str): x2}].isin(@{Name: s2})) S: e{x1} == e{x2}

FuseApply
@{expr: e}.apply(@{expr: f1}).apply(@{expr: f2})

def fused_apply(e, f1, f2)

res = []

for it in e.tolist():
x = f1(it)
y = f2(x)

res.append(y)
return pd.Series(res, e.index)
fused_apply(e{e}, e{f1}, e{f2})

N: type(@{e}) == pandas.Series

res.append(s)
uniq.add(s)

@{o1}[e{x1}] = pandas.Series(res,
@{o1}[e{x1}].index)

np.array(uniq, dtype=@{o1}[@{x1}].dtype)

FuseStrSplit def fused_str_split(df, col, sep) N: type(e{o1}) == pandas.DataFrame
@{Name: o1}[@{Const(str): x1}] = \ res = [] ©: e{o1} == e{o2} == @{03} == {04}
@{Name: o2}[@{Const(str): x2}1.\ for it in dffcol].tolist(): S: e{x1} == e{x2} == e{x3} == e{x4}
str.split(@{Const(str): sep}) spl = it.split(sep)
@{Name: o03}[@{Const(str): x3}1 = \ x = spl[1] if len(spl) > 1 else None
@{Name: o4}[@{Const(str): x4}1.str[1] res.append(x)
return pd.Series(res, df[col].index)
@{o1}[@{x1}] = fused_str_split(@{ol}, @{x1})
FuseReplaceUnique uniqg, res = set(), [] N: type(e{o1}) == pandas.DataFrame
@{Name: o1}[@{Const(str): x1}]1 =\ for s in @{e}.tolist(): N: type(e{d}) == dict
@{Name: o2}[@{Const(str): x2}] .replace(@{Name: d}) try: S: e{o1} == e{o2} == e{o3}
@{Name: o03}[@{Const(str): x3}].unique() s = d[s] S: e{x1} == e{x2} == e{x3}
except:
pass

Table 1. Examples of Rewrite Rules. If any of the LHS’s is matched, it can be replaced with the corresponding
RHS, provided that the preconditions hold. The symbol & denotes syntactic preconditions while R denotes
runtime ones. The name of the rule appears as a comment in the LHS column.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

Dias: Dynamic Rewriting of Pandas Code 58:11

test(mod_x(), foo().read_x().sort_values().head())

Fig. 11. A nested expression with global state access.

def sort_head(tmp):
return tmp.nsmallest() if type(tmp) == pd.Series
else tmp.sort_values().head()

test(mod_x(), sort_head(foo.read_x()))

Fig. 12. A correct dynamic check with a local binding.

4.1 DiAs Pattern Matcher

The pattern matcher is responsible for matching a sequence of statements with the LHS part of
any rewrite rule. Whether any LHS (represented as an AST) matches any part of the source AST, is
essentially a sub-tree search problem. The pattern matcher performs a greedy search and it returns
the first LHS it matches.

To minimize matching overhead, we designed the pattern matcher to be hierarchical, by factoring
patterns based on their commonalities. The common parts are matched first before hierarchically
matching more specific components of a rule. This eliminates repeatedly matching components
that are common to multiple rules.

Lastly, the pattern matcher needs to be able to match patterns that span multiple statements.
Having a function that matches single-statement patterns by performing a greedy search, there is
another function that matches multiple statements. The latter function operates on a higher level,
viewing multi-statement patterns as sets of smaller ones. So, for a 2-statement pattern, if it matches
the first part, it then checks the next statement for the second part.

4.2 DiAs Rewriter

When a piece of code is successfully matched with a rewrite rule’s LHS, if there are no runtime pre-
conditions (i.e., RuntimePrecond just returns True), then the rewriter can invoke TransformLHS
on the LHS, and replace the LHS with the result.

For example, consider the rule in Figure 7. @ called_on} needs to be evaluated first, let us name
the resulting object res, then execution needs to stop, check the precondition on res, and then
continue (i.e., evaluating either res.sort_values().head() or res.nsmallest(), depending on
the precondition result).

This is more difficult than it looks because we do not have arbitrary control over the evaluation
of the code, since we are operating at the source level. So, we need to effectively do the same thing
but using source-level transformations. This is difficult because we are not allowed to evaluate
@{called_on} twice. The obvious solution is to just evaluate it once and reuse it.

However, this requires careful orchestration. Consider for example the code in Figure 11.
The evaluation-and-reuse should happen exactly where the original sub-expression (involving
sort_values()) appears. Otherwise (e.g., if we save it in a variable by adding a statement above),
it is possible that read_x() will read a stale value.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

58:12 Stefanos Baziotis, Daniel Kang, and Charith Mendis

To solve that in general, we need a local binding of the evaluation of @ called_on} 2. However,
Python does not have local bindings, so the workaround is to create a function and call it at the place
of the original expression, as in Figure 12. The local binding here is the binding to the function’s
parameter.

Dynamic RHS. Observe that in the solution we just mentioned, to create the function sort_head(),
we need to know the RHS a-priori. This is true when TransformLHS does not depend on dynamic
information and thus we can “run” it offline. This is the case for the rule in Figure 7. However,
this is not the case for the RemoveAxis1 rule, because it depends on the body of @{func}, which
is not known offline. To implement such rules, all of which involve apply () and which face the
same problem, we just overwrite apply (). In the overwritten body, we invoke RuntimePrecond,
which depends on the body of @{func}, which is however available because it is passed as an
argument. If the preconditions pass, we rewrite the body on the fly and invoke it appropriately.
For example, in the case of RemoveAxis1, we rewrite the body as described earlier and we call
self[theOneSeries].apply(new_body). Note that self is the evaluated @{expr?}. We never see
this @{expr}, but we know this fact because self is bound to the object on which (the overwritten)
apply () gets called.

5 IMPLEMENTATION
5.1 IPython Integration

To work automatically, Dias currently depends on IPython [50], which is an enhanced Python
interpreter. This implies that a current limitation of our implementation is that D1As is not automatic
in standard Python. In practice, this is not a problem because the dominant platform for the
notebooks we target is the IPython notebook (usually accessed through Jupyter [34]), which requires
IPython. However, D1As can still be used as a library even with a standard Python interpreter. In
the rest of this section, we will assume that D1as is running on top of IPython.

An IPython notebook consists of a collection of code snippets called cells. Each cell can be
executed individually, which is commonly done in interactive EDA workloads. The goal of our
implementation to invoke D1as automatically before a cell is executed, and rewrite it automatically,
on the fly. A key feature of IPython that allows us to do that is the input transformer [18]. This
allows us to register a function that runs before a cell gets executed. That function gets the cell
content as a string and returns a new string which becomes the new cell. Our input transformer
just inserts a call to D1as’ main routine, with the original cell passed as an argument. D1as then
potentially rewrites and finally executes the cell. This is all automatic; the user just needs to import
Dias.

Dias’ main routine gets the cell code as a string, which it first parses as an AST. For that, we use
the Python ast library [2], which parses Python code. This implies a limitation because cells can
contain invalid Python syntax (but valid for IPython, e.g., magic functions), which this library will
not handle. This did not cause serious problems in practice but we hope to fix it in the future.

An important detail is that D1As runs on the same IPython instance as the notebook, having
access to the same namespace as the underlying cells. This is necessary because Dias needs to
inspect dynamic information like names, types, function objects, etc.

5.2 Crossing Library Boundaries

It might seem that we could achieve the same optimizations simply by modifying the pandas
library. In fact, for some rules, the implementation is effectively a replacement of pandas routines

%In the style of a let expression in OCaml.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

Dias: Dynamic Rewriting of Pandas Code 58:13

with our own. For example, RemoveAxis1 is implemented by overriding pandas’s apply (). This
way, we get both the @{func} and the @{called_on} components easily, without needing to do
source-level transformations (like the ones we described in Section 4.2). The former is accessed
through the self implicit argument, and the latter through the func argument to apply().

However, this approach does not suit all cases. First, in some cases, it is simply easier to operate as
an external rewriter. For example, the rule in Figure 7 can be applied if sort_values() is followed
by head(). If we overwrite sort_values(), we cannot know what happens with its result. If we
overwrite head (), we cannot know how the object it is applied to came to be. There are ways to
work around these limitations and one popular one is lazy execution, which has been employed for
similar purposes [53] (Modin also employs it).

In summary, in lazy execution, we do not execute the code but rather we log which functions
have been called. After a call chain is evaluated, the result is a computation graph that captures
the whole computation. We can evaluate it in the trivial way (e.g., actually calling the functions in
sequence), or in an optimized way (e.g., by calling nsmallest).

The problem, however, is that this requires a lot of bookkeeping to know when exactly to evaluate
the computation graph, to hide from the user the fact that the functions do not return the type the
user expects them to return, to build this computation graph, etc. In other words, lazy execution is
a hack around the fact that we do not see all the computation and we are just trying to reconstruct
it from inside a library. With an external rewriter, this is trivially solved because we just view all
the code. So, we just apply well-known code transformation techniques.

But the most important benefit of an external rewriter is that it can effortlessly rewrite across
representations. For example, it would be nearly impossible to support the rewrite shown in Figure 3
with lazy execution by keeping the API intact because tolist() is supposed to actually return
a Python list, thereby moving us away from the library’s control. So, the lists will unavoidably
get concatenated in pure Python. But an external rewriter just views the code and it can trivially
perform the rewrite.

6 EVALUATION
6.1 Experimental Setup

All the experiments, except if mentioned otherwise, were performed on a system with a 12-core
AMD Ryzen 5900X, 32GB of main memory, Samsung 980 PRO NVMe SSD and Ubuntu 22.04.1 LTS.

Benchmark. Our goal was to evaluate Dias on real workloads and so we picked notebooks
from Kaggle. We chose Kaggle as it is a popular repository for data science workloads and it also
contains both the data and notebooks used. The overarching hypothesis that we want to validate is
that a rewrite system like Dias can offer substantial speedups on real-world notebooks, through
rewriting, with minimal slowdowns, minimal memory consumption and disk usage, and without
changing the APL

In this work, we focus on ad-hoc EDA, pandas-heavy workloads. In order to find such notebooks,
we chose notebooks randomly from Kaggle subject to the following conditions:

e At least 50% of static function calls are pandas calls
o Using datasets of size approximately 2GB or less

We chose the first criterion because we focus on EDA notebooks. In particular, many of the
notebooks we excluded focused on machine learning and plotting, which are out of scope for this
work. In the notebooks we picked, we disabled such code for our evaluation.

Our second criterion was to filter out notebooks that were already hand-optimized. These note-
books typically operated on large datasets. Optimization is necessary in this setting as Kaggle has

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

58:14 Stefanos Baziotis, Daniel Kang, and Charith Mendis

edu
N
o
o

9100

Relative Sp
N U
o o
I I
I I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
P
=
W
I
e

Fig. 13. Cell-level relative speedups (excluding cells that originally ran for less than 50ms and also all the
cells that got a speedup or slowdown within the 0.1x range). Again, DiAs provides significant speedups by up
to 57X. There are also slowdowns, which are not substantial (see Figure 15).

resource constraints (both computational and memory). However, hand-optimization requires sig-
nificant effort. D1As is an automatic and transparent system and we want to evaluate its effectiveness
without users having to expend that effort.

For the datasets that were significantly lower than 2GB, we replicated them so that they reach
at least several hundred MBs (otherwise our measurements would be dominated by noise). Also,
we modified any notebook that used a sample/subset of the dataset to instead operate on the full
dataset.

We sampled 20 notebooks satisfying our criteria. There are rewrite opportunities in 10 of these
20 notebooks, which we coded in Dias. We focus on these 10 notebooks in our evaluation. We
further executed Dias on the remainder of the notebooks where no patterns were matched to study
Dias’ overhead. We describe further experiments that include all 20 notebooks in an extended
version of this manuscript . We compare Dias with pandas (version 1.5.1) and modin [36] (version
0.17.0).

6.2 End-to-End vs Pandas

We first investigated whether Dias can accelerate cells and notebooks compared to standard pandas.
To do so, we ran each sampled notebook with and without D1as. We ran 10 trials each and measured
execution time at the cell level. Our primary metric was the speedup of cells and notebooks with
Dias compared to standard pandas. We report the geometric mean of the speedups.

Per-Notebook Speedups. We show per-notebook relative speedups in Figure 14. As shown,
Dias can provide substantial speedups at the notebook level of up to 3.6X. Overall, Dias provides
significant speedups in half of the notebooks (five) and moderate speedups in one other notebook.
We emphasize that these notebooks were selected randomly from Kaggle, showing the applicability
of Dias.

Furthermore, Dias does not significantly slow down any notebook, with a maximum slowdown
1.03X%. D1as rewrites cells in these notebooks but it does not achieve speedups.

Per-Cell Speedups. We show per-cell speedups in Figure 13. For clarity, we excluded cells that
run for fewer than 50ms in the original version and excluded all speedups and slowdowns when
run with Di1as within 0.1x the original cell runtime.

As shown, D1as can achieve per-cell speedups of up to 57x. The cell with the highest speedup
is matched by the pattern shown in Figure 2. The second largest speedup is due to the pattern
Vectorized Conditionals, which is discussed in Section 6.5. The majority of cells we consider
are improved by Dias. The maximum slowdown in an individual cell is 1.56X. In general, the cells

3Not cited to preserve anonymity

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

Dias: Dynamic Rewriting of Pandas Code 58:15

3.5

N
n

w
o

Relative Speedup
[N
.L{'I o

=
o

©c ©
o wu

N *
s & & @ 2 & 0§ 2§ g
£ 5 o 3 g S g ' Q S
S 1% < 0 9 v 3 = & <
& o ! T Q N S o I S
IS G < ke S 7] Py < N
v 5 ; & I g ksd Q
g 3 @ X 5 e 9 = S 5
N IS <9 N +3 S < %] Py g
S 5 5 & g N g © q
S & 2 < > 4 S 5 9
& N > o S 9
Iy) © =
5 g @
Notebooks

Fig. 14. Relative speedups on whole notebooks. Dias speeds up notebooks by up to 3.6x while not slowing
down any notebook by more than 1.03x.

that have the highest slowdown are fast cells, i.e., those already within interactive latencies, both
before and after rewriting.

Overhead of Dias. We further investigated the cause of slowdowns. We first measured the
overhead of deploying Dias (on all 20 notebooks). We find that D1as never has an overhead of more
than 22 ms with a geometric mean overhead of 0.41ms.

1.0

115ms 6ms

o
©

322ms

42ms -

Relative Speedup
=] =}
~ ©

264ms 40ms

L m N

EE
EEE

o
o

Cells

Fig. 15. The subset of cells from Figure 13 that got slowed down. Above the bars, we show the absolute
slowdown. The slowdowns are within interactive latencies (i.e., less than 300ms), with the maximum overhead

of DiAs being 23ms.

However, in addition to the overhead from deploying Dias, Dias may also cause downstream
effects. We find that in some cases, cells that are not modified by D1as can experience degradations
in performance. The highest magnitude of those appear only in notebooks where D1as rewrites
cells. Because of this, and because some of these slowdowns are much larger than any overhead
that Di1as can cause, we hypothesize that rewriting is not the cause of the slowdown. Rather, it
seems that the rewritten version of a cell, while faster than the original version of this same cell,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

58:16 Stefanos Baziotis, Daniel Kang, and Charith Mendis

causes a slowdown in another cell of the same notebook. Nonetheless, these slowdowns are not
substantial. In Figure 15 we show only the cells from Figure 13 that get slowdowns along with the
absolute slowdown. That figure shows that even when the relative slowdown is large, the absolute
slowdown is below interactive latency times (i.e., below 300ms).

3.5

a m Dias B
330 Modin-4 | |
825 oain- =
85, ™= Modin-8 | | [|
(V)] . .
B Modin-12
hee] n W
3
I B — 1
g] | |
x 0.5 ! | B - ! | | | | | B -
00 5 & 5 g & § g & 5 B
K & § : 3 g $ g £ §
I S Y A Y A I A
@ & Sy & 3 g
5 g i & é £ g §
& 3 & 7 5 § § & g
2 4 &
Notebooks

Fig. 16. Comparing Dias with modin [36]. DiAs is faster for 9 out of 10 notebooks (Up to 27.1x faster with
4.9% geometric mean). modin is, in many cases significantly, slower than the original for these 9 notebooks.
For the one notebook where Dias is slower, it is no more slower than 1.03x compared to the original.

6.3 Comparison with Modin

We compare Dias with modin [36] (using Ray as the underlying engine which is the default). We
chose modin because it enjoys wide adoption and is supposed to be a drop-in replacement for
pandas.

We focus on deploying modin on a single server as this is the setting we focus on in this work.
Unfortunately, we find that deploying modin in this setting is difficult for two reasons: excess
memory utilization and lack of support for the full pandas APL

For the notebooks we consider, modin consumes substantially more memory resources than
standard pandas. Even when using a powerful AWS server, the AWS c5.24x1large with 96 vCPUs
and 192 GB of RAM, modin was unable to execute five of the ten notebooks we consider. As a result,
we modify the default modin settings to execute on 4 to 12 cores depending on the notebook and
we also had to reduce the dataset replication on 3 of the 10 notebooks. With these modifications,
we are able to run the notebooks with modin, using our original setup.

We further find that modin does not support 100% of the pandas API. As a result, we could not
run two of the ten notebooks. We changed the impeding snippets to ones that are functionally
close. Given our new setup, we compared modin, Dias, and vanilla pandas.

As shown in Figure 16 *, modin slows down 9 of the 10 total notebooks we consider compared to
vanilla pandas. It speeds up one notebook which is dominated by a call to apply (), which modin
is able to parallelize. As witnessed in this notebook, one advantage of modin is that it can scale
with the availability of more hardware resources in cases where it can parallelize. D1as does not
enjoy such scaling benefits. However, we find that modin cannot parallelize the majority of the
notebooks we consider diminishing any scaling benefits. Overall, DiAs is up to 27.1X faster than
modin (4.9%X geometric mean) for whole notebooks.

4D1as’ results in Figure 16 look slightly different from those in Figure 14, even though the same notebooks are used. This is
because of the changes we had to perform on some of the notebooks (i.e., less replication and API changes) to run them
with modin.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

Dias: Dynamic Rewriting of Pandas Code 58:17

o
Q
=
Q
o
©
3 Emm Pandas
~ Modin-4
0 B Dias
[a)]
+
>
c
o
IS
(]
=
N
& y o5 & 5 5 & § §
o S} [> = [Q IS
< N 9 & 9 = el <& S
EN 3 N 5 o ° IS &
L @ S G g & °©) N
g 3 3 g kS
& § T 3 2 & g 3 g
s 7 7§ £ & ¢ F 5 8
@ o) < S S I
g §'\’, & ES 3 5 £
&
o
X o

Notebooks

Fig. 17. RAM and disk usage comparison in modin, Dias and pandas. DiAs and pandas do not use the disk and
they use almost the same amount of RAM in all cases. modin uses the RAM and disk aggressively, surpassing
the 80GB threshold for a notebook where pandas/DiAs use less than 5GB.

Note that if we include all 20 notebooks in our evaluation, modin slows down all 10 new notebooks
(19/20 — 95%). Also, for individual cells, D1as reaches speedups up to 1909x compared to modin.

We further show that modin uses memory resources (RAM and disk) aggressively, with results
in Figure 17 3. When deploying modin exclusively across multiple servers, it is generally acceptable
to use all the available hardware resources. However, many of the users of ad-hoc EDA workloads
have limited hardware resources, further highlighting the deployment issues with modin. In fact, if
we run modin across all 20 notebooks, it consumes up to 250GB when pandas and D1As consume
less than 5GB. Note that D1as, (like pandas), makes no use of the disk.

6.4 An Estimate of DiAs’ Hit Rate

In this section we take a closer look at the hit rate of Dias. In particular, we wish to answer the
question: How frequently does Di1as rewrite a cell?

For our analysis, we utilized a subset of KGTorrent [37], a dataset of Jupyter notebooks harvested
from Kaggle. This dataset contains notebooks that are outside the scope of our work, like notebooks
which do not use pandas at all. After filtering such notebooks out, we extracted a total of 8,853
notebooks and 177,272 cells. We cannot run these notebooks because: (a) we found no reliable way
to automatically download a notebook’s datasets and (b) even with a dataset, many notebooks still
don’t run without manual modification. Therefore, we perform a static analysis. In particular, we
run the pattern matcher over the notebooks and when it matches a rule, we consider it a "hit". D1as’
hit rate is 3.2% (5,586 cells) across cells and 27.1% (2,395 notebooks) across notebooks.

In our evaluation, we used 20 notebooks with 652 cells. D1As rewrites in 2% of all cells (5% if we
discard cells that run for less than 50ms) and 50% of notebooks. Because 652 cells is a large sample,
and because it agrees with the static analysis, we contend that D1as’s hit rate is close to 2-3%.

This result is significant considering that D1as currently uses only 12 rules, which is a small
set of rules for an automatic rewriter. Production rewriters have hundreds of rules. For example,
TensorFlow r1.14 includes 155 rewrite rules [20] (which are also simpler), developed over a long
period of time by many engineers and totalling around 53 thousand lines of code. We emphasize

5The only way we found to measure modin’s memory consumption somewhat reliably was using ray memory, which
however was still unreliable and very slow to query. We could not obtain memory measurements for 1 notebook.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

58:18 Stefanos Baziotis, Daniel Kang, and Charith Mendis

def foo(row):
if row['A'] == row['B'] and row['A'] < row['C']:

return 'X'
elif row['A'].startswith('Y'):
return 'Y'
elif row['B'] in ls:
return 'Z'
else:
return 'NA'

df.apply(foo, axis=1)

(a) Original pandas apply (). It processes each row sequentially, using the interpreter.

conditions = [
(dff'A'] == df['B']) & (df['A'] < df['C'D),
df['A"'].str.startswith('Y"),
df['B'].isin(1ls)

]

choices = [
X',y 7

]

np.select(conditions, choices, default='NA")
(b) Vectorized execution using numpy . select()

Fig. 18. VectorizedConditionals: Vectorized apply () with conditions, which can be hundreds of times faster
[7]. However, performing this rewrite automatically is challenging.

that the novelty of Dias is in the system, not the specific rules we happen to use at this snapshot.
With Dias, we wish to encourage such a development of rules for ad-hoc EDA workloads.

6.5 Understanding DiAs’ Performance

To understand the performance gains of Dias, we discuss two case studies in detail.

Vectorized Conditionals. We further study two case studies, starting with a rule named
VectorizedConditionals.

We show an example of rewriting a pandas apply() function with numpy’s np.select() in
Figure 18 [7]. Both versions output a certain value per row based on some conditions. The second
one gives many-fold speedups, 36X in our evaluation and up to 380X in other situations [7], mainly
due to the use of vectorized execution.

To do this rewrite, Dias checks that the function foo contains only an if-else chain and the
conditions are such that we can translate them to equivalent that apply to whole columns (for
example, we cannot translate if bar() in some random function bar). Also, the return values
should be such that can be converted to numpy arrays. The constant ’X’ is such a value but if it
were bar(row[’A’]), we would not, in general, be able to translate it.

Verifying these conditions is not the only tricky part; producing the rewritten version can be
challenging too. For example, the original uses Python’s logical-AND (i.e., and) to compare elements,
but we need to use Python’s bitwise-AND (i.e., & when translating to pandas and the parentheses
around the two sides are required. Similarly, a condition like a in 1s needs to be translated to a

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

Dias: Dynamic Rewriting of Pandas Code 58:19

arr = df['C'].values
n = len(arr)
res = np.empty(n, dtype=arr.dtype)
for i in range(n):
spl = arr[i].split(',', maxsplit=1)
res[i] = spl

df_temp = pd.DataFrame(res, columns=['a', 'b'])
a=res['a']
b =res['b']

Fig. 19. Series.str.split() implementation (Simplified)

call to the pandas isin() function. These are subtleties of rewriting that can be easily missed if
we carry it out manually. Besides leading to bugs, they require extensive knowledge of pandas.

As explained in Section 4.2, these checks, and the rewriting, cannot be performed a priori because
the code of foo might not be available yet at the start of the cell. Thus, the rewriter employs
on-demand dynamic checking.

Finally, if the user changes foo such that it does not abide to the above conditions, the rewriter
cannot perform the rewrite. At the same time, however, the original code remains intact. Thus, the
code will never be slower than the original. Moreover, had the user performed the rewrite by hand,
they would have to convert it back to the apply() version, an effort disappears with the rewriter.

Translating to Pure Python. We present a case study of a non-intuitive result: translating an
“optimized” pandas call to pure Python, as shown in Figure 4 (In D1as, this is covered by the rule
SplitInPython; see Table 1). In general, users expect pandas to be more efficient than pure Python
since pandas uses vectorized, native code, while also avoiding the interpreter, when possible.

However, .str.split() is a string operation and these cannot in general be vectorized by numpy.
So, a call to .str.split() reaches a standard Python loop to carry out the operation [30].

We would then expect the pandas version to be in par with our version. We have to look more
closely to understand the discrepancy. In Figure 19, we show a simplified version of . str.split()’s
implementation. Specifically, the important thing is that in the loop, we gather a collection of
(2-element) lists in res (res is a numpy array but it could be any container without much difference
in performance; e.g., it could be a list. The important thing is what it stores.). Then, we create
our two results, our two Series (via creating a DataFrame, but the particular way of doing it is
irrelevant). In particular, we split these lists “vertically” and in half so that all the first elements of
the lists create the Series a and all the second elements create the Series b.

One should contrast this with our rewritten version. There, we create only two lists (a and b). At
every iteration of the loop, we create one list, the result of split(), append the individual elements
to a and b and then throw it away. Notice that in the pandas version, the result of split has to be
saved. So, while on the surface, the two loops allocate the same number of lists, in our version, the
same space can be reused for every iteration.

Finally, we convert a and b (both lists of strings) to Series. Under the hood, a list of strings
is a contiguous block of memory in which every element is a pointer to the string. A Series of
strings is also a contiguous block of memory in which every element is a pointer to a string. So,
the conversion from the one to the other is cheap. However, in the pandas version, the elements
are stored together in lists “horizontally”, but we want to store them together “vertically” (if we
imagine a matrix where every row is a list coming from split), which is expensive.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

58:20 Stefanos Baziotis, Daniel Kang, and Charith Mendis

df['pickup_longitude'] + df['pickup_latitude']

(a) Example of a column-wise operation: Add Two Series Element-Wise

np.where(pandas_df['A'] < pandas_df['B'], 10, 20)
(b) Example of interacting with numpy: Vectorized conditional

Fig. 20. Examples of operations performed with the pandas alternatives. These are pretty fast with pandas.

In this example, the rewriter enables us to optimize a library without changing the library. As we
have explained earlier, the rewriter can cross library boundaries and thus it can optimize across
Python, pandas and numpy, without the need to provide custom versions of these libraries.

6.6 Comparing Various Dataframe Libraries

To further understand how modin and other dataframe libraries perform on ad-hoc EDA workloads,
we perform a series of targeted experiments using common patterns we have found in such
workloads. In addition to studying modin, we also study three other common dataframe libraries:
dask [31] (version 2022.12.1), Koalas [35] (version 0.32.0), and PolaRS [13] (version 0.7). dask is
another widely adopted parallel dataframe library with a slightly different API from that of pandas.
Koalas implements the pandas API over PySpark [10]. PolaRS [13] is a pandas replacement (using
Rust under the hood), which, however, has a different APL

Setup and Dataset. We use a c5.24x1large AWS instance with 96 vCPUs and 192 GiB of RAM.
We use 12 vCPUs for modin, dask, Koalas and PolaRS. The dataset used is the NYC Yellow Taxi
Dataset 2015 - January [45] (except for one case mentioned below) with a size of around 1.8GB.
We picked this dataset because (a) it is large (the subset we use is the largest we could run the
experiments with, using the libraries mentioned, on this machine) and these libraries specialize in
large datasets and (b) it has been used in previous work [36] and in multiple notebooks throughout
the Internet [17].

Operations. We tested several common patterns found in pandas workloads, and which are
expected to be pretty fast with pandas °. In particular, we tested column-wise operations, interacting
with numpy, and an iterative access of individual elements. Figure 20 gives examples of the former
two. Figure 1 gives an example of the latter.

Results and Discussion. A subset of our results (for a single example of each category) is
shown in Table 2. As is evident, bulk-parallel dataframe libraries like modin, dask and Koalas, are
not well suited for ad-hoc EDA workloads. We should note, however, that we observed that PolaRS
was significantly more judicious with the resources compared to the other three (especially for
memory), and its slowdowns are much smaller. However, it can still cause considerable slowdowns
(e.g., with the iterative element access) and has a considerably different APL For example, the
pandas snippet df[’A’] = 1 is translated to

df = df.with_column(pl.lit(1).alias('A"))
in PolaRS. As a result, it requires learning new syntax.

For example, pandas columns are stored as numpy arrays and many pandas operations use numpy. So, we expect interacting
with numpy to be quite efficient.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

Dias: Dynamic Rewriting of Pandas Code 58:21

e
T

|§®!i!|iil|.

i < “\ I]
Ilil pandqs MODIN ' daSk Ko:las I"PICI:TG.RIISI
Column
Operations 1x 55.1x 136.8x 9.4x 7.6x
Interaction OOM
with numpy 1x 18.3x 179.8x Failure 1.4x
Individual API
accesses Ix 1914x Incompat. 155x 20.8x

Table 2. Slowdown when running common pandas operations with pandas alternatives. OOM Failure is
out-of-memory failure and APl incompatibility means that an APl we used is not supported. As the results
show, the current alternatives are not suited to ad-hoc, EDA workloads, both in terms of efficiency and
usability.

7 RELATED WORK

Optimizing Pandas. Most previous work on optimizing dataframe libraries focuses on optimiz-
ing pandas, mainly through the use of parallel and distributed execution. Systems like modin [36],
dask [31], Koalas [35], PolaRS [13], Ponder [4], PolyFrame [43] and Magpie [21] are all essentially
custom versions of pandas (some are full rewrites, while others implement the pandas API over
some underlying system). Similarly, even techniques like BELE [53], whose optimization targets
the pandas-Python interface, are limited within the library’s boundaries, which weakens the view
and control of the surrounding code. In contrast to all these techniques, D1as is the first system
to use dynamic rewriting at the pandas-Python interface, and it does so externally, which lets it
views all user’s code compared to just library code and can modify any part of it. This is the main
conceptual difference, but there are also other practical drawbacks as we outlined earlier, mainly
arising from the fact that these systems do not focus on single-machine, ad-hoc, diverse use cases.

There is also previous work on optimizing pandas code using static analysis [42], which also
utilizes library-specific knowledge. D1as is different in that it is a dynamic rewriter. Theoretically,
the same rules we use could be applied with static analysis, but static analysis in Python is quite
inaccurate and it does not fit the read-eval-print-loop (REPL) workflow of EDA workloads.

Pandas for Interactive Settings. A slightly different and interesting line of work focuses on
optimizing dataframe queries for interactive workloads [24, 52]. Some of their optimizations include
displaying partial results, reordering operations and performing computation during think-time,
i.e., when the user is inspecting results. We also recognize the importance of interactive workloads,
which include the EDA, single-machine, ad-hoc workloads we focus on in this paper, but we are
taking a different path in optimizing them. We use rewriting at the interface boundary, which is
fundamentally different from the techniques used in this previous work.

Rewrite systems in compilers. Program rewriting is prevalent in compilers. Production-level
compilers use peephole optimizers to perform local rewrites. LLVM [22] uses InstCombine [26] and
VectorCombine [27] to perform IR rewrites on scalars and vectors respectively. Further, there have
been many works such as Alive [28], Alive2 [29], Souper [41] that try to prove or automatically find
such rewrites inside traditional compilers. TASO [20] and PET [49] have looked into how rewrites

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

58:22 Stefanos Baziotis, Daniel Kang, and Charith Mendis

can be used to optimize tensor computations in tensor compilers. Domain specific languages such
as Halide [38] include extensive rewrite engines to perform optimizations [33]. Even complicated
optimization passes such as dataflow optimizations [25] and vectorization [8] can be expressed
as a series of rewrites. In fact, the compiler infrastructure MLIR [23] is rooted on the premise of
rewriting to express complex IR transformations. Dias takes inspiration from these systems that
mainly perform static program rewrites and performs rewrites for pandas implemented in the

dynamically-typed Python language.
Dynamic Optimization. There has been a large body of work that optimizes programs at
runtime. Just-in-time (JIT) compilation is one common technique applied to interpreted languages
like Javascript (TraceMonkey [14], V8 [12]) and recently Python [19], but also non-native languages
like Java (HotSpot [15]). However, all these methods optimize the host language, focusing on
low-level optimizations and not the host-library combination. On the other hand, our technique
can perform higher-level (and higher-impact) improvements because it understands the semantics

of both the host language and the library.

8 CONCLUSION
In this paper, we identified program rewriting as a lightweight technique for optimizing ad-hoc,

single-machine EDA workloads. We implemented D1as, the first source-to-source, dynamic rewriter
for Python, system which rewrites pandas code automatically and transparently, while simultane-

ously addressing the requirements and constraints of condition-checking.
We experimentally showed that Dias was able to achieve significant speedups (up to 57 for

individual cells and 3.5X for whole notebooks), both compared to pandas and modin, in real-
world, randomly sampled notebooks. At the same time, D1as incurs minimal runtime and memory

overheads whether it succeeds or not.
ACKNOWLEDGMENTS

We would like to thank Marc Canby, Stratos Vamvourellis, Edward Gan and the anonymous
reviewers for insightful comments and suggestions. This work was supported by the AWS Cloud

Credit for Research and the Open Philanthropy project.

A EXTENDED RESULTS

3.5
CL3 0 I Dias
S 3. R
Tos n Modin-4
&% [| m Modin-8
wm <. .
o | = Modin-12
> 1.5 I
=]
ottt II F T T 00 mi.T 1
[}
DCO.SI I .I I I I I I I.I I I I.I Ill-'.l I I
0.0 & o &) > IS) Y IS IS > o 9 IS 9 X] 9 S 9
i & IS S S > s 9 £ S 3 g S 5 T 3 G F ¢
¢ S > 5 (2 : Q < (3 N < < < [X =
& ~ 9 9 g g X2 po < S o < 3 i & 5 & 3 3 g
< & Y = It & A & & T £ =
a S o Q IS S & T Iy & I N < <y & .7 g < > T
3 & X g ¢ g o g £ g $ i g g s 4 K g &
[< k] s b Q ~ x < 9 T o £ P £ 5 @) 4
! T T " & 3 N = N 2 < l Iy & 9
S F £ 4 I3 9 4 S 5 s gz 1 s 4 PO 9 5 g
§ 3 3z < £
g < P 58 s s & 5 PO o 2 § S e 5 B
« S v N S T N g 5 9 3 £ g < 19
& 8§ g g £ s ° 5 5 5
s &% ¢ § <
3
Notebooks

Fig. 21. Corresponding to Figure 16. The conclusions are similar as modin slows down all the ten new

notebooks.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

Dias: Dynamic Rewriting of Pandas Code 58:23

1.0

<
©

I
N

Relative Speedup
o
o]

“ N |
] 42ms 98ms -
= = B B EEN
| R

Cells

o
o

Fig. 22. Corresponding to Figure 15. The conclusions are the same. The slowdowns are within interactive
latencies (i.e., less than 300ms).

" | |

25

I Pandas
207 mmm Modin-4

15
10

B Dias

Memory+Disk Usage (GB)

Notebooks

Fig. 23. Corresponding to Figure 17. When we include all 20 notebooks, we see even more aggressive
memory+disk usage from modin. DiAs and pandas remain on the same scales.

In Section 6 we focused only on ten out of the twenty random notebooks we picked (see
Section 6.1). Here, we include results for all twenty notebooks.

Per-Cell Speedups. Figure 25 shows the cell-level speedups, corresponding to Figure 13. The
plots look almost identical, and this is because Dias does not decelerate notebooks it does not
rewrite. Thus, since this plot includes only slowdowns or speedups that are outside the 0.1X range,
there is hardly any discernible difference. Similar observations are derived from Figure 22, where
the slowdowns are still under interactive latency, i.e., 300ms.

These results further validate our hypothesis in Section 6.2. That is, the slowdowns we observe
are the result of rewriting, independent of who performs it (in this case, D1as).

When we include all twenty notebooks, the geometric mean speedup is 1.18x and the maximum
slowdown is 1.56.

Per-Notebook Speedups. In Figure 24 we show the notebook-level speedups. This figure corre-
sponds to Figure 14. As we mentioned, D1As does not rewrite code in the the ten new notebooks,
so we do not see any additional speedup. However, it remains that the slowdowns, when Dias
does not succeed, are minimal. The geometric mean speedup is now 1.16X while the maximum
slowdown is still 1.03x.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

58:24 Stefanos Baziotis, Daniel Kang, and Charith Mendis

3.51 i
3.01
Q- I
35
T 2.51
(0]
GJ I
&2.01
s 1
2 1.51
©
(0]
o

o ~
n o
[

bl
§ ERBF S 8S5 83 SEE88S585 B
] *~
S S LY 5 R EL T L5 08FE S
§ L0 5 5 9 £ Q45 5P 8 559 X FE B
P SIS S SN R T G 7
¢ 5 38 5 LE2 4 K ENSSREeS S
RS D N < S 3 I8 X 0 @ &
s 8§ Fo P ST LYE Q2 59006 6 F 0oa §
S 9 @ 6 & o L L o
§ £ 38 F P89 22 L5 v LS5 @
g N S @ o« o 9 & I ¥ O 0 g K7
S S 4 S5 N s O Y >
S s 0 = A O] @
P ’Ur‘ﬁ' Q Qbm X
5 5§ ° § <
S
3
Notebooks

Fig. 24. Relative speedups on whole notebooks. We see the same speedups as in Figure 14 with no extra
substantial slowdowns when considering all 20 notebooks.

S
3200

—
o
o

T

ettt SIS
1.0

ol
0.2

Fig. 25. Cell-level relative speedups (excluding cells that originally ran for less than 50ms and also all the cells
that got a speedup or slowdown within the 0.1x range) for all 20 notebooks. Still, Dias provides significant
speedups with no substantial slowdowns (see Figure 22).

Relative Spee

Cells

Comparison with Modin. In Figure 21 7, our conclusions are again unaltered. modin slows
down all the ten new notebooks and it rarely scales with the number of cores. The geometric mean

and maximum speedup remain the same.
In Figure 23® we show the memory consumption when we consider all twenty notebooks. The

results are not significantly different for pandas and D1as. However, modin’s memory consumption
becomes even more aggressive. We see that for one notebook, modin consumes almost 250GB when
pandas and Dias consume less than 5GB.

"which corresponds to Figure 16.
8which corresponds to Figure 17.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

Dias: Dynamic Rewriting of Pandas Code 58:25

REFERENCES

[1] AIEducation. 2022. What course are you going to take? https://www.kaggle.com/code/aieducation/what-course-are-
you-going-to-take/. Accessed: 2022-12-09.

(2]

[3] Python ast module: Constant. 2022. https://docs.python.org/3/library/ast.html#ast.Constant. Accessed: 2022-12-09.
[4] Ponder | Pandas at Scale. 2022. https://ponder.io/. Accessed: 2022-12-09.
(5]

systems. Accessed: 2022-12-09.

[6] Erik Bruin. 2022. NLP on Student Writing: EDA. https://www.kaggle.com/code/erikbruin/nlp-on-student-writing-eda.
Accessed: 2022-12-09.

[7] Nathan Cheever. 2019. 1000x faster data manipulation: vectorizing with Pandas and Numpy. https://www.youtube.
com/watch?v=nxWginnBkIU. Accessed: 2022-12-09.

[8] Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe. 2021. VeGen: A Vectorizer Generator for
SIMD and Beyond. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing Machinery, New York, NY,
USA, 902-914. https://doi.org/10.1145/3445814.3446692

[9] Atanu Dan. 2020. Pandas DataFrame: Performance Optimization. https://medium.com/@atanudan/pandas-dataframe-
performance-optimization-8b87db24c2c4.

[10] PySpark Documentation. 2022. https://spark.apache.org/docs/latest/api/python/. Accessed: 2022-12-09.

[11] Pandas Documentation. 2023. Enhancing performance. https://pandas.pydata.org/docs/user_guide/enhancingperf.
html.

[12] Javascript V8 Engine. 2022. https://v8.dev/. Accessed: 2022-12-09.

[13] PolaRS: Lightning fast DataFrame library for Rust and Python. 2022. https://www.pola.rs/. Accessed: 2022-12-09.

[14] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R. Haghighat, Blake Kaplan,

Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,

Mason Chang, and Michael Franz. 2009. Trace-Based Just-in-Time Type Specialization for Dynamic Languages. In

Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (Dublin,

Ireland) (PLDI ’09). Association for Computing Machinery, New York, NY, USA, 465-478. https://doi.org/10.1145/

1542476.1542528

Christian Haubl and Hanspeter Mssenbdck. 2011. Trace-Based Compilation for the Java HotSpot Virtual Machine. In

Proceedings of the 9th International Conference on Principles and Practice of Programming in Java (Kongens Lyngby,

Denmark) (PPPJ °11). Association for Computing Machinery, New York, NY, USA, 129-138. https://doi.org/10.1145/

2093157.2093176

Sofia Heisler. 2017. No More Sad Pandas Optimizing Pandas Code for Speed and Efficiency, PyCon 2017. https:

/[www.youtube.com/watch?v=HN5d490_KKk.

NYC Taxi Dataset Used in Kaggle Competition. 2017. https://www.kaggle.com/c/nyc-taxi-trip-duration. Accessed:

2022-12-09.

IPython: Custom input transformation. 2022. https://ipython.readthedocs.io/en/stable/config/inputtransforms.html#

string-based-transformations. Accessed: 2023-05-30.

Python Specializing Adaptive Interpreter. 2021. https://peps.python.org/pep-0659/. Accessed: 2022-12-09.

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019. TASO: Optimizing

Deep Learning Computation with Automatic Generation of Graph Substitutions. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing

Machinery, New York, NY, USA, 47-62. https://doi.org/10.1145/3341301.3359630

[21] Alekh Jindal, K Venkatesh Emani, Maureen Daum, Olga Poppe, Brandon Haynes, Anna Pavlenko, Ayushi Gupta,
Karthik Ramachandra, Carlo Curino, Andreas Mueller, et al. 2021. Magpie: Python at Speed and Scale using Cloud
Backends.. In CIDR.

[22] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong program analysis & transformation. In
International Symposium on Code Generation and Optimization, 2004. CGO 2004. 75-86. https://doi.org/10.1109/CGO.
2004.1281665

[23] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Arnaud Pienaar, River Riddle,
Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain
Specific Computation. In CGO 2021.

[24] Doris Jung Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen, Jake Kang, Ujjaini Mukhopadhyay,
Jerry Song, Micah Yong, Marti A. Hearst, and Aditya G. Parameswaran. 2021. Lux: Always-on Visualization Recommen-
dations for Exploratory Data Science. CoRR abs/2105.00121 (2021). arXiv:2105.00121 https://arxiv.org/abs/2105.00121

(15

[

[16

—

(17

—

(18

[t

[19
[20

[t

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

https://www.kaggle.com/code/aieducation/what-course-are-you-going-to-take/
https://www.kaggle.com/code/aieducation/what-course-are-you-going-to-take/
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html#ast.Constant
https://ponder.io/
https://www.kaggle.com/code/rounakbanik/movie-recommender-systems
https://www.kaggle.com/code/rounakbanik/movie-recommender-systems
https://www.kaggle.com/code/erikbruin/nlp-on-student-writing-eda
https://www.youtube.com/watch?v=nxWginnBklU
https://www.youtube.com/watch?v=nxWginnBklU
https://doi.org/10.1145/3445814.3446692
https://medium.com/@atanudan/pandas-dataframe-performance-optimization-8b87db24c2c4
https://medium.com/@atanudan/pandas-dataframe-performance-optimization-8b87db24c2c4
https://spark.apache.org/docs/latest/api/python/
https://pandas.pydata.org/docs/user_guide/enhancingperf.html
https://pandas.pydata.org/docs/user_guide/enhancingperf.html
https://v8.dev/
https://www.pola.rs/
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/2093157.2093176
https://doi.org/10.1145/2093157.2093176
https://www.youtube.com/watch?v=HN5d490_KKk
https://www.youtube.com/watch?v=HN5d490_KKk
https://www.kaggle.com/c/nyc-taxi-trip-duration
https://ipython.readthedocs.io/en/stable/config/inputtransforms.html#string-based-transformations
https://ipython.readthedocs.io/en/stable/config/inputtransforms.html#string-based-transformations
https://peps.python.org/pep-0659/
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://arxiv.org/abs/2105.00121
https://arxiv.org/abs/2105.00121

58:26 Stefanos Baziotis, Daniel Kang, and Charith Mendis

[25]

[26]
[27]
[28

—

[29]

[30]

[31

—

[32]
[33]
[34

[35
[36

—

[37]

[38]

[39]

[40]
[41]

[42]

[43]
[44]
[45]
[46]

[47
[48

=

[49]

John M. Li and Andrew W. Appel. 2021. Deriving Efficient Program Transformations from Rewrite Rules. Proc. ACM
Program. Lang. 5, ICFP, Article 74 (aug 2021), 29 pages. https://doi.org/10.1145/3473579

LLVM. 2022. InstCombine. https://llvm.org/doxygen/InstructionCombining_8cpp_source.html. Accessed: 2022-12-09.
LLVM. 2022. VectorCombine. https://llvm.org/doxygen/VectorCombine_8cpp_source.html. Accessed: 2022-12-09.
Nuno Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015. Provably Correct Peephole Optimizations
with Alive. In PLDI’15, Portland, OR, USA. ACM. https://www.microsoft.com/en-us/research/publication/provably-
correct-peephole-optimizations-alive/

Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: Bounded Translation
Validation for LLVM. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA,
65-79. https://doi.org/10.1145/3453483.3454030

Pandas 1.5.1: _map_infer_mask(). 2022. https://github.com/pandas-dev/pandas/blob/
91111fd99898d9dcaa6bfébedb662db4108da6et/pandas/_libs/lib.pyx#L2863. Accessed: 2022-12-09.

Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and Task Scheduling. In Proceedings of the
14th Python in Science Conference, Kathryn Huff and James Bergstra (Eds.). 126 — 132. https://doi.org/10.25080/Majora-
7b98e3ed-013

Fahad Mehfooz. 2021. ClubHouse EDA. https://www.kaggle.com/code/fahadmehfoooz/clubhouse-eda. Accessed:
2022-12-09.

Julie L. Newcomb, Andrew Adams, Steven Johnson, Rastislav Bodik, and Shoaib Kamil. 2020. Verifying and Improving
Halide’s Term Rewriting System with Program Synthesis. Proc. ACM Program. Lang. 4, OOPSLA, Article 166 (nov
2020), 28 pages. https://doi.org/10.1145/3428234

Jupyter Notebooks. 2022. https://jupyter-notebook.readthedocs.io/en/latest/notebook.html. Accessed: 2022-12-09.
Koalas: pandas API on Apache Spark. 2022. https://koalas.readthedocs.io/en/latest/. Accessed: 2022-12-09.

Devin Petersohn, Dixin Tang, Rehan Durrani, Areg Melik-Adamyan, Joseph E. Gonzalez, Anthony D. Joseph, and
Aditya G. Parameswaran. 2022. Flexible Rule-Based Decomposition and Metadata Independence in Modin: A Parallel
Dataframe System. Proc. VLDB Endow. 15, 3 (feb 2022), 739-751. https://doi.org/10.14778/3494124.3494152

Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. 2021. KGTorrent: A Dataset of Python Jupyter Notebooks
from Kaggle. In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). 550-554. https:
//doi.org/10.1109/MSR52588.2021.00072

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
2013. Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Seattle, Washington, USA) (PLDI ’13). ACM, New York, NY, USA, 519-530. https://doi.org/10.1145/2491956.2462176
Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Explanation in Computational Notebooks.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18).
Association for Computing Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/3173574.3173606

Python for Social Scientists San Diego State University, Linguistics/BDA 572. 2022. https://gawron.sdsu.edu/python_
for_ss. Accessed: 2022-12-09.

Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian Lup, Jubi Taneja, and John Regehr.
2017. Souper: A Synthesizing Superoptimizer. https://doi.org/10.48550/ARXIV.1711.04422

Bhushan Pal Singh, Mudra Sahu, and S. Sudarshan. 2021. Optimizing Data Science Applications Using Static Analysis. In
The 18th International Symposium on Database Programming Languages (Copenhagen, Denmark) (DBPL °21). Association
for Computing Machinery, New York, NY, USA, 23-27. https://doi.org/10.1145/3475726.3475729

Phanwadee Sinthong and Michael J. Carey. 2021. PolyFrame: A Retargetable Query-Based Approach to Scaling
Dataframes. Proc. VLDB Endow. 14, 11 (oct 2021), 2296-2304. https://doi.org/10.14778/3476249.3476281

Sunny Solanki. 2021. How to Speed up Code involving Pandas DataFrame using Numba? https://coderzcolumn.com/
tutorials/python/guide-to-speed-up-code-involving-pandas-dataframe-using-numba.

New York (N.Y.). Taxi and Limousine Commission. 2015. TLC Trip Record Data. https://dask-data.s3.amazonaws.com/
nyc-taxi/2015/yellow_tripdata_2015-01.csv. Accessed: 2022-12-09.

TensorFlow. 2023. TensorFlow graph optimization with Grappler. https://www.tensorflow.org/guide/graph_
optimization.

Eyal Trabelsi. 2021. Practical Optimisation for Pandas. https://www.youtube.com/watch?v=zdubYLjXHb0.
Prakritidev Verma. 2017. Notebook673580193d. https://www.kaggle.com/code/prakritidevverma/notebook673580193d.
Accessed: 2022-12-09.

Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong
Chen, and Zhihao Jia. 2021. PET: Optimizing Tensor Programs with Partially Equivalent Transformations and
Automated Corrections. In 15th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2021, July

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

https://doi.org/10.1145/3473579
https://llvm.org/doxygen/InstructionCombining_8cpp_source.html
https://llvm.org/doxygen/VectorCombine_8cpp_source.html
https://www.microsoft.com/en-us/research/publication/provably-correct-peephole-optimizations-alive/
https://www.microsoft.com/en-us/research/publication/provably-correct-peephole-optimizations-alive/
https://doi.org/10.1145/3453483.3454030
https://github.com/pandas-dev/pandas/blob/91111fd99898d9dcaa6bf6bedb662db4108da6e6/pandas/_libs/lib.pyx#L2863
https://github.com/pandas-dev/pandas/blob/91111fd99898d9dcaa6bf6bedb662db4108da6e6/pandas/_libs/lib.pyx#L2863
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.25080/Majora-7b98e3ed-013
https://www.kaggle.com/code/fahadmehfoooz/clubhouse-eda
https://doi.org/10.1145/3428234
https://jupyter-notebook.readthedocs.io/en/latest/notebook.html
https://koalas.readthedocs.io/en/latest/
https://doi.org/10.14778/3494124.3494152
https://doi.org/10.1109/MSR52588.2021.00072
https://doi.org/10.1109/MSR52588.2021.00072
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/3173574.3173606
https://gawron.sdsu.edu/python_for_ss
https://gawron.sdsu.edu/python_for_ss
https://doi.org/10.48550/ARXIV.1711.04422
https://doi.org/10.1145/3475726.3475729
https://doi.org/10.14778/3476249.3476281
https://coderzcolumn.com/tutorials/python/guide-to-speed-up-code-involving-pandas-dataframe-using-numba
https://coderzcolumn.com/tutorials/python/guide-to-speed-up-code-involving-pandas-dataframe-using-numba
https://dask-data.s3.amazonaws.com/nyc-taxi/2015/yellow_tripdata_2015-01.csv
https://dask-data.s3.amazonaws.com/nyc-taxi/2015/yellow_tripdata_2015-01.csv
https://www.tensorflow.org/guide/graph_optimization
https://www.tensorflow.org/guide/graph_optimization
https://www.youtube.com/watch?v=zdubYLjXHb0
https://www.kaggle.com/code/prakritidevverma/notebook673580193d

Dias: Dynamic Rewriting of Pandas Code 58:27

14-16, 2021, Angela Demke Brown and Jay R. Lorch (Eds.). USENIX Association, 37-54. https://www.usenix.org/
conference/osdi21/presentation/wang

[50] IPython Website. 2022. https://ipython.org/. Accessed: 2022-12-09.

[51] Solving Real-World Business Questions with Python Pandas. 2020. https://medium.com/li-ting-liao- tiffany/solving-
real-world-business- questions-with-pandas-70ef8ef02675. Accessed: 2022-12-09.

[52] Doris Xin, Devin Petersohn, Dixin Tang, Yifan Wu, Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph, and
Aditya G. Parameswaran. 2021. Enhancing the Interactivity of Dataframe Queries by Leveraging Think Time. CoRR
abs/2103.02145 (2021). arXiv:2103.02145 https://arxiv.org/abs/2103.02145

[53] Guogiang Zhang and Xipeng Shen. 2021. Best-Effort Lazy Evaluation for Python Software Built on APIs. In 35th

European Conference on Object-Oriented Programming (ECOOP 2021) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 194), Anders Mgller and Manu Sridharan (Eds.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 15:1-15:24. https://doi.org/10.4230/LIPIcs. ECOOP.2021.15

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 58. Publication date: February 2024.

https://www.usenix.org/conference/osdi21/presentation/wang
https://www.usenix.org/conference/osdi21/presentation/wang
https://ipython.org/
https://medium.com/li-ting-liao-tiffany/solving-real-world-business-questions-with-pandas-70ef8ef02675
https://medium.com/li-ting-liao-tiffany/solving-real-world-business-questions-with-pandas-70ef8ef02675
https://arxiv.org/abs/2103.02145
https://arxiv.org/abs/2103.02145
https://doi.org/10.4230/LIPIcs.ECOOP.2021.15

	Abstract
	1 Introduction
	2 Background
	2.1 Setting
	2.2 Rewriting as an alternative optimization

	3 Dias Overview
	3.1 Pandas Rewrite Rules

	4 Dias Rewrite System
	4.1 Dias Pattern Matcher
	4.2 Dias Rewriter

	5 Implementation
	5.1 IPython Integration
	5.2 Crossing Library Boundaries

	6 Evaluation
	6.1 Experimental Setup
	6.2 End-to-End vs Pandas
	6.3 Comparison with Modin
	6.4 An Estimate of Dias' Hit Rate
	6.5 Understanding Dias' Performance
	6.6 Comparing Various Dataframe Libraries

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Extended Results
	References

